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Abstract: Adaptive beamforming can efficiently contract interference and noise. Due to high sensi-
tivity of the beamformer to model mismatch, the capability of interference reduction will critically
degrade when the signal model mismatch occurs, particularly when the sampling sequence contains
the desired signal. For the purpose of enhancing the robustness of beamformers to signal model
mismatch, we propose a new robust adaptive beamforming (RAB) method. Firstly, the precise
steering vector (SV) associating with the desired signal is estimated by employing the minimum
norm of subspace projection (MNSP) approach. Secondly, the nominal interference SVs are esti-
mated via the maximum entropy power spectrum. Subsequently, the corrected interference SVs and
powers are obtained by oblique projection. Finally, the interference-plus-noise covariance matrix
(INCM) is reconstructed, and the proposed RAB is obtained. Multiple simulations are carried out
and demonstrate the robustness of the proposed RAB method.

Keywords: robust adaptive beamforming; minimum norm of subspace projection; oblique projector;
interference-plus-noise covariance matrix reconstruction

1. Introduction

Adaptive beamforming is a spatial filter which is designed to form directional beams
to transmit or receive a desired signal from a designated direction, meanwhile attenuating
interference signals from other directions. Adaptive beamforming has been widely used
in wireless communication, microphone array speech processing, radar, sonar, medical
imaging, radio astronomy and other areas [1]. The Standard Capon Beamformer (SCB) is an
optimal spatial filter that maximizes the array output signal to the interference-plus-noise
ratio (SINR), provided that the true covariance matrix and the signal steering vector are
accurately known [2]. However, the existence of systematic model mismatch, such as array
calibration error, finite snapshots, and others, is inevitable [1,3]. Adaptive beamformers are
sensitive to model mismatch, especially when the desired signal is present in the sampling
sequences [4]. Therefore, robust adaptive beamforming has been an intensive research
topic, and various robust adaptive beamforming techniques have been proposed in the
past decades [5].

Traditional RAB techniques include the diagonal loading (DL) technique and the
eigenspace-based (ESB) technique [3,6]. The DL-based beamformers are derived by adding
a scaled identity matrix on the sample covariance matrix (SCM) [3,7]. Although it has
been proved to be effective in mitigating the effects of the finite sample size and SV
mismatch [2,8], it is difficult to choose the optimal DL level in different scenarios [3].
Multiple methods were proposed in [2,9–11] to compute the DL levels automatically
without specifying any additional user parameters [3]. However, these methods suffer
from performance degradation at high signal-to-noise ratio (SNR) [12], which is a common
problem with this category of method. The ESB beamformers are performed by projecting
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the nominal SV onto an estimated subspace projector to mitigate the adverse impact caused
by noisy disturbance [13–15]. The performance of the ESB beamformer is restricted at
low SNR [8]. The author in [13] presents a modified ESB method which enhances the
SCM for better performance, and a method in [15] adopts the knowledge of the signal
angular region as a criterion to construct signal subspace. Although these methods lead
to better performance at low SNRs, the problem of performance degradation aroused by
large SV mismatches and high input SNRs appears. In [14], the proposed ESB method
estimates the desired signal SV by adding an inequality constraint to an optimization
problem, which exploits the orthogonality between the precise SV and noise subspace to
ensure the validity of the estimation. This method is claimed to be effective in restraining
arbitrary SV mismatch. However, there is still a common problem with ESB methods of
low SNR performance degradation.

The uncertain-set-based technique utilizes a presumed spherical or ellipsoidal uncer-
tainty set to constrain the signal SV mismatches and correct the nominal SV by solving
an optimization problem [8]. The uncertain-set-based beamformers roughly include the
following methods [6]: worst-case-based method [1,16], doubly constrained method [9,17],
probabilistically constrained method [10,11] and linear programming method [18]. Com-
pared with traditional DL methods, uncertainty-set-based methods are proposed based on
clear theoretical analysis and thus have better robustness. Similar to the DL method, there
is no reference criterion for the selection of the boundary of the uncertain-set. In fact, the
uncertain-set technique transforms the DL level selection problem into an uncertain-set
boundary selection problem. Therefore, the uncertainty-set-based method is essentially
equivalent to a DL-based method or belongs to its extended class [19], and the uncertainty-
set-based method is no longer valid when the SV mismatch is large or the precise SV
mismatch does not locate in the presumed set [8,20].

