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Abstract: A binary convolutional neural network (BCNN) is a neural network promising to realize
analysis of visual imagery in low-cost resource-limited devices. This study presents an efficient
inference processor for BCNNs, named TORRES. TORRES performs inference efficiently, skipping
operations based on the spatial locality inherent in feature maps. The training process is regularized
with the objective of skipping more operations. The microarchitecture is designed to skip operations
and generate addresses efficiently with low resource usage. A prototype inference system based
on TORRES has been implemented in a 28 nm field-programmable gate array, and its functionality
has been verified for practical inference tasks. Implemented with 2.31 K LUTs, TORRES achieves
the inference speed of 291.2 GOP/s, exhibiting the resource efficiency of 126.06 MOP/s/LUT. The
resource efficiency of TORRES is 1.45 times higher than that of the state-of-the-art work.

Keywords: binary convolutional neural networks; processor; inference; resource efficiency; field-
programmable gate array

1. Introduction

A binary convolutional neural network (BCNN) is a class of convolutional neural
networks (CNNs) in which every element of the weights and features is quantized to a
single bit [1]. Such binarization may reduce the memory bandwidth required to achieve
high inference speed. In addition, it may facilitate strength reduction in performing con-
volutions as the computation can be carried out with single-bit elements [2]. Interestingly,
the inference performance (e.g., the accuracy in the classification tasks) is close to that
achievable by the conventional full-precision CNN, particularly for small- or medium-scale
tasks, if trained based on the straight-through backward propagation of the gradients
for non-differentiable binarization functions [1,2]. With these merits, BCNNs are widely
employed for various applications to achieve efficient inference in low-cost devices [3,4].

There are several BCNN inference processors presented in the previous studies. XNOR
Neural Engine is an efficient compute engine for BCNN inference, developed to be inte-
grated into a tiny microcontroller unit (MCU) [5]. BinarEye is based on a flexible memory-
like binary neuron array with every weight on a chip [6]. FBNA is based on a modified
BCNN whose inference can be performed in a fully binary domain [7]. The BCNN inference
processor presented in [8] skips the redundant operations involved in pooling windows and
padded zeros to achieve high resource efficiency. IOTA is an inference system developed by
integrating dual processing cores, which are controlled to work in a cooperative manner [9].
O3BNN-R is based on a novel out-of-order architecture in which each processing core works
with variable latency skipping operations [10]. MajorityNet is an efficient BCNN modified
by employing majority operations to achieve low resource usage [11]. CUTIE is a ternary
CNN inference processor designed based on an unrolled architecture to achieve very high
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speed [12]. The BCNN inference processor presented in [13] achieves high inference speed
effectively based on the novel channel-aware operations with the group-pruning technique.
The global average pooling, which can replace several fully-connected blocks so as to
reduce the number of the weight elements, is realized by a majority circuit in the BCNN
inference processor presented in [14]. (BinarEye, FBNA, IOTA, O3BNN-R, and CUTIE
correspond to the names of the BCNN inference processors developed from the previous
studies stated here.)

There are some opportunites to skip operations in performing the BCNN inference
process. Such opportunites are provided on the basis of the fact that each feature element
is represented by a single bit. Some of the previous BCNN inference processors [8–10]
stated above exploits the opportunites to skip operations based on the threshold-based
and pooling-based techniques, which are going to be described in more detail in the next
section. We envision that further opportunities to skip operations can be found considering
the spatial locality inherent in feature maps, and this has motivated this study.

This study presents the design and implementation of an efficienT BCNN inference
prOcessoR based on locality-awaRE operation Skipping, named TORRES.

• TORRES efficiently skips some operations within the pooling windows to achieve
high inference speed by exploiting the spatial locality inherent in feature maps. Fur-
thermore, the training process is regularized by modifying the loss function so that
more operations can be skipped.

• The microarchitecture is designed to skip operations without considerable resource
overhead. In addition, address generation is carried out efficiently by carefully order-
ing the elements in the memories.

