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Abstract: Integrated Energy Systems (IES) are an important way to improve the efficiency of energy,
promote closer connections between various energy systems, and reduce carbon emissions. The
transformation between electricity, heating, and cooling loads into each other makes the dynamic
characteristics of multiple loads more complex and brings challenges to the accurate forecasting
of multi-energy loads. In order to further improve the accuracy of IES short-term load forecasting,
we propose the Convolutional Neural Network, the Long Short-Term Memory Network, and Auto-
Regression (CLSTM-AR) combined with the multi-dimensional feature fusion (MFFCLA). In detail,
CLSTM can extract the coupling and periodic characteristics implied in IES load data from multiple
time dimensions. AR takes load data as the input to extract features of sequential auto-correlation
over adjacent time periods. Then, the diverse and effective features extracted by CLSTM, LSTM,
and AR can be fused using the multi-dimensional feature fusion technique. Ultimately, the model
achieves the accurate prediction of multiple loads. In conclusion, compared with other forecasting
models, the case study results show that MFFCLA has higher forecasting precision compared with
the comparable model in the short-term multi-energy load forecasting performance of electricity,
heating, and cooling. The accuracy of MFFCLA can help to optimize and dispatch IES to make better
use of renewable energy.

Keywords: integrated energy systems, multi-energy load forecasting, feature confusion, CLSTM

1. Introduction

Aiming at the defects of the traditional energy supply system, IES—as an important
way to improve energy efficiency—promotes the connection of various energy systems
more closely and effectively reduces carbon emission [1]. IES uses electricity as a primary
carrier of energy supply, and the energy supply systems are coordinated and optimized
with each other. This advantage of flexible switching also makes the dynamic characteristics
of multi-energy loads further complex [2]. Furthermore, a strongly coupled multi-energy
system may increase the risk of system cascading failures [3]. Therefore, it is necessary to
accurately predict the multi-energy load of the IES, which is the key to ensure the efficient
and stable operation of the power supply equipment.

Short-term load forecasting is divided into traditional methods and artificial intelli-
gence methods. In the traditional methods, the regression analysis algorithm represented
by Auto-Regression Integrated Moving Average model (ARIMA) [4] and the machine
learning models represented by Support Vector Machine (SVM) [5,6], Random Forest [7,8],
XGBoost [9], and Sparse Algorithm [10] are used. With the increasing complexity of energy
systems and the diversification of the energy demand, it is difficult to obtain satisfactory
prediction targets using the regression analysis method. Although machine-learning algo-
rithms can solve the above problems, they need to construct the temporal characteristics of
the data artificially.
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With the rapid development of artificial intelligence algorithms, long short-term
memory networks (LSTMs) have significant advantages in solving time-series problems
and have been studied in the field of electricity load forecasting in recent years [11,12].
The authors in [13] used LSTM combined with the improved sparrow search algorithm to
predict short-term load. The authors in [14] proposed a combined LSTM and a self-attention
mechanism model with two-input group channels for forecasting the day-ahead residential
load. The mentioned LSTM individual load forecasting model was trained using a pinball
loss-guided optimization approach [15]. The above-mentioned papers all constructed
prediction models for a single load, and although they had high prediction accuracy, the
models did not consider the coupling information implied between multi-energy loads.
Therefore, the above models are not suited to the multi-energy load forecasting problem
of IES.

Considering the complex coupling relationships among multi-energy loads, such
as electricity, heating, and gas in IES, a wavelet neural network optimized by improved
particle swarm optimization and the chaos optimization algorithm (WNN-IPSO-COA) was
introduced to the short-term load forecasting of IES is proposed in [16]. A Variational Mode
Decomposition (VMD) method was used to decompose the original data and remove the
noise, which is helpful for the accuracy of the LSTM short-term load forecasting as proposed
in [17]. Furthermore, Zhang and Bai adopted a sequence-to-sequence network based on an
encoder–decoder architecture to enhance the load-timing feature-mining capability [18].