The above methods mainly focus on correcting signal SV and enhancing the covariance
matrix [21]. Since the desired signal component in the SCM is not eliminated [22], the above
methods always suffer from performance degradation at high input SNRs [6]. To avoid
this issue, the authors in [23] pioneer a novel RAB method called INCM reconstruction
based method. This method has been proved to effectively eliminate the desired signal
components. Gu modifies the above method in [5] and improves the performance, where
the INCM is reconstructed by integrating over the complement of the desired signal angular
region [6]. Unfortunately, this method performs poorly when the array calibration error
exists in the systematic model, and the complexity of this method is very high. Authors
in [4,24,25] represent multiple methods to reduce complexity. However, good performance
can be obtained only in certain conditions. To resist multiple types of mismatches, authors
construct a new constraint in [19] and add it to a QCQP optimization problem to estimate
and correct the desired signal SV mismatch. For reducing INCM reconstruction errors, the
residual noise is considered and eliminated from the Capon power spectrum estimator to
reconstruct INCM and the desired signal SV more precisely in [7]. It is true that the incident
signal may be covered by noise in the Capon power spectrum when the SV mismatch is
large enough [6]. To overcome this drawback, the methods proposed in [26,27] substitute
the Capon power spectrum with the maximum entropy power spectrum. Compared
with [19], these methods can effectively reduce the complexity while maintaining good
performance. Different from interference angular region integral-based or interference
SV estimation-based INCM reconstruction RAB methods [6], the methods in [6,20,21]
reconstruct INCM by using a subspace projection operation to filter out the desired signal
component from the SCM. These methods achieve good performance with low complexity.

In this study, we propose a new INCM reconstruction-based RAB method [3]. Firstly,
we estimate the desired signal SV via employing the MNSP approach. Secondly, we estimate
nominal interference SVs via the maximum entropy power spectrum. Subsequently, we
establish an oblique projection matrix based on the corrected desired signal SV and the
signal subspace of the SCM to correct each interference nominal SV and power. Theoretical
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analysis and multiple simulations are carried out to illustrate that the proposed RAB
method performs well and can effectively combat various mismatches.

This paper is arranged into the following five sections. The necessary signal model
and background associated with adaptive beamformer are described in detail in Section 2.
In Section 3, the implementation step of this method is recounted in detail, including
estimating the desired signal SV by MNSP and correcting the interference SV by oblique
projection. In Section 4, multiple simulations and analysis are presented [28]. Finally,
conclusions of the study are presented in Section 5. Acronyms used in this paper are las
follow: robust adaptive beamforming (RAB), standard Capon beamformer (SCB), signal to
interference-plus-noise ratio (SINR), direction of arrival (DOA), signal-to-noise ratio (SNR),
interference-to-noise-ratio (INR), steering vector (SV), the minimum norm of subspace
projection (MNSP), interference-plus-noise covariance matrix (INCM), sample covariance
matrix (SCM), diagonal loading (DL), eigenspace-based (ESB), quadratically constrained
quadratic programs (QCQP), uniform linear array (ULA), minimum variance distortionless
response (MVDR), independently and identically distributed (i.i.d).