• A prototype inference system has been implemented based on TORRES in a 28 nm
field-programmable gate array (FPGA), under which the functionality has been ver-
ified elaborately for practical inference tasks. The resource efficiency of TORRES
is as high as 126.06 MOP/s/LUT at the inference speed of 291.2 GOP/s with the
resource usage of 2.31 K LUTs. The inference accuracy is 87.47% for the CIFAR10
classification task.

The rest of the paper is organized as follows. Section 2 briefly describes the con-
ventional BCNN inference process. Section 3 presents TORRES in detail by describing its
processing flow and microarchitecture. Section 4 presents and evaluates the implementation
results. Finally, Section 5 draws the conclusion.

2. Background

In this study, XNOR-Net is employed for the BCNN models because it is feasible to
realize a fully binarized inference process without involving any real operations [2]. (In
fact, there are a few of BCNN models such as those presented in [15,16], achieving superior
inference performance than XNOR-Net. However, they are not suitable to implement an
efficient inference processor because their inference process cannot be simply decomposed
into the blocks for which each element of the input and output data is binarized.) The overall
inference process can be divided into several blocks that share such a computing procedure
that is illustrated in Figure 1. For each channel of the output feature map, the input feature
map is first convolved with the weights in the corresponding channel; the resulting feature
map is binarized by comparing it to a threshold, and the output feature map is finally
computed through optional pooling. Here, the dot products for the convolution can be
calculated based on bitwise XNOR operations followed by population counting, which
is called an XPOP operation [2], symbolized by � in Figure 1; the threshold can be pre-
computed with the real weights and batch normalization parameters [5,10,17]; max pooling
is usually employed to decimate the feature map [18]. The computing procedures for the
fully connected blocks can also be described by that shown in Figure 1 with the unity
spatial dimensions.
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Figure 1. Conventional procedure for computing each block composing the BCNN inference process,
where the input and output feature maps and weights are multi-dimensional tensors in which each
element is represented by a single bit.

Several previous schemes can be employed to perform the procedure efficiently by
skipping operations.

• Threshold-based operation skipping [8,10]: The partial sum monotonically increases
as calculated by accumulating the non-negative results of the XPOP operations. There-
fore, the resulting bit can be determined immediately after the partial sum is greater
than a threshold, and the remaining operations can be skipped.

• Pooling-based operation skipping [8,10]: Max pooling can be performed based on the
logical OR operations for the binarized elements within a window [19]; hence, the bit
resulting from the window can be determined immediately after any element within
the window is determined to be 1, and the operations involved in computing the other
elements can be skipped.

• Boundary operation skipping [8]: The operations with the zeros padded off the
boundaries of the input feature map to maintain the size across the convolution can
be skipped by trimming the receptive fields.

3. Proposed Processor: TORRES
3.1. Processing Flow

TORRES is designed to focus on efficient processing of each block. Algorithm 1 delin-
eates the processing flow, where the subscripts index the elements in a tensor, range(0, a)
is the tuple (0, 1, · · · a− 1), and C ? D is the Cartesian product of the two tuples C and D,
that is, ((a, b)|a ∈ C, b ∈ D). In notating the multi-dimensional tensors, the dimensions are
arranged in the order of the horizontal, vertical, input, and output channels. The weight
is a binary tensor, whose shape in each input channel is a square of the size k × k. The
processing flow is output-stationary [20], where the results of the XPOP operations with
the α-bit vectors are accumulated to the partial sum λ through iterations, as described
by Line 14. Iγ+u,δ+v,αt···αt+α−1 and Fu+b k

2 c,v+b
k
2 c,αt···αt+α−1,d are the vectors of α elements

located through the input channels in I and F, respectively, where a · · · b denotes the vector
composed of the values from a to b, inclusively, a ≤ b, and b·c represents the floor function.
As for the dimension sizes, w and h are considered integer multiples of s and c and c′

are considered integer multiples of α, without loss of generality. The threshold-based
and pooling-based operation-skipping schemes [8,10] are implemented as described by
Lines 15–17, where the loop is terminated immediately after the resulting bit is determined.
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The boundary operation-skipping scheme [8] is implemented by trimming the receptive
field and biasing λ initially, as described by Lines 11–12, where

λbias = −
(

min
(

h− δ− 1,
⌊

k
2

⌋)
+ min

(
δ,
⌊

k
2

⌋)
+ 1

)
·(

min
(

w− γ− 1,
⌊

k
2

⌋)
+ min

(
γ,

⌊
k
2

⌋)
+ 1

)
· c,

(1)

Q = range
(
−min

(
γ,

⌊
k
2

⌋)
, min

(
w− γ− 1,

⌊
k
2

⌋)
+ 1

)
?

range
(
−min

(
δ,
⌊

k
2

⌋)
, min

(
h− δ− 1,

⌊
k
2

⌋)
+ 1

)
.