All of the above protocols perform IES load predicting from the single-task perspective,
which does not consider the Multi-Task Learning (MTL) scenario [19]. To forecast electricity,
heating, and cooling loads simultaneously, Tan and others proposed an MTL evolved from
a Least Square Support Vector Machine (LSSVM) [20]. A Deep Belief Network (DBN) is
based on a restricted Boltzmann machine for data feature extraction, and these features
are fed to the MTL for load forecasting [21]. Although most of the aforementioned multi-
energy load-forecasting methods consider the complex dynamic characteristics among
energy sources, they do not thoroughly explore the important data information in more
dimensions.

Load forecasting is a time-series correlation problem, where the load changes of IES
depend on the antecedent state, which means that load changes are highly auto-correlated
in time [22]. Although LSTM and GRU have great advantages in time series prediction, they
cannot capture the short-term interdependence when the time sequence is too long [23].
Therefore, it is necessary not only to learn the relation of coupling between different loads
of different time dimensions but also to strengthen the change relation between loads at
adjacent times.

We propose a CLSTM-AR multi-energy load-forecasting method based on multi-
dimensional feature fusion . The method can effectively learn the coupling relationship
among different loads and enhance the time-series relation of the load itself. Eventually,
the proposed MFFCLA will be able to greatly improve the accuracy of multi-energy load
forecasting.

Our contributions can be summarized as follows. An auto-regression algorithm is
used to store ultra-short time series state features of multi-energy loads using an LSTM
neural network and mining the characteristics of weather factors in IES.

By combining a Convolutional Neural Network (CNN) and LSTM neural network,
the spatial and temporal features of multiple time dimensions are extracted. The multi-
dimensional feature fusion technique is applied to fuse the effective features of multiple
dimensions extracted above, allowing the advantages of each feature to be exploited. The
results verify that the proposed model has higher prediction accuracy compared with the
existing ARIMA, LSTM, and CLSTM forecasting models.

The remainder of the paper is structured as follows. Section 2 analyzes the time-
series auto-correlation of each load of the IES and the spatial correlation between different
data. Section 3 first describes the overall framework of the model. Secondly, we construct
multidimensional input features based on the analysis results and introduce AR, CLSTM,
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and LSTM feature extraction methods as well as multidimensional feature fusion techniques.
Section 4 shows the experimental results of the algorithm and a comparison with other
short-term load prediction models. Our conclusions are discussion in Section 5.

2. Characteristic Analysis of Integrated Energy Systems

Integrated energy systems is a complex energy system integrated with energy pro-
duction, supply, and consumption, which can coordinate and optimize different energy
sources in the process of energy system planning, construction, and operation. The system
operation brings a large amount of measurement information, and analysis of the system
measurement data will produce general knowledge of the whole system and provide help
in the construction of prediction models. For the spatial-temporal correlation information
implied in the data, the auto-correlation coefficients function is used to analyze the tempo-
ral auto-correlation of the load data, and the spatial coupling characteristics between the
data are analyzed using the Person correlation coefficient method.

The integrated energy system spatial and time-series characterization data consists of
load data and weather data. Load data was obtained from the National Renewable Energy
Laboratory website [24]. Weather data was obtained from the weather website of the region
where the IES system is located [25]. The actual data are shown in Figure 1 (the weekday
types are not listed separately because the values are only 0 and 1).

Figure 1. IES year-round actual data.

In Figure 2, the blue area is the confidence range for the auto-correlation coefficient
with a 90% confidence interval. Scatters then indicate that the delay time is 1 h with
different delay times. Analysis of the auto-correlation coefficients within the first 4 h
shows that the electricity, heating, and cooling loads are positively correlated and outside
the confidence interval. The electricity and heating loads auto-correlation coefficients are
negatively correlated outside the confidence interval at a lag of 8–16 h; the cooling loads
are negatively correlated outside the confidence interval at a lag of 9–14 h.

