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Abstract: Parkinson’s disease (PD) is a neurodegenerative condition that affects the correct func-
tioning of the motor system in the human body. Patients exhibit a reduced capability to produce
facial expressions (FEs) among different symptoms, namely hypomimia. Being a disease so hard
to be detected in its early stages, automatic systems can be created to help physicians in assessing
and screening patients using basic bio-markers. In this paper, we present several experiments where
features are extracted from images of FEs produced by PD patients and healthy controls. Classical
machine learning methods such as local binary patterns and histograms of oriented gradients are used
to model the images. Similarly, a well-known classification method, namely support vector machine
is used for the discrimination between PD patients and healthy subjects. The most informative
regions of the faces are found with a principal component analysis algorithm. Three different FEs
were modeled: angry, happy, and surprise. Good results were obtained in most of the cases; however,
happiness was the one that yielded better results, with accuracies of up to 80.4%. The methods used
in this paper are classical and well-known by the research community; however, their main advantage
is that they provide clear interpretability, which is valuable for many researchers and especially for
clinicians. This work can be considered as a good baseline such that motivates other researchers
to propose new methodologies that yield better results while keep the characteristic of providing
interpretability.

Keywords: Parkinson’s Disease; image processing; hypomimia; FE; classic techniques; machine
learning

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative condition that affects the basal ganglia,
and it is responsible for the correct functioning of the cortical and sub-cortical motor
systems. PD patients often exhibit reduced facial expressivity and develop difficulties
producing facial expressions (FEs). The cortical motor system modulates expressions
that are executed with consciousness, while the sub-cortical one is related to genuine
expressional expressions which cannot be consciously moderated [1]. Studies suggest
that PD patients show significantly less overall facial movement than healthy controls
(HC) [2]. Reduced facial activity derives from impaired production of smiles and other
expressions due to partial or permanent disabilities to move certain muscle groups, i.e.,
bradykinesia [3].

In the last decade, technological innovations have motivated the inclusion of machine
learning (ML) techniques in different fields, including a diverse spectrum of topics within
medicine [4–6]. ML contributes to this field by helping in medical assessments with
predictive models that have been demonstrated to be accurate and reliable in a wide
variety of applications [7,8]. Similarly, with the growth of ML methods, deep learning (DL)
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algorithms have been widely used thanks to the possibility to automatically extract features
from raw data, perform the prepossessing and give a decision based on the data [9].

In [10], the authors showed that classical methods typically used to extract information
and/or classify subjects, have been less used over years, while neural networks (NN)
structures have increased their popularity. Although this is a global trend in many research
areas, classical approaches can still yield good results. Classical models have a good
performance with fewer computational requirements and offer the possibility to interpret
the result, which is not possible in most of the cases where DL is used.

This paper intends to set a baseline for the automatic classification of PD patients
and HC subjects. To this end, different FEs produced by the participants are modeled
with classical and well-known feature extraction techniques including local binary patterns
(LBP) and histograms of oriented gradients (HOG). Different expressions were studied
including anger, happiness, and surprise. A support vector machine (SVM) was used as
a classifier because it has been extensively used in other studies where FEs are modeled.
Finally, an analysis of the regions that provide the most discriminant information was also
performed.

2. Related Work

The interest in analyzing FEs in PD is growing in the ML community. One of the
main challenges is to automatically detect the expression, which has been a hot topic in
the past decade and multiple contributions have been done recently. For instance, In [11]
proposed a method called Discriminative Kernel Facial Emotion Recognition (DKFER)
which focuses on the integration of information from static facial features and motion-
dependent features, the first set of features is extracted from a single image, the authors
extracted landmarks of the faces of the Japanese Female FE (JAFFE) database [12] to obtain
geometrical information; meanwhile, the motion dependent features are based on the
Euclidean distance of the landmarks between the static state and the peak of the emotion,
the result of this work was the definition of a new technique to merge both static and
dynamic information.

One year later in [13], the authors extracted features using LBP from near-infrared
(NIR) video sequences to classify different FEs, the authors used SVM and sparse represen-
tation classifier (SRC) and found that NIR videos help to reduce indoor light that changes
depending on multiple factors and can affect the quality of the classification but has a
drawback, which is that the working distance of NIR is limited. Later, the authors in [14]
validated that there are a few facial muscles that are essential to discriminate different FEs.
This result was achieved by extracting features from the Cohn–Kanade Database (CK+) [15]
using LBP, which previously showed to be a powerful descriptor in FEs recognition [16].