(2)

Here, min(·) represents the minimum function. The details how the expressions have
been formulated as above can be found in [8].

The processing flow is enhanced by another novel operation-skipping scheme. In
the BCNN inference process, features are represented in a two-dimensional vector in each
channel, so called the feature map. Each feature map can be considered a kind of images,
in which adjacent elements are correlated to each other to present some structures together.
Such correlations between the data located closely are known as the spatial locality in a
feature map. Given with an element that has been determined to be a certain bit, we can
estimate the relative order of the likelihoods of its neighboring elements to be this bit
according to the distances from them to this element based on the spatial locality. The
proposed scheme takes the spatial locality into account for skipping operations using two
techniques: compute ordering and zero prediction.

The compute order in a pooling window is determined to find any element of 1 as
early as possible with the aim of skipping more operations by the pooling-based scheme.
The spatial locality considered by the adjacent window on the immediate left of the current
window is exploited for this purpose. Figure 2 illustrates the concept of this technique. If
the bit resulting from the adjacent window is 1, the elements located close to the element of
1 in the adjacent window are first computed. This is because they are more likely to be 1’s
than the others, based on the spatial locality. If the bit resulting from the adjacent window
is 0, the elements located far from the adjacent window are computed first. This is because
they are relatively less likely to be 0’s than the others (i.e., more likely to be 1’s), based on
the spatial locality. Figure 3 illustrates the compute order for the pooling window of size
2× 2. Line 6 in Algorithm 1 describes the compute ordering based on the spatial locality
considered by the bit resulting from the adjacent window and its location therein, which
are represented by Ox−1,y,d and ρd, respectively.

With the compute ordering technique applied, if some elements within a window have
already been determined to be 0’s, the other remaining elements are likely to be 0’s; so that
the operations involved in computing them can be skipped effectively by predicting the
resulting bit to 0. Such prediction may become more accurate if the bit resulting from the
adjacent window is also 0. Figure 4 illustrates the concept of this technique. Here, the bit
resulting from the adjacent window is 0 and τ elements in the current window have already
been determined to be 0’s, where the window size is s× s and τ ∈

{
1, · · · , s2}. Since the

s2 − τ elements remaining in the current window are located between the elements of 0’s
belonging to the two adjoining windows, they are likely to be 0’s based on the spatial
locality, as illustrated in the figure. Therefore, the resulting bit can be predicted to be 0, and
the remaining operations can be skipped. Lines 19–21 in Algorithm 1 describes the zero
prediction, where the number of the elements that have been computed within the window,
denoted by θ, is compared with τ.
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Figure 3. Compute order for each case in the pooling window of size 2× 2.
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Algorithm 1 Block processing flow in TORRES, where B , {0, 1}, and N and Z are the
natural and integer number sets, respectively

Input: input feature map I ∈ Bw×h×c, weight F ∈ Bk×k×c×c′ , pooling window size s ∈ N ,
threshold T ∈ Z c′ , operation-skipping parameters η ∈ N and τ ∈

{
1, · · · , s2}

Output: output feature map O ∈ B w
s ×

h
s×c′

1: for (x, y) ∈ range(0, w
s ) ? range(0, h

s ) do . Loop 0: O (→↓)
2: for d ∈ range(0, c′) do . Loop 1: O (↗)

3: Ox,y,d ← 0

4: S← range(0, s) ? range(0, s)

5: if x > 0 then

6: Reorder S based on the spatial locality with Ox−1,y,d and ρd (e.g., Figure 3 for
the 2× 2 pooling window)