At 22–26 h, the auto-correlation coefficients of the electricity, heating, and cold loads
are again outside the confidence interval and are positively correlated, while the coefficient
values reach a peak in the direction of positive correlation at every 24 h interval. At the
168th hour, the electricity and cooling loads are more variable than in the first two cycles.
After the 168th hour, the loads show less correlation than within a week. It can be seen that
the load itself has continuous strong auto-correlation in the first 4 h, and the load data has
both daily and weekly characteristics.
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(a) (b)

(c)

Figure 2. The loads temporal auto-correlation. (a) The electricity load temporal auto-correlation.
(b) The heating load temporal auto-correlation. (c) The cooling load temporal auto-correlation.

In the IES system, there is a mutual transformation and complementary characteristic
between the individual energies, and this unclear coupling relationship affects the accurate
accuracy of the power system to an extent. The correlation between the factors is analyzed
by the Person correlation coefficient method, and the analysis results are plotted by heat
map as shown in Figure 3.

(a) (b)

Figure 3. Characteristics correlation analysis heat map. (a) The heating season, which is from January
to May and from October to December. (b) The non-heating season, which is from June to September.

In Figure 3, the legend represents the correlation degree between attributes, and the
coefficients take values in the range of [−1, 1]. When the coefficient is 0, it means that the
two attributes are not correlated at all; when the coefficient is positive, it means that the
attributes are positively correlated with each other; and when the coefficient is negative,
they are negatively correlated. In Figure 3a, the coefficient of the electricity load and cooling
load is 0.0236; the coefficient of the electricity load and heating load is 0.9828; and the
coefficient of the heating load and cooling load is −0.0005.
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In Figure 3b, the coefficient of the electricity load and cooling load is 0.6486; the
coefficient of the electricity load and heating load is 0.2645; and the coefficient of the
heating load and cooling load is −0.0441. Clearly, the electricity load has an extremely high
correlation with the heat load during the heating season and the electricity load with the
cold load during the non-heating season, which is related to the use of thermo-electrical
device and heat-pump equipment in the building. Furthermore, temperature has a high
correlation with the cooling and heating loads. The workday type is more closely related to
the electricity load.

3. Proposed Model

There are coupling relationships between multiple energy systems in IES, and CNN
has the ability to handle this spatially interactive information, while single-load prediction
is a typical time-series problem, LSTM is able to consider the temporal periodicity of loads.
On this basis, CNN and LSTM are connected in order to further improve the ability of the
model for spatial-temporal feature mining of multi-energy load. Based on the results of
auto-correlation analysis of the load data mentioned above, the time-varying of loads relies
on the ultra-short-term priors state change, and the AR algorithm is used to store the load’s
prior state. Considering the influence of weather factors on the energy consumption load, a
LSTM is used to study the weather influence characteristics.

Figure 4 shows the overall framework. Data input module: the original time series
data are constructed from multiple dimensions. Data feature extraction module: the data
features are extracted from multiple perspectives by AR, CLSTM, and LSTM according to
the characteristics of the input data. Multi-dimensional feature fusion prediction module:
the extracted multi-dimensional abstract features are fused using Concatenate and Add
layers, and finally load prediction is realized by fully connected layers.

Figure 4. Multi-energy load-forecasting model framework.

Model input and output settings, AR, CLSTM, and LSTM feature-extraction models
and feature fusion are described in detail as follows.

3.1. Data Preprocessing and Input/Output Setup

It is required to construct multi-dimensional data input channels for the forecasting
model, and thus it is necessary to consider the impact of many factors on the forecast from
different perspectives at the same time. Thje input parameters of the IES multi-load forecast-
ing model must be established with full consideration of the environmental characteristics,
weekly characteristics, daily characteristics, coupling characteristics between loads, and
time-series relationships of loads. Therefore, based on the results of the previous analysis of
the IES data, the input parameters of Input1 of the AR input data are the electricity, heating,
and cooling loads for the 4 hours before the forecast point.