2. Signal Model and Background

Consider a half-wavelength-spaced ULA made up of M-omnidirectional-sensors [28].
L far-field uncorrelated narrowband signals, including one desired signal and L− 1 inter-
ferences, illuminate the ULA [6,29]. The complex sampling sequences received by the ULA
at k time-slot are expressed as [30]:

x(k) = xs(k) + xi(k) + xn(k), (1)

where xs(k) = s0(k)a0 denotes an M× 1 vector of the desired signal, xi(k) = ∑L−1
l=1 sl(k)al

denotes interference signal vector, and sl(k), l = 0, . . . , L− 1 denotes the lth signal vector,
and its corresponding SV is al . xn(k) represents additive complex Gaussian noise with
a zero mean and a variance of σ2

n [6]. The nominal SV associated with DOA θ can be
written as:

a(θ) =
[
1, e−j 2πd

λ sinθ , . . . , e−j(M−1) 2πd
λ sinθ

]T

=
[
1, e−jπsinθ , . . . , e−j(M−1)πsinθ

]T
,

(2)

where (·)T represents the transpose operator, λ is the carrier wavelength, and d is the
interelement spacing [31]. The output sequence of beamformer can be written as:

y(k) = wHx(k), (3)

where w = (w1, . . . , wM)T is the complex weight vector of the beamformer [30], (·)H

represents the Hermitian transpose [32], and w can be calculated by maximizing the output
SINR [6]. When precise σ2

0 and a0 is previously known, the definition of output SINR is
formulated as follow:

SINR ,
σ2

0

∣∣wHa0
∣∣2

wHRi+nw
, (4)

where E[·] is the expectation operator of the stochastic variable [6]. The power of the
desired signal is expressed as its mathematical expectation; that is; σ2

0 = E
[
|s0(k)|2

]
, and

the corresponding SV is a0. Ri+n ∈ CM×M is precise INCM, and its definition is formulated
as [31]:

Ri+n = E
{
[xi(k) + xn(k)][xi(k) + xn(k)]

H
}

=
L−1
∑

l=1
σ2

l alaH
l + E

[
xn(k)xH

n (k)
]

= Ri + σ2
nI,

(5)
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where σ2
l = E

[
|sl(k)|2

]
is the lth interference power. I ∈ RM×M, and σ2

n represents identity
matrix and noise power. The maximization of (4) is equivalent to MVDR beamformer or
called the Capon beamformer [33–35], and it is written as:

min
w

wHRi+nw s.t.wHa0 = 1. (6)

The solution of the Capon beamformer is written as:

wopt =
R−1

i+na0

aH
0 R−1

i+na0
. (7)

Unfortunately, Ri+n and a0 cannot be obtained in practical scenarios. Therefore,

they are usually replaced by the SCM R̂ = 1
K

K
∑

k=1
x(k)xH(k) with K sample snapshots and

nominal SV a0 [7].
It has been proved that replacing Ri+n by the SCM R̂ does not change the optimal

output SINR [6]. At this point, the optimal weight vector becomes the sample covariance
inversion (SMI) beamformer [7]:

wSMI =
R̂−1a0

aH
0 R̂−1a0

. (8)

The SCM R̂ converge to the precise one only when K → ∞ . Due to the mismatches of
a0 and R̂, the performance of the SMI beamformer will severely deteriorate, especially in
the case of high SNR [33,36].

3. Proposed RAB Method

In this section, the implementation steps of our proposed method are described in
detail. For deriving optimal weight vector, reconstructed INCM and the estimated desired
signal SV need to be obtained first [37]. The desired signal SV is estimated via employing
the MNSP approach [37]. The INCM is reconstructed by two steps: interference DOAs
estimation and interference SVs and powers correction.

