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Abstract: Determining the most relevant features is a critical pre-processing step in various fields
to enhance prediction. To address this issue, a set of feature selection (FS) techniques have been
proposed; however, they still have certain limitations. For example, they may focus on nearby points,
which lowers classification accuracy because the chosen features may include noisy features. To take
advantage of the benefits of the quantum-based optimization technique and the 2D chaotic Hénon
map, we provide a modified version of the honey badger algorithm (HBA) called QCHBA. The
ability of such strategies to strike a balance between exploitation and exploration while identifying
the workable subset of pertinent features is the basis for employing them to enhance HBA. The
effectiveness of QCHBA was evaluated in a series of experiments conducted using eighteen datasets
involving comparison with recognized FS techniques. The results indicate high efficiency of the
QCHBA among the datasets using various performance criteria.

Keywords: feature selection; honey badger algorithm (HBA); quantum-based optimization technique;
2D chaotic Hénon map

1. Introduction

The enormous increase in the volume of data has resulted in a range of difficulties and
issues, including noisy, high-dimensional, and irrelevant data [1]. This results in significant
processing costs and adversely affects the effectiveness and accuracy of machine learning
systems. Approaches for feature selection (FS) have been used to lower computational
costs and increase classification accuracy [2]. Feature selection is the process of limiting
the number of collected features into a relevant subset that can be utilized to combat the
problem of dimensionality. By choosing a sample of pertinent features, FS techniques
are frequently employed to capture data qualities [3]. Additionally, they can eliminate
irrelevant and distracting data [3]. FS techniques are frequently used in a variety of
disciplines, including COVID-19 CT scan classification [4], text categorization, human
activity detection [5,6], MR image segmentation [7,8], data analytics [9,10], parameter
estimation of biochemical systems [10], investigation of neuromuscular diseases [11], and
other applications [12–14].

There are three types of FS methods: wrapper, filter, and embedded [15]. Filter-
based methods rely on dataset characteristics without depending on learning technique,
while wrapper-based methods evaluate the chosen features using the learning process.
Embedded algorithms identify the elements that most effectively improve model accuracy.
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As a result, procedures based on filters are quicker and more effective than methods based
on wrappers. A strategy that can limit the amount of features that must be chosen, while
maximising classifier accuracy, is the optimal FS method [15].

Numerous MH algorithms have been successfully applied to address FS issues. These
include, the particle swarm optimization (PSO) algorithm [16], the differential evolution
(DE) algorithm [17], the genetic algorithm (GA) [18], the grasshopper optimization algo-
rithm (GOA) [19], the gravitational search algorithm (GSA) [20], the slime mould algorithm
(SMA) [3], the Harris hawk optimization (HHO) algorithm [21], the marine predator algo-
rithm (MPA) [22] and others [7–10,23]. An FS strategy has been proposed that is based on
the electric fish optimization (EFO) [24]. It was tested on a variety of challenging real-world
datasets and performed very well, with the exception of high dimensional issues where it
exhibited delayed convergence and a tendency to become stuck in local minima.

The NFL theorem states that no single algorithm can resolve every issue. As a result, a
hybridization approach is frequently used to handle a variety of complicated issues, includ-
ing FS. We utilize an optimizer known as the honey badger algorithm (HBA) [25] which
takes its inspiration from the intelligent foraging behavior of honey badger. The authors
of [26] developed the honey badger algorithm (HBA), which is an effective optimization
technique for determining the ideal size and location of capacitors and other types of DG to
reduce the overall active power. Since there are numerous variable quantities with various
non-linear characteristics included in the proton exchange membrane fuel cell (PEMFC)
design, which must be properly specified to ensure effective modelling, an alternative
method to determine the PEMFC parameters was proposed in [27]. This method relies on
use of the honey badger algorithm (HBA) as a novel identification approach to determine
the PEMFC parameters. A new approach was suggested in [28] to address certain issues
and drawbacks of the HBA which are manifest in trapping in local optima, low conver-
gence, and imbalance between exploration and exploitation stages. The approach, known
as mHBA is based on use of the dimensional learning hunting (DLH) method, an effective
local search technique, which is incorporated into the HBA. In addition, HBA has proved its
efficiency in quantum applications as reported in [29]. The authors proposed an IoT-based
optimization scheme for task scheduling for minimizing energy in cloud computing using
the HBA. The major objective of the present study was to identify the most significant cloud
scheduling key. A committee of decision-makers first chose the standards for evaluation.
The optimal solution was then determined after assigning weights to each criterion using
an optimization technique. Last, but not least, the evaluation metrics included in the
CloudSim toolbox, including makespan, energy consumption, and resource utilisation
were applied. The results indicated that it might be challenging to match user demands
with available cloud resources to improve performance and minimise energy use. This
paper offers a work scheduling method that uses the honey badger algorithm (HBA) in a
heterogeneous visualized cloud to save energy.