Input2, one of the CLSTM inputs, is the electricity, heating, and cooling loads for the
first 7 hours of the forecast point. Input3, Input4, and Input5 are the loads for each day of
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the week before the forecast point and the neighboring hours as input data. Finally, Input6
takes the weather data at time T as input data from environmental factors. The model
output is the predicted electric, heating, and cooling load values, and the specific set of
input and output channels is shown in Table 1.

Table 1. Model input/output set.

Feature Extraction Model Input/Output Output Detail

AR Input1 The electricity, heating, and cooling loads for the previous 4 hours
CLSTM Input2 The electricity, heating, and cooling loads for the previous 7 hours

Input3 Electricity, heating, and cooling loads at time T per day for the previous 1 week
Input4 Electricity, heating, and cooling loads at time T-1 per day for the previous 1 week
Input5 Electricity, heating, and cooling loads at time T+1 per day for the previous 1 week

LSTM Input6 Type of working day and weather data at time T
Output1 Forecasting the electricity load at time T
Output2 Forecasting the heating load at time T
Output3 Forecasting the cooling load at time T

3.2. Time-Series Feature Extraction Based on Auto-Regression

Auto-regression is essentially a linear regression equation, as shown in Equation (1).
Since the change of each load of IES at the current moment depends on its own antecedent
state and the auto-correlation analysis of load data shows that the state on which the change
of load depends is in an ultra-short time range (0–4 h), in this paper, we attempt to use the
AR to extract the ultra-short fore-sequence states for the predicted moments.

xt = φ0 + φ1xt−1 + . . . + φpxt−p + εt (1)

where xt represents the random variable. p represents the model order. φ0 is the constant
term. φ1, φ2, . . . , φp are the auto-regression coefficients (model coefficients) of the equation,
φp 6= 0. εt is the random disturbance term of the white noise series with mean 0 and
variance σ2.

A Lambda layer and full connection layer are used to simulate the auto-regression
mechanism. Using the equivalent dimension transformation of the Lambda layer, the two-
dimensional input data are transformed into a one-dimensional vector. The fully connected
layer combines a linear activate function to multiply the weight vector ω with the input
vector X dot product and add it to the bias coefficients. The vector ω corresponds to
φ0, φ1, . . . , φp in Equation (1). The vector X corresponds to xt−1, xt−2, . . . , xt−p in Equation
(1). The final xt output equation is given in the following Equation (2).

xt = Flinear(ω
T · X + εt) (2)

3.3. Spatial-Temporal Feature Extraction Based on the Convolutional Neural Network and the Long
Short-Term Memory Network

The CLSTM is divided into two parts. One consists of the CNN [26] network respon-
sible for mining spatially coupled features, and the other part is the LSTM [27] network
responsible for learning the temporal features present in the features. CNN is a feed-
forward neural network that automatically mines the interaction information between
multiple loads using convolution and pooling to perform noise reduction on the noise in
the input signal. The spatial dimensional feature extraction of the input data is performed
using CNN, and a complex high-dimensional matrix is constructed.

LSTM is a recurrent neural network that can handle periodic, regular, and time-series-
related problems effectively. The coupling features between loads parsed by CNN are used
as the input of LSTM, and LSTM again extracts the implied periodic patterns (daily and
weekly characteristics) in the data. The CLSTM combined network structure organically
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combines the advantages of both networks, thereby, making the prediction results more
accurate and stable.

Figure 5 shows the CLSTM network structure used in this paper. The figure shows that
the CNN consists of a Convolutional layer, Dropout layer, and MaxPooling layer together.
First, the constructed multidimensional data set is input into the convolutional layer to
compress the data using a sliding window. In the second step, the Dropout layer filters the
extracted invalid features. In the third step, the spatially coupled features are extracted by
the MaxPooling layer. Finally, the LSTM layer completes the extraction of the temporal
features.

Figure 5. The CLSTM network structure.