In 2014, refs. [17,18] worked in understanding the contribution of different facial mus-
cles in the performance of a FEs, and how this can be used to obtain a better classification of
the FEs. The authors in [17] use landmarks to detect the main parts of the face such as the
eyes, eyebrows corners, nose, and lip corners. The face is detected and later extracted using
the Viola–Jones technique of Haar-like features [19]. The experiments were performed
in both JAFFE and CK+ databases. The authors used an SVM as the classifier due to its
simplicity and success in related works. On the other hand, the authors in [18] used only
the CK+ database and proposed a new set of features called Muscle force-based features,
which uses prior knowledge of facial anatomy to estimate the different activation levels of
the muscles depending on the FEs. A wireframe model of the face, called HIgh polygon
GEneric face Model (HI-GEM), originally introduced in [20] is used by the authors to
extract information on key points of the face. Information on the involved muscles, forces,
and direction are also extracted. Three classifiers are evaluated in [18], a Naive Bayes, an
SVM, and a k-Nearest Neighbors (kNN). Better results were obtained with the SVM and
KNN classification methods. Later, in [21] the authors extracted LBP and HOG features
from both CK+ and JAFFE databases and found that different subjects have different ways
to produce FEs, and such differences can be observed in LBP features, which makes this
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method a good feature extractor to model FEs. Other works such as [22–28] have used
combinations of features, classifiers, and techniques to detect FEs; however, few works have
addressed the problem of modeling FEs in PD patients. For instance, Bandini et al. [29]
classified 17 PD patients and 17 HC subjects using landmarks extracted using information
from the Microsoft Kinect Sensor. A Multi-Class SVM with a Gaussian kernel was trained
for each expression: neutral, happiness, anger, disgust, and sadness. The classifiers were
trained with the CK+ database and the Radboud Faces Database (RaFD) [30]. A 10-Fold
Cross-Validation (CV) strategy was performed to optimize the meta-parameters of the
classifiers, and the authors reported an average accuracy (ACC) of 88%. Specific results
per expression indicate accuracies in test of 98% for happiness, 90% for disgust, 88% for
anger, 84% for neutral, and 74% for sadness. In 2018 Rajnoha et al. [31] considered 50 PD
patients and 50 HC subjects to automatically identify hypomimia through conventional
classifiers such as random forest, XGBoost, and decision trees. The authors reported an
average ACC of 67.33% in the classification between PD and HC subjects. One year later,
Grammatikopoulou et al. [32] used similar features as the ones used by Bandini et al. to
model FEs produced by 23 PD patients and 11 HC. The authors tried to classify three
groups of subjects according to the FEs score in the MDS-UPDRS-III scale [33]. The Google
Face API and Microsoft Face API were used to extract 8 facial landmarks and 27 facial land-
marks, respectively. Two individual models were trained to estimate two Hypomimima
Severity indexes (HSi1 for Google and HSi2 for Microsoft features). The authors reported
a sensitivity of 0.79 and a specificity of 0.82 for the HSi1, while for HSi2 the results were
0.89 and 0.73, respectively. More recently, Jin et al. [34] used Face++ to automatically locate
facial landmarks from an image, providing 106 landmark points. The work focused on
the analysis of the tremor caused by movement disorders, which makes the key points
tremble while trying to maintain the expression. The classification was performed with a
long short-term memory (LSTM) and the authors reported accuracies of 86.76%.

Another recent contribution includes the one made by Gomez et al. [35]. In that work,
the authors used the FacePark-GITA database, which includes a total of 54 participants
(30 PD patients and 24 HC subjects). The authors implemented a multimodal study based
on static and dynamic features. A set with 17 dynamic features was combined with 2048
static ones. They reported accuracies of 77.36% for static features and 71.15% for the
dynamic ones. When the combination was considered the ACC improved to 88.76%.
More recently, in 2021 the authors in [36] analyzed action units activation variance from
Open-Face predictions. The three most relevant action units per expression were used
to discriminate between PD patients and HC subjects by using an SVM classifier. The
analysis was performed on 61 PD patients and 534 HC subjects of the PARK dataset [37].
The reported precision and recall were 95.8%, and 94.3%, respectively.

From the studies mentioned above, we observed that the use of landmarks and
geometric features as well as classical classifiers are the most popular approaches and
provide interpretable results. For this reason, in this paper we proposed to use LBP and
HOG features to model FE produced by PD patients and HC subjects. Both methods
are based on transformations over the images and return feature vectors widely used
in FE recognition. Further analysis in classification stages can indicate which regions of
the images may have influenced the decisions made. We are aware that there exist more
sophisticated methods to perform FE analysis; however, we want to present this work as a
rationale baseline for future studies. We expect other researchers to motivate to evaluate
other methods, hopefully with better results but keeping a high level of interpretability,
which is the strongest argument in favor of classical approaches.