While application of the HBA has demonstrated a number of benefits, it still suffers
from limitations that we were motivated to address. This has involved use of the quantum-
based optimization (QBO) technique and the 2D chaotic Hénon map. These methods were
used to enhance convergence towards a feasible solution, and to improve balancing of
exploitation and exploration. To evaluate the performance of the proposed method, a set of
eighteen datasets was used. The results were compared with other well-known FS methods.
In general, the proposed technique, named QCHBA, starts by setting the value of a set of
solutions using the QBO strategy then evaluates the performance of each using the error
classification and the ratio of selected features as the fitness value. Then the best solution
having the best fitness value is determined. The operators of the HBA and 2D Hénon maps
are integrated to enhance the current set of solutions that represent the relevant features.
This process is repeated until the terminal conditions occur. The testing sample is then
used to assess the performance of the returned best solution using different performance
measures. To the best of our knowledge, no integration of the QBO, the 2D Hénon map,
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and the operators of MH techniques has been proposed to date. This motivated us to apply
this integration as an FS method.

The main contributions of this study can be summarized as follows:

• A modified version of the honey badger algorithm is proposed and applied as a feature
selection technique.

• Quantum-based optimization and the 2D Hénon chaotic map are used to improve the
HBA during the process of selecting relevant features.

• The efficiency of the developed method is evaluated using state-of-the-art FS methods
applied to eighteen datasets.

2. Background
2.1. Honey Badger Algorithm (HBA)

The characteristics of the honey badger algorithm (HBA) are described in detail in this
section [25]. The design of the HBA was influenced by the foraging behaviour of honey
badgers. The honey badger uses its sense of smell as one method of locating its meal, and
also uses digging as a second method. The honey badger relies on honey-guide birds to
locate and then enter the hives. The “digging phase” was the name used for the first tactic,
and the “honey phase” was the name given by the algorithm’s designers to the second
tactic. The honey badger’s olfactory sensitivity controls how it moves; when the fragrance
is potent, the insect will move quickly, and vice versa [25].

The HBA’s main stages and corresponding equations are as follows:

• Initialization process: During this stage, the problem space’s upper (HU) and lower
(HL) boundaries are used to determine the first potential solution. As a result, the first
solutions are stochastic sets that may be created using the following method according
to Equation (1) [25].

Hi = HL + r1(1, D)× (HU − HL), i = 1, 2, . . . , N. (1)

where D refers to the dimension of the solution, H represents the total of the potential
solutions, and N is the number of solution providers (honey badgers).

• Updating positions: Coordinates of the candidates Hnew are updated at this point. For
instance, this can involve applying a technique that uses either the digging or honey
stages.

– Digging phase: In this phase, the movements of the potential search subjects are
influenced by the potency of the predator’s odor and the separation of the honey
badger (agent) from the prey (P). The honey badger excavates in a polarized
circle. The following is the stated formula for its motion:

Hnew = P + Fg× β× In× P + Fg× r3 × (P− Hi)× (cos2πr4)× (1− cos2πr5) (2)

where β measures an insect’s ability to collect food. Hashim et al. [25] reported
that the maximum value of β that might exist is 6. The intensity is In, and the
r3, r4, and r5 are random variables with a range of 0 to 1 that were selected from
a uniform distribution. The Fg, which serves as a search direction indication, is
produced as follows:

Fg =

{
1 i f r6 ≤ 0.5
−1 i f else

(3)

– Honey phase: When looking for beehives, honey badgers utilize the honey phase
to alter their position relative to the honey lead bird. The following equation was
used by Hashim et al. [25] to determine the honey phase:

Hnew = P + Fg× r7 × σ× (P− Hi) (4)



Electronics 2022, 11, 3463 4 of 16

where P is the best solution obtained so far and r7 is a random number having values
between 0 and 1.

• Modeling intensity In: Since the honey badger perception of insect scent governs its
behavior, Hashim et al. [25] created the following formulation for each contender’s
scent intensity Ini of the prey.

Ini = r2 ×
(Hi − Hi+1)

2

4π(P− Hi)
(5)

where P is the prey’s location and r2 is a stochastic number in the range [0, 1].
• Modeling the density parameter (sigma): According to Hashim et al. [25], the sigma

value serves as a regulator for transmission among the local and global search stages.
Hashim et al. [25] hypothesized that beta is depicted throughout the iterations, as
shown below:

σ = C× exp(
−IT
ITmax

) (6)

where IT and ITmax refer to the current and the total number of iterations, respectively.
C is a constant that was recommended to be 2.

• Escaping from local solutions: the algorithm developers [25] employed a warning (Fg)
to point out the search direction to avoid getting stuck on local solutions.

The primary structure of the HBA is described in the Algorithm 1 based on the
preceding description.