3.4. Environment Feature Extraction Based on LSTM

Since environmental factors have different degrees of influence on the load and the
extracted environmental features are related to time series, weather data, and workday
types are used as LSTM inputs, this study aims to extract features from the dimensions
of the environmental factors that affect the loads by this method, thus, facilitating model
learning and enhancing the generalization ability of the model. Figure 6 shows the network
structure of LSTM to extract the environmental factor features. The input data are the
current weather data and the type of working day. The data are input to the LSTM network
consisting of 16 neurons, and finally the environmental impact features of the current
moment are output.

Figure 6. The LSTM network structure.

3.5. Multidimensional Feature Fusion

It is necessary to fuse the features in a reasonable and effective way to fully take
advantage of the advantages achieved on each dimensional method [28]. In this paper, we
attempt to fuse multiple features by filtering, overlaying, and combining them from multi-
dimensional features. The principle details of feature fusion are shown in Figure 7, and the
Feature Confusion module part of Figure 4 shows the specific process of multidimensional
feature fusion. In Figure 7, the feature fusion process is divided into two parts: one part is
the splicing fusion of features, and the other part is the superposition of features.

The splicing fusion is the first fusion of the features using a Concatenate layer for the
weekly and daily feature input features, and then the first fusion of these features is done
with the Dense layer based on the Softmax activate function. Secondly, the two features
extracted using the AR algorithm, and the environmental factors are combined with the
fused features in the first part to perform the second fusion. The fusion method uses the
Add layer to superimpose the three features to complete the second feature fusion. Finally,
the predicted loads are output by the Linear activate function.
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Figure 7. The principles of feature fusion.

4. Case Study
4.1. Case Description

The MFFCLA model was constructed and trained under the Keras and Tensorflow
deep-learning frameworks on a server with two Xeon 4215R CPUs and two NVIDIA RTX
3090 GPUs. Experimental data used the integrated energy system data mentioned in
Section 2. The data set is divided into training, validation, and test sets at 75%, 15%, and
10%, respectively, and the future electricity, heating, and cooling loads are predicted in
1 h steps.

4.2. Model Performance Assessment

The multi-energy load forecasting model requires prediction analysis for multiple
subtasks while there are zero real load values. Therefore, the MAE (mean absolute error),
R2 and WR2 (weighted R2) were selected. The MAE and R2 indicators reflect the prediction
performance of the prediction model for each load, and WR2 can reflect the performance of
the model for multi-energy load forecasting as a whole, and its specific evaluation index
expressions are as follows.

MAE =
1
n

n

∑
t=1
|yt − ŷt| (3)

R2 = (1− ∑n
t=1(ŷt − yt)2

∑n
t=1(ŷt − ȳt)2 ) (4)

WR2 = ωeleR2
ele + ωheatR2

heat + ωcool R2
cool (5)

where ȳt, yt, and ŷt are the mean, true, and predicted values of the load at time t, respec-
tively; n is the number of samples; ωele, ωheat, and ωcool are the weights of the electricity,
heating, and cooling loads, respectively; R2

ele, R2
heat, and Rcool2 are the R2 values of the

electricity, heating, and cooling loads, respectively. Considering the dominance and impor-
tance of electricity in the studied IES, and combined with the hierarchical analysis method
of [29], the values of the electricity, heating, and cooling weight coefficients in Equation (5)
were determined to be 0.4, 0.3, and 0.3, respectively.

4.3. Hyper-Parameter Selection

The hyper-parameter selection affects the model training effect and the actual fore-
casting accuracy of the model. To further explore the best model structure, the accuracy of
different CNN and LSTM hyper-parameter models is compared using the control variables
approach, and the appropriate optimizer is selected after the hyper-parameter combination
is determined.
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4.3.1. CNN LSTM Hyper-Parameter Selection

The main CNN hyper-parameters are the number of convolutional kernels, the sliding
window size, and the step. The LSTM hyper-parameters are used to determine the number
of LSTM units. Due to the input data structure, the sliding window size is 3, and the step is
1; therefore, only the number of convolutional kernels and the number of LSTM units need
to be determined.