7: θ ← 0 . θ: no. elements computed within the pooling window

8: for (m, n) ∈ S do . Loop 2: pooling window

9: ρd ← (m, n) . ρd: location within the window in the d-th channel

10: (γ, δ)← (sx + m, sy + n)

11: λ← λbias . Bias λ initially [8]

12: for (u, v) ∈ Q do . Loop 3: receptive field in I(→↓); possibly trim the ranges
of (u, v) [8]

13: for t ∈ range(0, c
α ) do . Loop 4: receptive field in I(↗)

14: λ← λ + 2Iγ+u,δ+v,αt···αt+α−1 � Fu+b k
2 c,v+b

k
2 c,αt···αt+α−1,d . XPOP op. for

the subvectors
15: if λ > Td then

16: Ox,y,d ← 1

17: Terminate Loop 2 and go to Line 3

18: θ ← θ + 1

19: if (η is 1 or x%η < η − 1), x > 0, θ ≥ τ, and Ox−1,y,d is 0 then

20: Ox,y,d ← 0

21: Terminate Loop 2 and go to Line 3

The remaining (s² − τ) elements are likely to be 0's, 

so the resulting bit from the window is predicted to be 0.

τ elements have been 

determined to be 0's.

0

0 0

0 0

0

0

ss

ss

Bit 0 has been resulting from the adjacent window.

Current window

. . .. . .

. 
. 
.

. 
. 
.

Figure 4. Zero prediction technique.

It is worth noting that the prediction relies on the bit resulting from the adjacent
window, which could also have been a predicted one. Thus, a misprediction could prop-
agate through windows. To limit the propagation of misprediction, the prediction is not
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performed for the last window for each series of η windows with η > 1, as described by
Line 19 in Algorithm 1, where % represents the modulo operation.

Noteworthy remarks are followed.

• To find the spatial locality, the proposed scheme is designed to consider only one
adjacent window located to the immediate left of the current window. According to the
processing flow in Algorithm 1, this window corresponds to the previous window that
has been processed just before the current window for the feature map in a channel. If
more windows neighboring the current window were considered, the locality could
be found more meticulously. However, it may incur a substantial complexity to find
the spatial locality by considering more windows, which may lead to a prohibitive
resource overhead for the implementation.

• In the compute ordering technique, the ordering complexity increases with the window
size. Therefore, the resource overhead may be considerable for the implementation of
the technique to support larger windows. However, in practical BCNN models, such
as those presented in [3,14,18,19], the pooling window size is not usually so large since
there may be a drastic loss of features through a large pooling window. The ordering
for such a small window as illustrated in Figure 3 involves low complexity with only
a few cases.

• There are two parameters of the zero-prediction technique: τ and η. Configured
for each block-processing, these parameters can be used to control the effects on the
inference results as well as the number of operations to be skipped. More specifically,
configuring them to smaller values results in a greater deviation of the inference results
from those obtained without applying the technique of skipping more operations.

The BCNN models can be trained using a regularization technique to skip more
operations. If more elements were determined to be 0’s in the output feature maps, we
would have fewer opportunities for skipping operations. This is because the threshold-
based and pooling-based schemes can skip operations with respect to the elements to be 1’s.
Motivated by this, the loss to be minimized by the training process is modified by adding a
regularization term to penalize such situations that there are many 0’s in the output feature
maps, as expressed below.

L + ω ·∑i∈{0,··· ,N−1}∑(x,y,z)∈U(i)

(
1−O(i)

x,y,z

)
, (3)

where L is the conventional loss (e.g., cross-entropy loss in the classification tasks), O(i)
x,y,z is

the bit located at (x, y, z) in the output feature map for the i-th block, N is the number of
the blocks, U(i) is the set of valid locations in the output feature map for the i-th block, and
ω is the scaling factor for the regularization term.