Algorithm 1 Steps of HBA

1: Inputs: Agents size N, number of iterations Itermax.
2: Outputs: The optimal solutions.
3: Step 1: Calculate the first set of N solutions U with dimension d (i.e., number of

unknown variables).
4: Compute the fitness function of Equation (13) and the corresponding swarm matrix as

the best solutions (P).
5: while (Iter ≤ Itermax) do
6: Upgrade the value of the decreasing factor through Equation (19).
7: for (i = 1 to N) do
8: Compute the intensity through Equation (5).
9: if r < 0.5 then

10: Upgrade the location of Hnew through Equation (15).
11: else
12: Upgrade the location of Hnew through Equation (4).
13: Evaluate the new solutions and compute the Fitt+1 and assign Fitmaxt+1 .
14: if Fitt+1 ≤ Fitt then
15: Set Hi = Hnew and Fitt = Fitt+1.
16: if Fitmaxt+1 ≤ Fitmaxt then
17: Set Hbest = Hnew and Fitmaxt = Fitmaxt+1 .

2.2. Two-Dimensional Hénon Map

The 2D Hénon map is one of the most popular discrete-time dynamical systems
that replicates chaotic behavior [30]. The Hénon map, also known as the Hénon-Pomeau
attractor/map, is a discrete-time dynamical system. It is one of the most well-researched
examples of chaotic behavior in dynamical systems. The Hénon map converts a point
(xn, yn) in the plane to a new point. The map was first presented by Michel Hénon as a
condensed form of the Poincaré section of the Lorenz model. The Hénon strange attractor
is a group of points, under the classical map, from which an initial plane point would either
approach or diverge to infinity. A fractal known as the Hénon attractor has a Cantor set in
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one direction and is smooth in the other. The mathematical formula of the Hénon map is
written as in Equation (7) and its distribution is represented in Figure 1:{

xt+1 = 1− 1.4 · x2
t + yt

yt+1 = 0.3 · xt
(7)
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Figure 1. Hénon attractor, and x, y distributions.

3. Quantum Chaotic Honey Badger Algorithm (QCHBA)

In this approach, the HBA is combined with the two-dimensional Hénon map to
improve the fundamental performance of the algorithm. Moreover, the quantum-based
optimization technique is used to improve the ability to search to balance exploration
and exploitation. In general, the proposed QCHAB approach starts by using the training
set that represents 70% of the given dataset to determine the relevant features. Then the
solution is generated using the quantum-based optimization technique. This is followed by
computing the performance of each solution and determining the optimal solution. The
next step is to update the solution according to the strengths of the 2D chaotic maps and
the QBO. This updating procedure is repeated until terminal criteria are met and then the
best solution is the output of this stage. The next stage involves reducing the features in the
testing set to represent 30% of the dataset. Then, the performance of the selected features is
evaluated using different performance metrics.

3.1. Initial Solutions

The main purpose of this stage is to generate the set of N solutions (i.e., population)
using the QBO technique. These solutions consists of D Q-bits (D refers to the number of
features) and this can be given as:

Hi = [qi1|qi2| . . . | qiD] = [θi1|θi2| . . . |θiD], i=1,2,. . . ,N (8)

In Equation (8), Hi denotes the superpositions of probabilities of the features that are
selected that correspond to ones and features not selected that correspond to zeros.
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3.2. Updating Solution

In this stage, the QCHAB starts by obtaining the binary form of solution
Hi, i = 1, 2, . . . , N using the following formula.

BHi,j=

{
1 i f rand <|β|2
0 otherwise

(9)

In Equation (9), rand∈[0, 1] refers to a random value.
Thereafter, the fitness value for each Hi is computed using the following equation.

Fiti=ρ×γ+(1−ρ)×
( |BHi,j|

D

)
(10)

In Equation (10), |BHi,j| is the number of features that correspond to ones. γ refers
to the the error classification obtained from applying the KNN classifier, whereas ρ∈[0, 1]
refers to the parameter that is used to balance the objectives (i.e., the error classification
and feature selection).

The next step to compute the fitness value for each Hi then determines the best solution
Hb. Then, the modified version of HBA based on the 2D Hénon map is used to update the
current solutions. The following is a summary of the proposed modification and controlled
equations, in which there are two modifications.

• First modification: The two-dimensional Hénon map is applied to adjust the param-
eters of C and β of Equation (11), respectively, to improve the functionality of the
fundamental HBA optimizer. The updated values of C and β follow the equation
shown below:

C(t) = 4 ∗ yt+1

β(t) = 7 ∗ Ht+1
(11)

where Ht+1 and yt+1 are vectors of the Hénon map and t is the current iteration. The
Hénon map vectors are normalized using the numbers 4 and 7 to place them inside
the HBA developer’s suggested range. The developers chose to use β and C values of
6 and 2, as mentioned in the previous section on the fundamental HBA.
The variables beta and C undergo changes during the course of the iterations with
values ranging from 0 to 7 and 0 to 4, respectively.
The CHBA uses the values 4 and 7 to provide broad diversity. When implemented,
the Hénon map’s initialization is 0 (x(1) = 0; y(1) = 0). Figure 1 shows how the map’s
attractor works.