Figure 8 is the comparison histogram of the model prediction errors for different
combinations of CNN and LSTM hyper-parameters. The number of convolutional kernel
hyper-parameters of CNN and the number of neuron hyper-parameters of LSTM are
[7, 14, 21] and [8, 16, 24, 32], which are combined to compare the prediction errors of the
electricity, heating, and cooling loads. The CNN filters equal to 7 and LSTM units equal to 16
had the least prediction error in terms of the electricity load prediction performance, while
the combination with more convolutional kernels did not perform better. Approximately
the same predicted performance was found for the heating and cooling loads.

(a) (b) (c)

Figure 8. Comparison of the forecasting errors for different combinations of hyper-parameters.
(a) The histogram of electricity load forecasting error. (b) The histogram of electricity load forecasting
error. (c) The histogram of electricity load forecasting error.

4.3.2. Optimizer Selection

As the optimization algorithms differ, their solution methods also differ, which can
have some influence on the convergence and training effect of the algorithms. Therefore,
in this paper, four commonly used optimizer are analyzed. Figure 9a shows the model
trained with different optimizer and the forecast of the electricity, heating, and cooling loads.
Among them, the prediction performance of the heating load was the most significant, while
the prediction performance of the electricity and cooling loads was generally consistent.
The Adam optimizer had the smallest error performance in the prediction errors of the
electricity, heating, and cooling loads.

Figure 9b is the load loss curves of the model using the Adam optimizer and the model
training/validation prediction accuracy curves. It can be seen that, when the number of
training times is less than 150, the loss value of multi-energy load forecasting gradually
decays, and the average accuracy of the model weights gradually increases. When the
number of training times reaches 150, the loss values of multi-energy load forecasting and
the average accuracy of the weights in both training and test sets converge, reflecting that
the model is more similar to the actual operating data of IES when processing multi-energy
load forecasting and that the model training results are credible. In summary, the specific
hyper-parameters of the forecasting model are selected as shown in Table 2.
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(a) (b)

Figure 9. Optimizer selection and model training loss performance. (a) Comparison of forecasting
errors of different optimizers. (b) Loss curves and model training validation prediction accuracy
curves for each load.

Table 2. MFFCLA model hyper-parameter selection.

Hyper-Parameters Values

CNN Parameters Kernel: 7, Activate function: Relu
LSTM units 16

Dropout layer retains probability 0.8
Loss value adjust function MAE

Batch size 200
Optimizer Adam

Learning rate 0.001
Epochs 150

Feature fusion module fully connected layer
activate function Softmax

Output layer activate function Linear

4.4. Comparison of the Proposed Model and Other Prediction Models

In order to demonstrate the practical value of the method proposed in this paper, the
model MFFCLA is compared and analyzed with existing ARIMA, LSTM, and CLSTM [30].

Figure 10a,b shows the electricity and heating load, with data taken from 15 to 18 De-
cember in the winter, where the first two days are working days and the last two days
are non-working days. Figure 10c shows the cooling load, with data from 29 July to 1 Au-
gust in the summer, where the first two days are working days and the last two days are
weekends. The forecasting results of each model used all test sets as input combined with
the evaluation indexes used in this paper, and the test set prediction accuracy evaluation
results are shown in Tables 3 and 4.

Table 3. R2 evaluation.

Model
R2(%)

W R2(%)
Electricity Heating Cooling

ARIMA 97.83 97.08 96.47 97.197
LSTM 82.49 88.24 73.37 81.479

CLSTM 93.29 92.50 88.10 91.496
MFFCLA 99.06 99.60 99.53 99.366
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Table 4. MAE evaluation.

Model
MAE(kW)

Electricity Heating Cooling

ARIMA 4.6878 16.7398 1.5049
LSTM 13.2046 31.2388 3.9066

CLSTM 7.5216 26.2545 2.6268
MFFCLA 2.6465 5.4461 0.5461

(a) (b)

(c)

Figure 10. Multi-energy load forecasting curves. (a) The curve of electricity load forecasting results of
each model. (b) The curve of heating load forecasting results of each model. (c) The curve of cooling
load forecasting results of each model.