3.1. MNSP for Desired Signal SV Estimation

In this subsection, we suppose that the DOA of the desired signal θ0 lies in the angular
region Θs, and all DOAs of interference θl lie in Θl , which is the complement region of Θs [3].
For estimating the desired signal SV, we employ MNSP to correct the nominal desired
signal SV. Utilizing the orthogonality of noise subspace with incident signal SV [38], MNSP
approach minimizing the norm of the projection of SV on the noise subspace estimates the
desired signal SV [20]. Eigen-decompose the matrix R̂:

R̂ =
M
∑

i=1
γiuiuH

i = UΓUH

= UsΓsUH
s + UnΓnUH

n ,
(9)

where γ1 ≥ γ2 ≥ · · · γM−1 ≥ γM are the eigenvalues of R̂ arranged in descending
order [20], and ui(i = 1, . . . , M) are eigenvectors of R̂ associating with γi. γM usually
considered as a rough estimation of the noise power σ̃2

n [19]. Us = (u1, . . . , uL) ∈ CM×L and
Un = (uL+1, . . . , uM) ∈ CM×(M−L) consist of L dominant eigenvectors and M− L residual
eigenvectors, respectively. Utilizing the eigenvalue-decomposition, we can estimate the

column number of Us quickly by min
L

∑L
i=1 γi

∑M
i=1 γi

≤ ζ. Γs = diag(γ1, . . . , γL) ∈ CM×L and
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Γn = diag(γL+1, . . . , γM) ∈ CM×(M−L) are eigen-diagonal matrices. According to the
properties of the eigen subspace [6], we have:

span{u1, . . . , uL} = span{a0, . . . , aL−1}, (10)

where span{u1, . . . , uL} and span{a0, . . . , aL−1} are signal subspaces spanned by the L
dominant eigenvector group {u1, . . . , uL} and precise signal SV group {a0, . . . , aL−1}, re-
spectively. The signal subspace is orthogonal to the noise subspace spanned by Un [39].
For any precise SV, al is a linear combination of eigenvector columns Us and orthogonal to
noise subspace. It means that UH

n al = 0. However, the SV mismatch destroys its orthogo-
nality and UH

n al = 0 becomes UH
n al 6= 0. Assume that e is the mismatch vector between

nominal SV and the precise one; precise SV is expressed as a0 = a0 + e [8]. Therefore,
the MNSP approach corrects the al by estimating a mismatch vector e to reestablish the
orthogonality between UH

n and ãl = al + e. The desired signal SV can be estimated by
solving the following optimization problem [14,40]:

min
e⊥

(a0 + e⊥)
HUnUH

n (a0 + e⊥)

s.t. a0
He⊥ = 0
‖(a0 + e⊥)

HUn‖2 ≤ ‖a0
HUn‖2

‖e⊥‖2 ≤ ξ,

(11)

where e⊥ is the orthogonal component of the mismatch vector e [8]. The parallel component
is referred to as e‖. Since e‖ is actually a scaling version of a0, it can be easily proved that e‖
has no impact on output SINR by substituting (7) into (4). Ignoring e‖, the corrected desired
signal SV is formulated as ã0 = a0 + e⊥. In (11), the equality constraint is introduced to
maintain the orthogonality between a0 and e⊥ [5,41]. The first inequality constraint is intro-
duced to ensure that ã0 = a0 + e⊥ converges to the desired signal angular region Θs. The
second inequality constraint is used to limit the ‖e⊥‖2 to be a small range which guarantees
the validity of desired signal SV estimation at low SNR [41]. This optimization problem
(11) is a QCQP problem and can be easily solved using a convex optimization toolbox, such
as CVX [5,15,19]. Thanks to the idea in [42], we replace R̂ by R̂X = 1

2

(
R̂ + IVR̂∗IV

)
against

the coherent scattering mismatch in this paper. IV is a M×M anti-identity matrix. The
Hermite’s Toeplitz matrix R̂X is an unbiased estimation of R̂ [42].

Assume that a signal arrives at a half-wavelength-spaced ULA made up of M = 10
sensors from θ0 = 3◦. The values of ‖UH

n a(θ)‖2 and ‖UH
n a(θ0)‖2 are drawn in Figure 1. It

can be observed that the existence of model mismatch destroys the orthogonality of Un and
a0, and (11) can effectively correct the nominal signal SV a0.