Then the digging phase and the density variable are modeled as

Hnew = P + Fg× β(t)× In× P + Fg× r3 × (P− Hi)× (cos2πr4)× (1− cos2πr5) (12)

σ = C(t)× exp(
−Iter

Itermax
) (13)

The process of updating the solutions is conducted until the stop conditions are met.
Then the best solution Hb is used as the output of this stage.

3.3. Evaluate Quality of Hb

Within this phase, the best solution Hb is used to remove irrelevant features from the
testing set. Then, this reduced testing set is used as input to the learned KNN classifier
to predict the target of the testing set. The performance of the predicted target is then
computed using a set of performance criteria. The QCHBA algorithm steps are listed in
Algorithm 2.
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Algorithm 2 Pseudo code of QCHBA

1: Inputs: Agents size N, number of iterations Itermax, the dataset.
2: Outputs: The optimal solutions.
3: Step 1: Calculate the first set of N solutions U with dimension d (i.e., number of

unknown variables using QBO as in Equation (9)).
4: Compute the fitness function as in Equation (10) and the corresponding swarm matrix

as the best solutions (P).
5: Calculate C, and β based on Hénon map, using Equation (11) with dimensions of

1* Itermax.
6: while (Iter ≤ Itermax) do
7: Upgrade the value of the decreasing factor through Equation (13).
8: for (i = 1 to N) do
9: Compute the intensity through Equation (5).

10: if r < 0.5 then
11: Upgrade the location of Hnew through Equation (12).
12: else
13: Upgrade the location of Hnew through Equation (4).
14: Evaluate the new solutions and compute the Fitt+1 and assign Fitmaxt+1 .
15: if Fitt+1 ≤ Fitt then
16: Set Hi = Hnew and Fitt = Fitt+1.
17: if Fitmaxt+1 ≤ Fitmaxt then
18: Set Hbest = Hnew and Fitmaxt = Fitmaxt+1 .

19: Evaluate the performance of the best solution using the testing set.

4. Experimental Results
4.1. Data Description

The evaluation of the performance of QCHBA was performed using eighteen UCI
datasets [31]. The characteristics of these datasets are detailed in Table 1. From these
characteristics, it can be observed that there are different classes, features, and samples,
and that they derive from different domains.

Table 1. Dataset descriptions.

Datasets Number of Features Number of Instances Number of Classes Data Category

Breastcancer (S1) 9 699 2 Biology

BreastEW (S2) 30 569 2 Biology
CongressEW (S3) 16 435 2 Politics

Exactly (S4) 13 1000 2 Biology

Exactly2 (S5) 13 1000 2 Biology

HeartEW (S6) 13 270 2 Biology

IonosphereEW (S7) 34 351 2 Electromagnetic

KrvskpEW (S8) 36 3196 2 Game
Lymphography (S9) 18 148 2 Biology

M-of-n (S10) 13 1000 2 Biology

PenglungEW (S11) 325 73 2 Biology

SonarEW (S12) 60 208 2 Biology

SpectEW (S13) 22 267 2 Biology

Tic-tac-toc (S14) 9 958 2 Game

Vote (S15) 16 300 2 Politics
WaveformEW (S16) 40 5000 3 Physics
Water (S17) 13 178 3 Chemistry
Zoo (S18) 16 101 6 Artificial
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4.2. Performance Measures

Six performance metrics are presented in this section that were used to assess how
well the proposed methods performed. These metrics included the averages of the accuracy,
standard deviation (Std), fitness value, minimum fitness value (Min), and maximum fitness
value (Max). All algorithms were used 25 times to obtain the performance metric averages.

• Accuracy (Acc): The corrected classified data ratio was calculated using this metric. It
was determined using Equation (14).

Acc =
TP + TN

TP + FN + FP + TN
(14)

where FN, TN, FP and TP denote false negative, true negative, false positive, and
true positive, respectively.

• Fitness value: This metric assesses the effectiveness of the techniques using the fitness
function as in Equation (10).

• Maximum of the fitness value: This metric captures the highest result that the fitness
function for each method can achieve.

Max = max
1≤i≤Nr

Fiti
b (15)

• Minimum of the fitness value: This metric captures the lowest result that the fitness
function for each method can achieve.

Min = min
1≤i≤Nr

Fiti
b (16)

• Selected features: This metric keeps track of how many chosen features each algorithm
is able to produce.

• Standard deviation: This metric assesses an algorithm’s consistency throughout nu-
merous executions. The calculation is as in Equation (17).