From Figure 10 as well as Tables 3 and 4, it can be seen that all four prediction models
performed well for the electricity, heating, and cooling loads. In terms of forecasting
strategies, LSTM and CLSTM were more similar. Furthermore, the prediction of the
three loads of CLSTM was significantly better than that of LSTM, especially in the peak
performance of daily loads. It is evident that the introduction of CNN in the LSTM model
can effectively extract the coupling features existing between the loads when the input data
structure is the same. This further improves the forecast accuracy of the model.

The ARIMA model, which predicts the load by constructing a regression equation,
also had good results. This model uses multidimensional feature fusion techniques to filter
and fuse the time-series features extracted by AR, the spatial-temporal coupling features of
CLSTM, and the environmental factor features of LSTM. This method organically combines
the advantages of the three models to make the forecast performance more consistent
with the actual load variation. MFFCLA showed excellent stability for both peak forecasts
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during weekday hours and smoother load forecasts during non-workday hours. This
indicates that the multidimensional feature fusion technique of the model is able to fully
learn the periodic characteristics present in the measured data. Therefore, this model was
improved by 7.864% in the WR2 evaluation index when compared to the CLSTM model.

Figure 11 shows the red line inside the box representing the median error, the upper
and lower borders of the box representing the error quartiles, the top and bottom edges
representing the 1.5 times quartiles, and the dots beyond the edges representing the outliers.
All four forecasting models had few anomalies, which proves that the models were stable.
Four forecasting models had the largest deviation in the prediction error of the heating
load, mainly due to the heating load energy demand being special. The model has difficulty
learning the changing pattern of the heating load because of the large influence of climate.

The reason why the error range of the cooling load is the smallest is mainly because
there is less demand for teh cooling load and less power in the building, and the value of the
error deviation is also small. Secondly, the error range of the CLSTM model is smaller when
compared to that of the LSTM model, and the median error line is closer to 0. This shows
that the introduction of CNN structure in the CLSTM model can improve the robustness of
the model and help to enhance the accuracy of the model.

As can be seen from the electricity load error box plot, the ARIMA model is based
only on its trend over a short period of time when the electricity load has a periodic nature,
which leads to a larger error. MFFCLA combines the advantages of CNN, LSTM, and AR
from multiple dimensions by feature fusion and keeps the error range within a small range.
The median line is also almost always around 0.

(a) (b) (c)

Figure 11. Multi-energy load forecasting error box diagram. (a) The boxes of electricity load forecast-
ing results of each model. (b) The boxes of heating load forecasting results of each model. (c) The
boxes of cooling load forecasting results of each model.

5. Conclusions and Discussion

In this paper, we proposed a CLSTM-AR multiple-load forecasting model based on
multi-dimensional feature fusion. This model effectively combines the linear statistical
ability of AR with nonlinear and periodic features extracted by LSTM and CLSTM to achieve
load prediction through a multi-dimensional feature fusion method. The forecasting
accuracy of MFFCLA was improved by 2.169% for ARIMA, 7.870% for CLSTM and 17.887%
for LSTM. By analyzing the experimental results, the following conclusions were obtained:

By using CNN to learn the coupling relationship between energy sources, coupled with
LSTM to learn the time-varying relationship among them, CLSTM effectively mined the
spatial-temporal features of IES. This also considers that the load itself changes depending
on the antecedent state and that AR is able to extract the state change features. In addition,
considering that the environmental factors also change the energy demands, LSTM was
introduced to extract the environmental impact features. Thus, comprehensive feature
mining of the measurement data was achieved from multiple dimensions.

The multidimensional feature fusion method by filtering, superimposing, and combin-
ing features completes the prediction of multi-dimensional loads through linear activated
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layers. The process relies on backpropagation to ensure that the multidimensional features
can be fused reasonably and effectively to ensure the accuracy of the model forecasting.
Moreover, the fused features effectively reduce the number of model parameters, which
indirectly improves the prediction efficiency of the model.