3. Contributions of This Work

Two classical feature extraction techniques, LBP and HOG are used to extract features
from video frames of PD patients and HC subjects who produced three different FEs,
namely happiness, surprise, and angriness. An SVM classifier is considered to perform the
classification between PD patients and HC subjects. The three FEs are modeled with the
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two feature extraction methods for comparison purposes. Furthermore, the information
extracted from the features was analyzed to find those areas of the face that are more
informative depending on the FEs and the feature extractor. This work can be considered
as a baseline for the topic of considering FEs to discriminate between PD and HC subjects.

4. Methods
4.1. Methodology

Video recordings from both PD and HC groups will be separated into frames, from
which only five frames will be used according to the findings reported in [35]. The sequence
consisted of five images: Normal, Onset, Apex, Offset, and Normal, as shown in Figure 1.

OnsetNormal Apex Offset Normal

Figure 1. Sequence of frames selected for each subject.

The face was extracted from each frame using the multi-task cascaded convolutional
networks (MTCNN) algorithm, which removes the background noise to avoid unnecessary
variability. The resulting image is resized to 80 × 80 pixels, gray-scaled, and normalized
using facial landmarks as shown in Figure 2.

Image before 
normalization

Landmark 
extraction

Image after 
normalization

Figure 2. Normalization process using Landmarks.

LBP and HOG features were extracted. For LBP, the image is transformed and divided
into 20 × 20 sectors, for each sector the histogram is calculated and concatenated to form a
4096-dimensional feature vector (16 sectors × 256 values of the histograms). This process is
illustrated in Figure 3.

In the case of HOG, the algorithm requires the number of pixels per cell in one of
the parameters, which is set to 20 × 20 to use the same separation grid as the one used in
LBP. For each block, eight orientations are extracted, then a principal component analysis
(PCA) transformation with 95% of the variance is performed to select the most relevant
features and to perform an analysis that allows the identification of areas in the face that
are relevant for each expression. To achieve this, we check the coefficients aji found in the
PCA transformation, the magnitudes of these coefficients give an idea of the relevance of
each original feature in the new set of features.
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... ... ...

Figure 3. LBP feature extraction.

The resulting features are then mapped back to the original image to identify the
portion within the image from which it was extracted, a histogram with the contribution of
each feature to the PCA transformation is created and reshaped to a 4 × 4 matrix, and later
resized into an 80 × 80 image to show the areas of the faces that are selected the most.

4.2. Participants and Data Collection

The corpus considered for this work includes 31 PD patients and 23 HC subjects. All
participants gave informed consent to participate in the study. Patients performed a variety
of tasks including speech production, handwriting, gait, and the posed FEs exercises. Only
the tasks about producing FEs are considered in this work. After completing those tasks,
each patient visited the neurologist, who administered the MDS-UPDRS-III scale and
provided the resulting scores. In the FEs tasks, patients were asked to imitate a specific
expression presented by an avatar on a screen. For this study videos of angriness, surprise
and happiness were considered. Figures 4 and 5 show the distribution of demographic and
clinical information of the participants, more detailed information can be found in Table 1.
Possible biases due to age and gender were discarded according to a Welch’s t-test (p = 0.16)
and a chi-square test (p = 0.57), respectively. All patients were recorded in ON-state, i.e., no
more than 3 h after the medication intake.

Table 1. Demographic information of the patients and healthy controls considered in this study.

PD Patients HC Subjects

Men Women Men Women

# of participants 19 12 12 12
Age 70.1± 10.4 67.4± 10.9 65.3± 10.2 65.2± 8.7

Age range 52–90 53–87 49–80 49–83
Time since diagnosis 8.7± 5.4 15.6± 17.3 − −

Range time since diagnosis 2–20 1–45 − −
MDS-UPDRS-III 35.4± 13.9 29.7± 12.3 − −
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Figure 4. Age distribution for both HC and PD.
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Figure 5. Label count for the MDS-UPDRS-III scale.