Std =

√√√√ 1
Nr

Nr

∑
i=1

(Fiti − Fita)
2 (17)

The parameter Nr refers to the number of runs and Fiti refers to the given fitness
value. Its average is given by Fita. Whereas, Fiti

b refers to the best Fit at run i.

The results of the QCHBA were compared with the electric fish optimization (EFO) [24],
the sinusoidal parameter adaptation incorporated with L-SHADE (LSEpSin) [32], the grey-
wolf optimization algorithm (GWO) [33], the reptile search algorithm (RSA) [34], the L-
SHADE with semi-parameter adaptation (LSHADECS) [35], and the self-adaptive differential
evolution (SaDE) [36].

4.3. Results and Discussion

The results obtained for the proposed QCHBA and the other FS methods are intro-
duced in this section. The comparison was performed with the traditional HBA, the chaotic
HAB, GWO, EFO, RSA, LSHADE, LSHADECS, and SaDE. In the initial investigations, the
parameter settings of these FS algorithms were set as for the original implementation. The
common parameters were set as N = 15 and tmax = 50. To ensure a fair comparison, each
method was run 25 times. The dataset was split into a training set representing 80% of the
total and a testing set representing 20% of the total.

The results for the QCHBA and the other methods based on the average fitness values
are given in Table 2. It can be seen from these results that the QCHBA had the smallest
value at seven datasets, which represented nearly 39% of the the tested data. Both the
CHBA and the HBA showed best performance of nearly 22% of the datasets. Figure 2
shows the average of each algorithm among the tested datasets based on the average fitness
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value. From this figure, it can be seen that the QCHBA had the smallest average overall
compared to the other algorithms. This was followed by the traditional HBA and CHBA
which had the second and third best fitness value averages, respectively. LSHADECS was
the worst algorithm based on the average fitness value obtained in this study.

The stability of the competitive methods is given in Table 3. From the values for the
standard deviation (STD) of the fitness values for each method, it can be seen that the
LSHADE was the most stable method overall. The STD results for the QCHBA indicated
that its stability was better than the remaining methods with the second best performance.
The EFO, SaDE, HBA, RSA, and LSHADECS methods occupied the subsequent ranks,
respectively, based on their STD values. The same conclusions may be drawn from Figure 3.

Based on the results for the best fitness values given in Table 4 and Figure 4, the
following observations can be made: First, the QCHBA method had the lowest results at
nearly 61% from the eighteen datasets. This was followed by the HBA and CHBA methods
which had best values of nearly 27% and 22%, respectively. The GWO and RSA methods
achieved better performance in terms of best fitness values at 16% and 11%, respectively.
This indicates that the operators of the HBA had the ability to reach smaller fitness values
than the other algorithms. However, adding quantum and chaotic maps to these operators
increased the probability of being optimal cases.

From the worst fitness value results for each method that are presented in Table 5
and Figure 5, the following observations can be made: The HBA and RSA showed better
fitness values in the worst instances of each compared to the other methods. However,
the proposed QCHBA approach maintained its superiority over the other methods with
better fitness values for eight datasets, which represented nearly 45% of the total number
of datasets tested. The convergence curves of the algorithms are shown in Figure 6. These
curves indicate the high efficiency of the proposed method, which converged faster towards
the optimal subset of features than the other methods.

Table 2. Results of QCHBA based on average of fitness values.

HBA CHAB QCHBA bGWO EFO RSA LSHADE LSHADECS SaDE

S1 0.0568 0.0551 0.0736 0.0627 0.0823 0.0824 0.0833 0.1325 0.0917
S2 0.0672 0.0552 0.0318 0.0796 0.0884 0.0752 0.1254 0.1996 0.1114
S3 0.0443 0.0707 0.0849 0.0473 0.0989 0.0191 0.0655 0.1609 0.1063
S4 0.0578 0.0710 0.0539 0.0989 0.0793 0.1103 0.2504 0.2942 0.3853
S5 0.2214 0.1783 0.2496 0.2152 0.3134 0.2868 0.2258 0.3748 0.2285
S6 0.1883 0.1557 0.1835 0.1920 0.1662 0.1733 0.2019 0.3583 0.2417
S7 0.0794 0.0705 0.0923 0.0973 0.1457 0.0887 0.1160 0.1660 0.1148
S8 0.0737 0.0842 0.0840 0.1024 0.0992 0.0953 0.3904 0.4010 0.3658
S9 0.1944 0.1878 0.1150 0.1050 0.2242 0.1424 0.2567 0.2667 0.2516
S10 0.0546 0.0689 0.0519 0.0766 0.0808 0.1181 0.2118 0.3503 0.2706
S11 0.0341 0.0815 0.0080 0.0810 0.2006 0.1308 0.3200 0.3330 0.3500
S12 0.0823 0.0764 0.0655 0.0840 0.1374 0.1213 0.2833 0.4167 0.3333
S13 0.1188 0.2002 0.1518 0.1235 0.2345 0.2058 0.1630 0.2731 0.2417
S14 0.2290 0.2409 0.2342 0.2678 0.2420 0.2276 0.2635 0.3234 0.2992
S15 0.0714 0.0572 0.0504 0.1114 0.1043 0.0353 0.0567 0.1450 0.0850
S16 0.2728 0.2810 0.2708 0.2914 0.3115 0.2969 0.3574 0.4506 0.4094
S17 0.0565 0.0732 0.0647 0.0634 0.0796 0.0692 0.1833 0.1819 0.1583
S18 0.0303 0.0400 0.0303 0.0481 0.0425 0.0338 0.3333 0.2133 0.0833
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Figure 2. Competitive results of QCHBA and other methods in terms of average fitness values.