Through this study, we found that not only were energy use fluctuations at the
load side influenced by weather but also different types of weekdays caused load peak
variations. The load changes that occur with different weekday types can be explained to
some extent as a change in the energy consumption behavior of users as describable data
on the impact of the groups on the loads, including structured and unstructured data. In
the future, unstructured data can be added to the method proposed in this paper to study
IES multi-energy load forecasting under multi-modal data.
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Abbreviations
The following abbreviations are used in this manuscript:

IES Integrated Energy System
CNN Convolutional Neural Network
LSTM Long Short-Term Memory Network
CLSTM Convolutional Neural Network and Long Short-Term Memory Network
AR Auto-Regression
MFFCLA CLSTM-AR combined with Multi-Dimensional Feature Fusion
ARIMA Auto-Regression Integrated Moving Average Model
SVM Support Vector Machine
VMD Variational Mode Decomposition
MTL Multi-Task Learning
LSSVM Least Square Support Vector Machine
DBN Deep Belief Network

References
1. Dong, H.; Fang, Z.; Ibrahim, A.; Cai, J. Optimized Operation of Integrated Energy Microgrid with Energy Storage Based on

Short-Term Load Forecasting. Electronics 2022, 11, 22.
2. Gu, W.; Wang, J.; Lu, S.; Luo, Z.; Wu, C. Optimal Operation for Integrated Energy System Considering Thermal Inertia of District

Heating Network and Buildings. Appl. Energy 2017, 199, 234–246. [CrossRef]
3. Yan, C.; Bie, Z.; Liu, S.; Urgun, D.; Singh, C.; Xie, L. A Reliability Model for Integrated Energy System Considering Multi-Energy

Correlation. J. Mod. Power Syst. Clean Energy 2021, 9, 811–825. [CrossRef]
4. Boroojeni, K.G.; Amini, M.H.; Bahrami, S.; Iyengar, S.S.; Sarwat, A.I.; Karabasoglu, O. A Novel Multi-Time-Scale Modeling

for Electric Power Demand Forecasting: From Short-Term to Medium-Term Horizon. Electr. Power Syst. Res. 2017, 142, 58–73.
[CrossRef]

5. Chen, Y.; Xu, P.; Chu, Y.; Li, W.; Wu, Y.; Ni, L.; Bao, Y.; Wang, K. Short-Term Electrical Load Forecasting Using the Support
Vector Regression (SVR) Model to Calculate the Demand Response Baseline for Office Buildings. Appl. Energy 2017, 195, 659–670.
[CrossRef]

6. Yang, A.; Li, W.; Yang, X. Short-Term Electricity Load Forecasting Based on Feature Selection and Least Squares Support Vector
Machines. Knowl.-Based Syst. 2019, 163, 159–173. [CrossRef]

http://doi.org/10.1016/j.apenergy.2017.05.004
http://dx.doi.org/10.35833/MPCE.2020.000301
http://dx.doi.org/10.1016/j.epsr.2016.08.031
http://dx.doi.org/10.1016/j.apenergy.2017.03.034
http://dx.doi.org/10.1016/j.knosys.2018.08.027


Electronics 2022, 11, 3481 14 of 14

7. Dietrich, B.; Walther, J.; Weigold, M.; Abele, E. Machine Learning Based Very Short Term Load Forecasting of Machine Tools. Appl.
Energy 2020, 276, 115440. [CrossRef]

8. Ahmad, T.; Chen, H. Nonlinear Autoregressive and Random Forest Approaches to Forecasting Electricity Load for Utility Energy
Management Systems. Sustain. Cities Soc. 2019, 45, 460–473. [CrossRef]

9. Al-Rakhami, M.; Gumaei, A.; Alsanad, A.; Alamri, A.; Hassan, M.M. An Ensemble Learning Approach for Accurate Energy Load
Prediction in Residential Buildings. IEEE Access 2019, 7, 48328–48338. [CrossRef]
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