4.3. Multi-Task Cascaded Convolutional Networks

Face detection is the first step before removing environmental noise, allowing the
system to focus on the subjects’ faces. Cascade classifiers are commonly used for this
aim. These methods consider features based on pixel intensities on images. For example,
weighted classifiers detect contrasting face parts, such as the nose bridge and eyes. The
algorithms work through small classifiers that ensemble a more robust one by detecting a
face multiple times using different filters; the lower the complexity of the aforementioned
small classifiers the more efficient the resulting system.

Multi-Task convolutional networks implement a novel and efficient approach to detect
faces in images. The image is first resized multiple times in what is called an image pyramid,
these resized images are then passed through a three-stage cascade network P-Net, R-Net,
and O-Net [38]. P-Net is used to localize possible windows where a face can be found,
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the other two networks focus on the refinement and final decision of the window and its
bounding boxes, as shown in Figure 6.

P-Net

R-Net

O-Net

Resize

Bounding box 
refinements

Final boundig
box

Bounding box 
refinements

Figure 6. MTCNN sequence to find a face in an image.

4.4. Local Binary Patterns

LBP is a visual descriptor-based method that considers differences between pixel
neighborhoods to recognize features in images. The workflow of this method is as follows:

1. The image color space is set to gray-scale.



Electronics 2022, 11, 3533 8 of 17

2. A radius hyper-parameter is chosen and the image is divided into cells.
3. The central pixel of each cell is compared against its N neighbors. If the intensity

of the center pixel is greater than or equal then a value of 1 is set in the neighbors’
position, otherwise, the value is set to 0.

4. Starting clockwise from the top-right (Figure 7) a binary number is formed with the
1 s and 0 s from the previous step, this binary representation is then converted into
decimal and stored in the central pixel position.

5. With this new representation a 2N feature histogram is formed.
6. The process is repeated for each region and the histograms are concatenated forming

the feature vector.

Figure 7. Neighbors operation in LBP.

4.5. Histogram of Oriented Gradients

HOG considers shapes, objects, and textures by computing the intensity and direction
of gradients [39]. The flow of this algorithm is as follows:

1. The image color space is set to gray-scale.
2. For each pixel in the image, the gradient is calculated in the x and y axes, generating

Gx and Gy
3. The magnitude and angle are calculated as shown in Equation (1):

|G| =
√

G2
x + G2

y

θ = arctan Gy/Gx

(1)

4. The gradient matrix is divided into N × N cells where the histogram is calculated.
5. Each histogram is normalized across local groups of cells using the L1 normalization.

This step is necessary to compensate for different changes in illumination and contrast
between neighboring cells.

6. An x-dimensional feature vector is computed across the resulting histograms.

The resulting vector is the one that will be used as a feature vector for the classification
process, but we can also see how the magnitudes and angles change depending on the
parameters, Figure 8 shows an example of an image where HOG was applied.
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Figure 8. Gradients obtained by the HOG algorithm.

4.6. Landmarks

A landmark is a point of correspondence that “matches between and within popula-
tions” [40]. This set of points raised the interest of researchers due to its successful use in
face and FEs recognition [41]. The commonly used landmarks are focused in areas around
the eyes, nose tip, nostrils, mouth, ears, and chin. A total of 68 landmarks are typically used
to improve the representation of the face. External landmarks are also used to normalize
the image. In this work, the pre-trained facial landmark detector introduced in [42] is used
to estimate the 68 landmarks.

4.7. Principal Component Analysis (PCA)

PCA is a well-known transformation method commonly used to reduce the dimen-
sionality of a large dataset. It can also be used to perform a feature selection that allows
identifying which are the most relevant features in a given problem. PCA intends to
capture the data with the most variance [43], and components that give less information
are removed. The data are transformed through a linear combination of the variables, as
shown in Equation (2):

Y1 = a11X1 + . . . + a1pXp

Y2 = a21X1 + . . . + a2pXp

. . .

Yd = ad1X1 + . . . + adpXp

(2)

where Xi the original set of features and Yj is the new set of features created with the
linearly combination between Xi and the constant values aji, where i ∈ {1, 2, . . . , p} and
j ∈ {1, 2, . . . , d} with p and d are the original dimensionality and the new dimensionality
respectively. After the transformation, there will be a linear combination of the original
feature set multiplied by a constant for each principal component. Such a constant value
can be considered as the “weight” for each feature.

4.8. Support Vector Machine (SVM)

SVM is a supervised machine learning method that focuses on finding the best margin
or hyperplane that separates the data into two classes as shown in Figure 9. To find the best
margin, an optimization process is performed by looking at the largest distance between
the hyperplane and the data [44].
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Margin

Figure 9. Support vector machine.