3.2. Microarchitecture

The microarchitecture is designed to process each block efficiently according to the
flow in Algorithm 1. Figure 5 shows the five stages of the processing pipeline, which can
execute each iteration per cycle in the innermost loop in Algorithm 1 for α = 128. Stage 1
generates the addresses for accessing the memories storing the thresholds, features, and
weights with the counter values corresponding to the loop variables in Algorithm 1. Stage 2
reads the data from the memories. Stages 3 and 4 carry out the XPOP operation with the
vectors of 128 elements read from the memories. The summation of the bitwise XNOR
operation is first compressed to a carry-save form in Stage 3 and then accumulated to the
register storing the partial sum in Stage 4. The resulting bit is determined based on the
partial sum with threshold. The shift-register in Stage 4 buffers the resulting bit and its
location within the pooling window in the channel direction. Stage 5 writes the resulting
bits stored in the shift register to the memory.
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Figure 5. Processing pipeline for Algorithm 1, where CMP stands for a comparator and the variables
correspond to those in Algorithm 1. The control signals have been colored green.

The proposed operation-skipping scheme is implemented efficiently without consid-
erable resource overhead. The supported pooling window size is determined to 2× 2 by
considering the structures of the practical models, as discussed in the previous subsection.
The compute ordering technique is realized by reordering the counter values (m, n) based
on the locality before using them for address generation, where the reordering is carried out
by looking up the small table. The operation skipping by the zero-prediction technique is
realized by controlling the counters with the related conditions, which include that induced
by the comparison of τ and θ. The locality is considered by the bit resulting from the
adjacent window and its location therein, which are stored in and retrieved from the shift
register in Stage 4. The location is represented by a single bit because it is only necessary to
distinguish whether the resulting bit is located at the upper or lower part in determining
the compute order for the pooling window of size 2× 2, as illustrated in Figure 3. It should
be noted that the additional components employed to implement the proposed scheme do
not lie in the critical path highlighted in Figure 5.

The addresses for accessing the memories are efficiently generated from the indices of
the elements in the tensors. Address generation depends on how the elements are ordered
in the contiguous regions of the memories. The dimensions of the weights and features
can be considered powers of two without loss of generality except the spatial dimensions
of the weights; they are usually odd for realizing symmetric shapes [3,18,19]. Hence, the
address generation for the weight memory cannot be carried out by simply concatenating
the indices, while the address generation for the feature memories can be carried out
so. For TORRES, the ordering type for the weight elements are determined carefully so
that the dimensions of non-power-of-two sizes (i.e., spatial dimensions) are in the major.
Table 1 shows the ordering type for the weight elements in TORRES, along with the two
of traditional ordering types. Here, the channel dimensions, indexed by i(C) and i(C′), are
powers of two while the spatial dimensions, indexed by i(W) and i(H), are not. The input
and output channel dimensions are c and c′, respectively, and the spatial dimensions are
k, according as Algorithm 1 describes. The ordering type in TORRES facilitates address
generation by concatenating i(C) and i(C′) with that calculated by i(W) and i(H), according
to the layout shown in Table 1. This is more efficient than the traditional ones in terms
of the computational complexity. Figure 6 shows the internal structures of the address
generators. They contain a few of the barrel shifters and logical OR gates to concatenate
the indices in dimensions of variable sizes. The address generator for the weight memory
contains one multiply-accumulate (MAC) unit to carry out the calculation with the indices
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in the dimensions of non-power-of-two sizes. The shift amounts and scaling factor for
the address generators are given by taking account of the shapes of the tensors for each
block processing.

Table 1. Weight address generation.

Element ordering a i(W) → i(H) → i(C) → i(C′)
(Traditional [21–23])

i(C) → i(W) → i(H) → i(C′)
(Traditional [8,9,24])

i(C) → i(C′) → i(W) → i(H)

(TORRES)

Address layout b

k2·i(C' )+k·i(H )+i(W ) i(C )

k·i(H )+i(W ) i(C' ) i(C )

k2c·i(C' )+k2·i(C )+k·i(H )+i(W ) k2·i(C' )+k·i(H )+i(W ) i(C )

k·i(H )+i(W ) i(C' ) i(C )

k2c·i(C' )+k2·i(C )+k·i(H )+i(W ) k2·i(C' )+k·i(H )+i(W ) i(C )

k·i(H )+i(W ) i(C' ) i(C )

k2c·i(C' )+k2·i(C )+k·i(H )+i(W )

Computational complexity c Three MACs Two MACs One MAC
a The indices in the spatial dimension are denoted by i(W) (horizontal) and i(H) (vertical) and those in the input and
output channel dimensions are denoted by i(C) and i(C′). The right ones are major to the left ones in the ordering. b

The sizes of the fields are determined by the sizes of the dimensions. c k and c are constant for each block processing,
so are k2c and k2; the complexity has been thus estimated given with every of coefficients precomputed.
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Figure 6. Address generators for the (a) feature and (b) weight memories, respectively, where�
stands for a barrel shifter.