Figure 3. Average of stability results of QCHBA and other algorithms overall for the tested datasets.

Table 3. Stability of competitive algorithms based on fitness values.

HBA CHAB QCHBA bGWO EFO RSA LSHADE LSHADECS SaDE

S1 0.0110 0.0074 0.0092 0.0088 0.0037 0.0073 0.0000 0.0106 0.0000
S2 0.0139 0.0129 0.0108 0.0112 0.0105 0.0122 0.0000 0.0192 0.0236
S3 0.0130 0.0101 0.0016 0.0102 0.0138 0.0056 0.0000 0.0293 0.0236
S4 0.0180 0.0452 0.0041 0.0476 0.0282 0.0521 0.0645 0.0000 0.0000
S5 0.0100 0.0364 0.0175 0.0242 0.0095 0.0073 0.0000 0.0148 0.0236
S6 0.0240 0.0281 0.0141 0.0315 0.0340 0.0143 0.0000 0.0223 0.0092
S7 0.0212 0.0236 0.0025 0.0107 0.0033 0.0140 0.0000 0.0236 0.0070
S8 0.0126 0.0151 0.0107 0.0107 0.0109 0.0119 0.0054 0.0089 0.0000
S9 0.0399 0.0348 0.0183 0.0224 0.0094 0.0070 0.0094 0.0236 0.0096
S10 0.0083 0.0337 0.0018 0.0308 0.0208 0.0565 0.0000 0.0422 0.0211
S11 0.0137 0.0491 0.0152 0.0346 0.0007 0.0399 0.0000 0.0123 0.0236
S12 0.0211 0.0239 0.0196 0.0190 0.0113 0.0097 0.0000 0.0000 0.0000
S13 0.0061 0.0239 0.0024 0.0215 0.0138 0.0155 0.0000 0.0144 0.0196
S14 0.0093 0.0162 0.0020 0.0121 0.0119 0.0084 0.0000 0.0206 0.0026
S15 0.0216 0.0166 0.0165 0.0133 0.0106 0.0014 0.0000 0.0471 0.0236
S16 0.0160 0.0139 0.0106 0.0094 0.0077 0.0080 0.0000 0.0032 0.0000
S17 0.0140 0.0107 0.0021 0.0112 0.0172 0.0061 0.0000 0.0137 0.0196
S18 0.0058 0.0100 0.0043 0.0081 0.0112 0.0163 0.0000 0.0000 0.0236
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Table 4. Best fitness values generated using competitive methods.

Min HBA CHAB QCHBA bGWO EFO RSA LSHADE LSHADECS SaDE

S1 0.0462 0.0415 0.0608 0.0462 0.0766 0.0766 0.0833 0.1250 0.0917
S2 0.0482 0.0291 0.0133 0.0616 0.0782 0.0595 0.1254 0.1860 0.0947
S3 0.0332 0.0560 0.0664 0.0291 0.0791 0.0166 0.0655 0.1402 0.0897
S4 0.0462 0.0462 0.0462 0.0538 0.0538 0.0538 0.2048 0.2942 0.3853
S5 0.2192 0.1562 0.2327 0.2057 0.2968 0.2794 0.2258 0.3643 0.2118
S6 0.1474 0.1551 0.1205 0.1321 0.1282 0.1551 0.2019 0.3426 0.2352
S7 0.0489 0.0518 0.0303 0.0781 0.1408 0.0751 0.1160 0.1493 0.1099
S8 0.0586 0.0628 0.0615 0.0853 0.0864 0.0758 0.3866 0.3947 0.3658
S9 0.1233 0.1400 0.0810 0.0800 0.2163 0.1322 0.2500 0.2500 0.2448
S10 0.0462 0.0462 0.0462 0.0462 0.0660 0.0538 0.2118 0.3205 0.2557
S11 0.0025 0.0083 0.0037 0.0246 0.1997 0.0760 0.3200 0.3242 0.3333
S12 0.0300 0.0317 0.0217 0.0548 0.1262 0.1057 0.2833 0.4167 0.3333
S13 0.0955 0.1515 0.1061 0.0848 0.2212 0.1818 0.1630 0.2630 0.2278
S14 0.2214 0.2278 0.2009 0.2524 0.2243 0.2196 0.2635 0.3089 0.2974
S15 0.0425 0.0338 0.0275 0.0888 0.0950 0.0338 0.0567 0.1117 0.0683
S16 0.2501 0.2595 0.2440 0.2711 0.3031 0.2877 0.3574 0.4483 0.4094
S17 0.0308 0.0538 0.0308 0.0462 0.0635 0.0615 0.1833 0.1722 0.1444
S18 0.0250 0.0250 0.0188 0.0250 0.0250 0.0188 0.3333 0.2133 0.0667

Figure 4. The efficiency of QCHBA and other methods according to the best fitness value measure.