The SVM intends to find the optimal hyperplane but the data are not always linearly
separable. Therefore, kernels are implemented, and the main aim of a kernel is to transform
the data into another space where the separability of the classes is linear. The kernel
trick allows operating in the new space without mapping the data [45]. Some kernels are
(x represents the feature matrix in all cases):

1. Linear: x · x’
2. Polynomial: (x · x’ + 1)d, where d is the degree of the polynomial.
3. Gaussian: eγ||x−x’||/2, where γ is the kernel bandwidth.
4. Sigmoid: tanh(α(x · x’) + r), where r is a shifting parameter that controls the threshold

of the mapping and α is a scaling parameter for the input data [46].

SVM was selected as the classifier for this work given the fact that it has been exten-
sively used in similar works where FEs are intended to be modeled. In fact, according
to our literature revision, SVM is the classifier that most of the times yields better results.
Another advantage of this classification method is its direct interpretability regarding the
distance of the samples to the separating hyperplane.

5. Experiments and Results
5.1. Classification

The hyperparameters of the SVM are optimized following a subject-independent
nested cross-validation strategy. This helps in reducing the bias when combining the hyper-
parameter tuning and model selection. Given that each subject has five images for the outer
loop of the nested cross-validation, stratified cross-validation is applied to split the dataset
into train and test. These cross-validation method returns fold balanced in classes and
with non-overlapping groups. Notice that in this case, the groups are each subject. A grid-
search up to powers of ten where C ∈ {10−5, 10−4, . . . 102} and γ ∈ {10−5, 10−4, . . . 102}
is performed for the inner loop to obtain optimal parameters. shows the range of the
hyper-parameter considered in the grid search. Optimal parameters used for the test are
selected according to the mode along the training process. Notice that two different kernels
are used, namely linear and Gaussian (also known as radial basis function—RBF).

5.2. Results

Tables 2–4 show both the parameters used in the classifier and the performance
obtained, for the tree expressions the best feature extractor was LBP. The score distribution,
as well as the ROC curve, are shown in Figures 10 and 11.
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Angry Happy Surprise

Figure 10. Score distribution (Top) and ROC curve (Bottom).

Figure 11. ROC curve with the three expressions.

Table 2. PD classification results and optimal parameters analyzing angry expression.

Feature Classifier ACC SEN SPE

LBP SVM: C = 0.001, kernel = linear 72.8 75.8 68.3

HOG SVM: C = 0.1, kernel = linear 66.1 88.0 37.8

Table 3. PD classification results and optimal parameters in analyzing happiness expression.

Feature Classifier ACC SEN SPE

LBP SVM: C = 0.001, kernel = linear 80.4 84.6 74.6

HOG SVM: C = 0.1, kernel = linear 62.1 79.6 41.0
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Table 4. PD classification results and optimal parameters analyzing surprise expression.

Feature Classifier ACC SEN SPE

LBP SVM: SVM: C = 0.001, kernel = linear 75.8 80.1 70.6

HOG SVM: SVM: C = 0.1, kernel = linear 64.9 75.6 51.4

Apart from the classification experiments, statistical tests were performed to evaluate
the distribution of the scores obtained with the classifier for each facial expression. First,
a Shapiro–Wilk test was used to know whether the data follow a normal distribution.
This test was performed for each class and facial expression, a total of six p-values were
calculated (PD and HC in each emotion) and all of them were smaller than 0.05 which was
the threshold to either reject or accept the null hypothesis. In this case, the test showed
that none of the distributions are normal, so tests such as the t-test could not be applied.
Nevertheless, another tests can be used e.g the Mann–Whitney U test. Table 5 shows the
results of the Mann–Whitney U test and also whether the null hypothesis was rejected
or not.

Table 5. Mann–Whitney U tests to compare the scores obtained from the classifier per emotion.

Emotion p-Value (Mann-Whitney U Test) H0

Angry 3.81 × 10−14 Rejected

Happiness 3.23 × 10−29 Rejected

Surprise 1.35 × 10−22 Rejected

After classifying the subjects, it is important to discuss what are the most relevant zones
for both feature extractors in all expressions, this can be later compared with the classifier
performance to understand which information is being considered by the classifiers to
make the final decision. For both anger and surprise, we can notice that LBP shows more
emphasis on the upper part of the face, while HOG focuses more on the eyes for both
cases, as observed in Figures 12 and 13. This behavior is somewhat expected because when
the patient is performing the facial expression, these zones that change due to the facial
expression are considered the zones with more variance and hence, the ones that stand out
when the PCA algorithm is applied.