Electronics 2022, 11, x FOR PEER REVIEW 5 of 12 
 

 

����(����, … , ��) ∈ ℂ�×(���) are eigen-diagonal matrices. According to the properties of 

the eigen subspace [6], we have: 

����{��, … , ��} = ����{��, … , ����}, (10)

where ����{��, … , ��}  and ����{��, … , ����}  are signal subspaces spanned by the � 

dominant eigenvector group {��, … , ��} and precise signal SV group {��, … , ����}, re-

spectively. The signal subspace is orthogonal to the noise subspace spanned by �� [39]. 

For any precise SV, �� is a linear combination of eigenvector columns �� and orthogonal 

to noise subspace. It means that ��
��� = �. However, the SV mismatch destroys its or-

thogonality and ��
��� = � becomes ��

���� ≠ �. Assume that � is the mismatch vector be-

tween nominal SV and the precise one; precise SV is expressed as �� = ��� + � [8]. There-

fore, the MNSP approach corrects the ��� by estimating a mismatch vector � to reestab-

lish the orthogonality between ��
� and ��� = ��� + �. The desired signal SV can be esti-

mated by solving the following optimization problem [14,40]: 

���
��

 (��� + ��)�����
�(��� + ��) 

�. �.   ���
��� = 0 

          ‖(��� + ��)���‖� ≤ ����
����

�
 

          ‖��‖� ≤ �, 

(11)

where �� is the orthogonal component of the mismatch vector � [8]. The parallel com-

ponent is referred to as �∥. Since �∥ is actually a scaling version of ���, it can be easily 

proved that �∥ has no impact on output SINR by substituting (7) into (4). Ignoring �∥, 

the corrected desired signal SV is formulated as ��� = ��� + ��. In (11), the equality con-

straint is introduced to maintain the orthogonality between ��� and �� [5,41]. The first 

inequality constraint is introduced to ensure that ��� = ��� + �� converges to the desired 

signal angular region ��. The second inequality constraint is used to limit the ‖��‖� to 

be a small range which guarantees the validity of desired signal SV estimation at low SNR 

[41]. This optimization problem (11) is a QCQP problem and can be easily solved using a 

convex optimization toolbox, such as CVX [5,15,19]. Thanks to the idea in [42], we replace 

�� by ��� =
�

�
(�� + ����∗��) against the coherent scattering mismatch in this paper. �� is a 

� × � anti-identity matrix. The Hermite’s Toeplitz matrix ��� is an unbiased estimation 

of �� [42]. 

Assume that a signal arrives at a half-wavelength-spaced ULA made up of � = 10 

sensors from �� = 3∘. The values of ‖��
��(�)‖� and ‖��

��(��)‖� are drawn in Figure 1. 

It can be observed that the existence of model mismatch destroys the orthogonality of �� 

and ���, and (11) can effectively correct the nominal signal SV ���. 

  

Figure 1. Comparison of (a) ‖UH
n a(θ)‖2 versus θ with fixed incident signal SNR = 5dB;

(b) ‖UH
n a(θ0)‖2 versus incident signal SNR.



Electronics 2022, 11, 3478 6 of 12

3.2. INCM Reconstruction and Beamformer Weight Vector Calculation

To perform INCM reconstruction, the interference SVs and powers need to be esti-
mated first. Based on the advantages of high resolution and low complexity, the maximum
entropy power spectrum is adapted to searching each interference DOA in the angular
region Θl . The maximum entropy power spectrum is written as:

P̂meps(θ) =
1

εp

∣∣∣aH(θ)R̂−1u1

∣∣∣2 , θ ∈ Θl , (12)

where u1 = [1 0 . . . 0]T ∈ RM×1, and εp = 1
u1TR̂−1u1

. Due to the impact of noise, peaks

located in Θl may contain some fake peaks that do not correspond to any real interfer-
ence [19]; σ̃2

n is set as a threshold for eliminating fake peaks. So far, we obtain P peaks
corresponding to interference DOAs by searching J points in Θl , and P nominal interference
SVs are ap, p = 1, 2, . . . P. It has been proved that the Capon, as well as maximum entropy,
power spectrum would cause a peak power under-estimation problem [20,43] in the case
of model mismatch. We adopt the oblique projection matrix to correct interference SVs for
overcoming this drawback.