Table 5. Worst fitness values generated using competitive methods.

Max HBA CHAB QCHBA bGWO EFO RSA LSHADE LSHADECS SaDE

S1 0.0795 0.0731 0.0941 0.0766 0.0860 0.0941 0.0833 0.1400 0.0917
S2 0.0995 0.0782 0.0646 0.1032 0.1049 0.0907 0.1254 0.2132 0.1281
S3 0.0769 0.0914 0.1203 0.0685 0.1164 0.0291 0.0655 0.1816 0.1230
S4 0.1020 0.2164 0.1020 0.1939 0.1142 0.1894 0.2960 0.2942 0.3853
S5 0.2640 0.2577 0.3167 0.3058 0.3199 0.2961 0.2258 0.3853 0.2452
S6 0.2359 0.2103 0.2115 0.2385 0.2103 0.1910 0.2019 0.3741 0.2481
S7 0.1272 0.1125 0.1093 0.1172 0.1496 0.1376 0.1160 0.1826 0.1197
S8 0.1103 0.1060 0.1049 0.1214 0.1129 0.1116 0.3942 0.4073 0.3658
S9 0.2522 0.2522 0.1489 0.1630 0.2389 0.1598 0.2633 0.2833 0.2583
S10 0.0795 0.1600 0.0872 0.1804 0.1097 0.1804 0.2118 0.3802 0.2855
S11 0.0646 0.1917 0.1065 0.1492 0.2015 0.1843 0.3200 0.3417 0.3667
S12 0.1090 0.1310 0.1045 0.1195 0.1526 0.1295 0.2833 0.4167 0.3333
S13 0.1212 0.2318 0.1939 0.1682 0.2561 0.2212 0.1630 0.2833 0.2556
S14 0.2401 0.2870 0.2734 0.3057 0.2559 0.2418 0.2635 0.3380 0.3010
S15 0.1225 0.0925 0.0925 0.1363 0.1225 0.0363 0.0567 0.1783 0.1017
S16 0.3104 0.3081 0.2964 0.3093 0.3210 0.3062 0.3574 0.4528 0.4094
S17 0.0788 0.0942 0.1038 0.0885 0.1019 0.0769 0.1833 0.1917 0.1722
S18 0.0438 0.0563 0.0438 0.0625 0.0500 0.0563 0.3333 0.2133 0.1000
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Figure 5. Performance of QCHBA and other methods in terms of worst fitness values.
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The efficiency of the performance of the QCHBA based on the accuracy measure is
shown in Table 6. For example, it obtained the highest accuracy level at 10 datasets, which
represents nearly 56% of the total. Each of the HBA, CHBA, GWO, EFO, and RSA methods
had best accuracy for only two datasets, including the dataset S18 (which was common to
all of them). The average accuracy of the tested datasets is given in Figure 7. It can be seen
that the accuracy of the QCHBA was better than the close second algorithm, CHAB, with a
difference of nearly 1.45%.

Table 7 and Figure 8 show the average of selected features from each dataset using the
FS method. From these results, it can be seen that the QCHBA had the ability to select the
smallest number of features, at nearly 50% of the total. RSA was the second best algorithm
according to the number of selected features, with the smallest number of features at three
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datasets. This was followed by the GWO and CHBA methods with the smallest number of
features for two datasets.

Table 6. Average of accuracy obtained using QCHNA and other methods.