LBP HOG
Figure 12. Most important zones of the faces for angry.
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LBP HOG
Figure 13. Most important zones of the faces for surprise.

For the case of happiness, both feature extractors focus on the lower part of the face,
LBP focuses more on the mouth region, while HOG focuses more on the cheek regions
as seen in Figure 14. Both regions are the main regions involved in happiness expression.
This show that both extractors when a PCA is applied can focus on different facial parts
depending on the expression.

LBP HOG
Figure 14. Most important zones of the faces for happy.

6. Discusion

This study covers the analysis of FEs in PD using HOG and LBP features. The
objective was to classify PD patients vs. HC subjects. 31 PD patients and 24 HC subjects
were considered for the classification task. 55 videos were used for each expression. For
each patient, five images are used, following the pattern: Normal, Onset, Apex, Offset, and
Normal. A PCA reduction with a variance ratio of 95% is applied to remove redundant
features and analyze these features to identify where the most important features are placed.
Each feature set was considered separately for the classification tasks. An SVM classifier is
considered. Nested cross-validation was used to optimize hyper-parameters and divide
the dataset into train and test. The best result for anger has an ACC = 72.8%, for surprise,
the classifier had an accuracy of 75.8%, and happiness an accuracy of 80.4%, making it the
best facial expression for the classification of PD vs. HC.
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The results in this work could relate to [29], a similar behavior was experimented
with these expressions, although the validation scheme and features are different. This is
an exploratory analysis of FEs in PD using classical approaches. The performance of the
models proved to be adequate and robust to classify impaired expressions (i.e., models
with ACC = 80.0%) despite the PDs with low UPDRS values.

The focus of this work is not only to be able to classify PD patients vs. HC subjects, but
to perform a more detailed of the results and to understand what the classifier is seeking in
order to separate the classes.

Further research is needed with more expressions to find out which is the most
suitable for this task, as well as extracting features using deep learning architecture such
as convolutional neural network (CNN), which has been widely used to automatically
extract information from an image, this information can be compared with the hand-crafted
features extracted in this work and also a combination of this features can be performed
in order to improve the performance of the models. There is also a need for experiments
related to clinical personnel to find which features are more suitable for clinical evaluations
and find possible clinical interpretations of the results obtained with these models.

7. Limitations and Constraints

The main limitation of this work is the use of classical techniques both for feature
extraction and for classification. We are aware that there exist more sophisticated methods
in the literature such as those based on deep learning; however, we believe that classical
methods have been overshadowed in the last few years, mostly because deep learning
models require much less knowledge about the application (in the particular case of this
paper, Parkinson’s disease and hypomimia), and achieve better results. The main point in
favor of classical approaches is their interpretability (at the features and classification levels),
which makes them more attractive for clinical applications in the real world. Another
limitation of this study is the small size of the corpus. Although according to the literature
revision the number of patients considered in this study is within the average, we are aware
that more data would help in finding more conclusive results. Notice that this limitation
also supports the fact of not using DL methods, because these approaches require much
more data than the classical ones.

8. Conclusions

The production of FEs is a sensible bio-marker for the classification between PD
patients and HC subjects. Given the fact that different muscles are activated depending on
which FE to be produced, accurate and interpretable models able to extract information from
different FEs are necessary. This work presents a study where classical yet interpretable
techniques are used to create models that allow the automatic discrimination between
PD patients and HC subjects. The classifier used in this study showed high sensitivity
in most of the cases. However, the specificity decreased when the HOG features were
considered. This is possibly due to similarities between the facial abilities of some HC
subjects and PD patients who were in a low to intermediate state of the disease. The
normalization performed with Landmarks reduced the variability of the background
which helped in reducing errors when the models were focusing on the important zones.
Regarding the different FEs produced by the patients, happiness has yielded the highest
accuracy; however, the results obtained with the other two FEs suggest that the three of
them can be used to perform the classification and obtain better results. LBP shows the
best results for the three FEs, although the zones highlighted with HOG features are also
interesting to look at. The main contribution of this work is to set a baseline with classical
and interpretable methods such that motivate other researchers to study other approaches
that likely yield also interpretable results with higher accuracies. Although the results in
this work cannot be directly compared to those in the state-of-the-art because the datasets
are different, we believe that in terms of classical approaches, the results presented here are
competitive and result in a good baseline model. Future studies should focus on developing
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more sophisticated methodologies that provide better classification results while keeping a
clear interpretability for clinicians, patients, and caregivers.
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