Given a matrix A ∈ CM×N(N ≤ M), 〈A〉 represents a linear subspace of CM spanned
by the columns of 〈A〉 [29], PA = AA+ represents a projection matrix associated with 〈A〉,
and P⊥A = I − PA represents an orthogonal projection matrix associated with 〈A〉 [44]. The
oblique projection matrix with range space 〈A〉 and null space 〈B〉 is denoted by [45]:

EAB = A
(

AHP⊥B A
)−1

AHP⊥B , (13)

where (·)+ represents a pseudo-inverse operator. EAB ∈ CM×M is an idempotent and
non-symmetric matrix, and EAB has the following resolution and nulling properties [45]:

EABA = A; EABB = 0; PAB = EAB + EBA. (14)

According to the definition of oblique projection, let A = US, B = ã0 and
P⊥B = I− BB+ = I− B

(
BHB

)−1BH. The oblique projection matrix associated with in-

terferences is EAB = US

(
UH

S P⊥B US

)−1
UH

S P⊥B . Then, the pth interference SV is corrected
as ãp = EABap, and the power corresponding to the pth interference is obtained by
σ̃2

p = 1

εp

∣∣∣ãH
p R̂−1u1

∣∣∣2 [46]. The oblique projection is mainly used to correct the nominal

interference SV mitigating the impact of desired signal components on the pth interference
SV [20,47]. Therefore, the oblique projection can correct interference SVs more accurately
compared with orthogonal projection. Based on each corrected interference SV and power,
the more precise INCM is reconstructed as (5) [21]:

R̃i+n =
P

∑
i=1

σ̃2
i ãiã

H
i + σ̃2

nI. (15)

Substituting (15) together with ã0 calculated by (11) back into the Capon beamformer
(7), the proposed method base on INCM reconstruction via oblique projection and desired
signal SV estimation via MNSP is written as [6,19]:

w̃ =
R̃
−1
i+nã0

ãH
0 R̃
−1
i+nã0

. (16)

In our proposed method, computation complexity is principally dominated by cal-
culating and eigen-decomposing the SCM R̂, desired signal SV estimation via MNSP,
interference peaks searching and interference SVs correction. Calculating the SCM R̂ costs
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about O
((

M2 + M
)
/2
)

flops. Matrix inversion and eigen-decomposition cost about O
(

M3)
flops. Estimating the desired signal SV via MNSP requires solving a QCQP problem, and
the complexity is about O

(
M3.5) flops. The interference peaks searching and interference

SV correction cost about O
(
max

(
2MJ, 2M3)) flops, where J is the searching points in

the angular region of Θl [20]. In general, J < M2. Therefore, the overall complexity of
this proposed method is roughly O

(
max

(
M3.5, 2M3)). By reason of the foregoing, the

proposed method is summarized as follows (Method 1):

Method 1. The proposed INCM reconstruction-based RAB method.

1: Calculate the SCM
^
R and R̂X, eigen-decompose R̂X, and obtain Us, Un, σ̃2

n;
2: Correct the desired signal SV by solving the QCQP problem (11);
3: Obtain the interference SV estimates [a1, . . . , aP] using the maximum entropy power spectrum
(12);
4: Obtain each corrected interference SV and corresponding power by employing the oblique
projection matrix, and reconstruct the INCM via (15);
5: Substitute R̃i+n and ã0 back into (7) to obtain the weight vector.