HBA CHAB QCHBA bGWO EFO RSA LSHADE LSHADECS SaDE

S1 0.9479 0.9739 0.9764 0.9643 0.9629 0.9529 0.9286 0.9536 0.9429
S2 0.9605 0.9702 0.9930 0.9491 0.9684 0.9579 0.8684 0.8816 0.9035
S3 0.9310 0.9638 0.9747 0.9759 0.9609 0.9885 0.9540 0.9368 0.9655
S4 0.9935 0.9823 0.9965 0.9615 0.9820 0.9510 0.7375 0.6750 0.6700
S5 0.7655 0.8233 0.7470 0.7750 0.7270 0.7600 0.7250 0.6550 0.7300
S6 0.8352 0.8546 0.8898 0.8269 0.8889 0.8519 0.7593 0.7500 0.7593
S7 0.9254 0.9423 0.9577 0.9211 0.9127 0.9296 0.9296 0.9296 0.9437
S8 0.9286 0.9609 0.9598 0.9513 0.9713 0.9275 0.5852 0.6414 0.5594
S9 0.8333 0.8317 0.9361 0.9340 0.8299 0.9133 0.8000 0.8333 0.8333
S10 0.9988 0.9838 0.9975 0.9845 0.9820 0.9440 0.7450 0.6900 0.7100
S11 0.9733 0.9262 0.9967 0.9431 0.8667 0.8614 0.7333 0.7386 0.8846
S12 0.9595 0.9643 0.9738 0.9560 0.9381 0.9000 0.6905 0.5476 0.5357
S13 0.8185 0.8583 0.8769 0.8954 0.8111 0.8037 0.8148 0.8241 0.8519
S14 0.8108 0.8207 0.8070 0.7766 0.8052 0.8188 0.7188 0.7760 0.8750
S15 0.9467 0.9708 0.9783 0.9217 0.9467 0.9733 0.9667 0.9833 0.9083
S16 0.7451 0.7525 0.7624 0.7368 0.7394 0.7118 0.5370 0.5230 0.5170
S17 0.9764 0.9944 0.9819 0.9847 0.9833 0.9778 0.8333 0.9306 0.9861
S18 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6667 0.9333 0.8333

Table 7. Number of selected features.

HBA CHAB QCHBA bGWO EFO RSA LSHADE LSHADECS SaDE

S1 2.85 3.2 2.4 2.75 4.4 3.6 5 5 7
S2 8.5 9.5 7.65 10.15 18 11.2 13 13.5 14.5
S3 6.1 3.45 3.65 4.1 10.2 5.4 6 6.5 7.5
S4 7.15 6.75 6.6 8.35 8.2 8.6 8 6 12
S5 2.5 4.35 2.85 1.65 8.8 9.2 8 9 9.5
S6 7.35 5.2 6.85 4.7 8.6 5.2 6 8.5 8
S7 9.95 14.05 8.55 8.95 22.8 8.6 10 9.5 13
S8 17.65 16.35 17.2 21.1 26.4 10.8 20 19.5 21
S9 6.55 14 10.35 8.2 12.8 11.6 11.5 10.5 15
S10 7.05 6.6 6.8 8.15 8.4 8.8 10 11 12.5
S11 48.9 26.4 23.95 96.95 262 19.6 22.5 21 26
S12 26.55 27.5 25.15 26.6 49 26.8 32.5 31.5 36
S13 8.1 6.75 5.35 6.45 14.2 6.4 7.5 9 9.5
S14 6.35 6.1 5.45 6 6 5.8 8.5 9.5 12.5
S15 4.95 4.75 3.95 6.55 9 6.8 9.7 10.7 11.2
S16 20.7 19.35 22.75 21.8 30.8 15 20.4 20.9 23.4
S17 6.75 6.7 6.3 6.45 8.4 6.4 8.5 8.5 11.5
S18 6.4 4.85 4.85 7.7 6.8 5.4 11.45 11.45 13.95

Figure 7. Performance of ACHBA and others based on the average accuracy.
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Figure 8. Efficiency of QCHBA and other methods based on the average number of selected features.

From the previous results and discussion, it is evident that integration of the quantum-
based optimization (QBO) and the 2D chaotic Hénon map with the honey badger algorithm
led to an enhanced ability to discover the subset of relevant features. The QBO and 2D
Hénon maps have the ability to balance switching between exploration and exploitation
during the search process for the relevant features. Despite these advantages, the proposed
QCHBA still suffers from certain limitations that can effect its performance. For example,
the stability of QCHBA still requires improvement, and this is critical. In addition, the time
complexity of the QCHBA needs to be decreased.

5. Conclusions

This paper proposes a modified version of the honey badger algorithm (HBA) using a
quantum optimization technique and a 2D chaotic Hénon map. The 2D Hénon map was
applied to adjust the parameters of C and β, as well as to update the digging phase and the
density variable. The quantum-based optimization was applied to improve convergence
towards the optimal solution. To assess the performance of the proposed approach, a set of
experimental investigations was conducted. This was achieved though the use of eighteen
datasets with the results compared with other well-known FS-based methods, including,
for example, RSA, EFO, GWO, LASHADE, LSHADECS, SaDE, and the traditional HBA.
The comparative results indicated strong performance of the proposed method. Moreover,
the influence of the QBO and chaotic maps for enhancing the performance of the proposed
method was apparent.

In the future, the proposed QCHBA can be applied to solve different optimization
problems. For example, it can be used to improve the performance of medical classifi-
cation, the quality of service in cloud computing environments, investigation of plant
diseases and other applications. In addition, it can be applied to handle multi-objective
optimization problems.
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