4. Numerical Simulation and Analysis

In this section, we perform several numerical simulations under the condition of
a half-wavelength ULA with M = 10 omnidirectional sensors [6,20]. We assume one
desired signal impinging from θ0 = 3◦, two interferences impinging from θ1 = −36◦ and
θ2 = 43◦. The additive noise is modeled as a complex circularly symmetric Gaussian
zero-mean spatially and temporally white process [5]. All signals, including noise, are
assumed to be independent of each other. The input INR is fixed at INR = 20dB. In the
performance comparison of mean output SINR versus the input SNR [5], the snapshots are
set as K = 100, and SNR = 30dB in the performance comparison of output SINR versus
different snapshots. To obtain each output SINR point, 200 Monte Carlo trials are used [25].

The methods involved in the comparison are as follows: subspace projection and
covariance matrix reconstruction (SPCMR) beamformer [20], INCM reconstruction via
subspace projection (INCM-SP) beamformer [6], INCM reconstruction and steering vector
estimation (INCM-SVE) beamformer [19], INCM reconstruction via orthogonality of sub-
space (INCM-OS) beamformer [21], INCM reconstruction via the intersection of subspaces
(INCM-IS) beamformer [33], INCM reconstruction with iterative mismatch approximation
(INCM-IMA) beamformer [3] and INCM reconstruction via power method processing
and spatial spectrum matching (PMPSSM) beamformer [48]. Among these methods in-
volved in the comparison, all the angular regions are set as Θs = Θ = (θ0 − 5◦, θ0 + 5◦),
Θl = Θ = (−90◦, θ0 − 5◦) ∪ (θ0 + 5◦, 90◦) and Θi = (θi − 5◦, θi + 5◦). The L = 7 residual
eigenvectors of the matrix C are used, and the boundary of RCB is ε =

√
0.1 in INCM-

SVE [6]. The N = 7 principal eigenvectors of B are utilized for B1 in INCM-OS. The
constant parameter is µ = 0.9 and τ =

√
0.1 in SPCMR. The boundaries of amplitude and

phase mismatch are set as ε = 0.3 and Φ = 6◦, the search depth is set as depth = 10, and
the saturation value is ϕ = 0.05 in INCM-SP and INCM-IMA [3]. The number of iterations
is set as k = 4 in PMPSSM. The determinate threshold ρ = ρl = 0.9 in INCM-IS. In the
proposed method, ζ = 0.95 and ξ =

√
0.1. In the following simulations, the optimal output

SINR is calculated by [19]:
SINRopt = σ2

0 aH
0 R−1

i+na0. (17)

4.1. Simulation Example 1

In this subsection, we consider the detrimental impact on output SINR of the tested
methods when amplitude and phase mismatch existed in the signal model. From the
above description, the incident signal SV mismatch is modelled as ai = ai + e,
i = 0, . . . , L − 1. To facilitate the analysis, it is indispensable to formally transform the
mismatch model of the signal SV. Suppose that αm and βm, respectively, represent the am-
plitude and phase mismatch on mth array-sensor which are extracted from the distribution
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N
(
1, 0.052) and N

(
0, (5◦)2

)
[19], and the mth element of the precise SV is formulated as

am = αmamejβm [6,19]. The output SINR versus input SNR is delineated in Figure 2a. Our
proposed method performs similarly to SPCMR, INCM-SP, INCM-IMA and INCM-SVE
at high SNRs. Figure 2b depicts the output SINRs versus snapshot points. The proposed
method usually performs better than the other tested methods, and the proposed method
can availably resist the finite sampling mismatch [8,36].
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4.2. Simulation Example 2

In this subsection, we consider the detrimental impact on output SINR of the tested
methods when random look direction mismatch existed in the signal model. Suppose that
the random look direction mismatch of incident signal extracts from uniform distribution
U(−5◦, 5◦) [3]. It is important to note that the amplitude and phase mismatch persist in
subsequent simulations. In addition, the random DOAs change in each independent trial
while remaining constant over samples [19,31]. The output SINR versus input SNR is
delineated in Figure 3a [49]. The performance of our proposed method outperforms other
tested methods at high SNRs and is slightly lower than INCM-SVE and INCM-IMA at
low SNRs. Figure 3b illustrates that the proposed method outperforms other methods at
different snapshots, even with random look direction mismatch.
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4.3. Simulation Example 3

In this subsection, we consider the detrimental impact on output SINR of the tested
methods when incoherent local scattering mismatch existed in the signal model. Suppose
that the desired signal has a time-varying signature [7], which is modelled as:

x̂s(k) = s0(k)a0 +
4

∑
p=1

sp(k)a
(
θp
)
, (18)

where a0 and a
(
θp
)

represent the desired signal SVs corresponding to the direct-path and
incoherent scattering paths [21]. In each trial, the DOAs θp are independently distributed in
a Gaussian distribution drawn from a random generator N(θ0, 4◦) [6]; sp(k) are i.i.d zero-
mean complex Gaussian random variables drawn from a random generator N(0, 1) [31],
and sp(k) changes both from trial to trial and from sample to sample [19]. Therefore, the
rank of desired signal covariance matrix Rs is larger than one, and the output SINR should
be expressed as [6]:

SINRopt =
wHRsw

wHRi+nw
. (19)

By maximizing the above SINR in (19), we can obtain the weight vector wopt through
the following equation:

wopt = P
{

R−1
i+nRs

}
, (20)

where P{·} denotes the prime eigenvector of a matrix [4,8]. In Figure 4a, we can ob-
serve that our proposed method has similar performance with INCM-SP, INCM-SVE and
INCM-IS at high SNRs and has the best performance at low SNRs. Figure 4b shows the
deviations between the tested methods under the conditions of different snapshots. The
proposed method obtains the similar output SINR with INCM-SP, INCM-SVE and INCM-IS.
Moreover, the IMCMPM-SSM method suffers severe performance degradation in this case.
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4.4. Simulation Example 4

In this subsection, we consider the detrimental impact on output SINR of the tested
methods when coherent local scattering mismatch existed in the signal model. The coherent
local scattering mismatch is usually encountered in multipath propagation scenarios [20].
Suppose that the desired signal is distorted by local scattering mismatch and consists of
four coherent paths [6]. The precise desired signal SV becomes:

â0 = a0 +
4

∑
p=1

ejφp a
(
θp
)
, (21)
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where a0 and a
(
θp
)

represent desired signal SV and coherent scattering path from θp,
respectively. In each trial, θp, p = 1, 2, 3, 4 are independently distributed in a Gaussian
distribution drawn from a random generator N(θ0, 4◦) [6]. The path phases φp extract from
uniform distribution N(0, 2π) in each trial. θp and φp remain fixed over the samples [3,6].
Moreover, the norm of â0 is no longer equal to

√
M, and optimal output SINR is increased. It

can be observed from Figure 5a that the optimal curve has an approximately 6dB increment
due to the extra coherent scattering paths [3,6]. The performance of our proposed method
outperforms other tested methods at high SNRs and is merely lower than INCM-SVE,
INCM-IMA and INCMPM-SSM at low SNRs. Figure 5b illustrates that our proposed
method generally outperforms others under the condition of finite sampling [8]. Moreover,
the IMCMPM-SSM method has good performance compared to the condition of incoherent
local scattering mismatch.
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5. Conclusions

This paper utilizes the MNSP approach and established oblique projection matrix
to estimate desired signal SV and reconstruct INCM respectively. An MNSP approach
minimizes the norm of the projection of SV on the noise subspace to estimate the desired
signal SV. An oblique projection matrix is used to alleviate the leakage problem of spatial
power spectrum estimation and correct interference SVs. The proposed method can treat
various types of SV mismatches while merely requiring a small amount of knowledge about
the array configuration and angular region in which the desired signal is located. Multiple
simulations are carried out and illustrate that this proposed RAB method performs well
and can effectively combat various mismatches.
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