Some remarks regarding other miscellaneous parts of the microarchitecture are followed.

• The other previous operation-skipping schemes are implemented as presented in
our previous work [8]. The threshold-based and pooling-based operation-skipping
schemes are implemented by controlling the counters to terminate the loop if the
related conditions are satisfied. The boundary operation-skipping scheme is imple-
mented by biasing the partial sum and changing the range of (u, v), as expressed
by Lines 11 and 12 in Algorithm 1, respectively, for which dedicated components
(the receptive-field range calculator and partial-sum bias calculator) are incorporated.
The implementation details of these components are omitted here for brevity; the
interested readers can be referred to our previous work.

• The partial sum is initialized by negating the value calculated by adding the threshold
and bias that corresponds to the the receptive field size. The comparison of the partial
sum to the threshold is thus efficiently implemented by picking the sign of the partial
sum with no explicit comparison.

• Since the first block in the BCNN inference process usually has the input feature
map with multi-bit elements, it has to be processed in the way that for the binary-
weight network [2], differently from those for the other blocks. To support this kind
of processing, the microarchitecture is designed so as to carry out the summation of
the single-bit or multi-bit elements, resulting from the bitwise XNOR operations, as
shown in Figure 5.

• The last block in the BCNN inference process produces the soft results, going to be
used for the post-processing (e.g., calculating the class probabilities in the classification
tasks). The summation result stored in the λ register corresponds to each of the soft
results, which can be stored directly to the memory, as shown in Figure 5.

3.3. Prototype Inference System

A prototype inference system is developed in an FPGA by integrating all the essential
components. Figure 7 shows the overall architecture of the inference system. TORRES is
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implemented by integrating two cores, designed based on the processing pipelines shown
in Figure 5. As in our previous work [9], the two cores in TORRES run the inference process
cooperatively by computing the output feature map in opposite directions from each end
until they meet at the same location. (One of the cores works according to the processing
flow, opposite to that presented in Section 3.1; accordingly, it considers the window on
the immediate right of the current window to find the spatial locality.) Though one of the
cores computes more elements in the output feature map by skipping more operations than
the other core; that is, processes more workload effectively, they are balanced in working
time, as illustrated in Figure 7. The two cores share the memories, employed as scratch-pad
buffers, storing the thresholds, features, and weights for processing part of a block. They
have been implemented by employing dual-port block random-access memories (BRAMs).
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T

Parameters 
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...

Double buffering

 S

 S
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M M
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Figure 7. Prototype inference system, where PS, PL, M, and S stand for the MCU-based processing
system, programmable logic, master, and slave interfaces, respectively.

The MCU fulfills controlling the components to realize the overall inference flow.
The control and status registers (CSRs) as well as memories associated with TORRES are
mapped to a region in the address space of MCU. A Linux operating system is ported to
the MCU-based processing system, and a Python programming interface is provided to
control the components, so that the functionality can be verified conveniently with high
productivity. Through the web-based interactive interface, the verification is conducted
from a remote computer.

The inference process is performed on a block-by-block basis, as illustrated in Figure 8.
The n-th block is processed by being decomposed into Mn parts, where n ∈ {0, · · · , N− 1},
Mn ≥ 1, and N is the number of the blocks. For processing each part, the direct memory
access (DMA) loads the weights and thresholds, which are required for the processing, from
the external dynamic random-access memory (DRAM) to the corresponding memories
inside TORRES. Configured with the parameters related to tensor shapes and operation-
skipping schemes, TORRES processes the part. The data loading by DMA can overlap
in time with the processing by TORRES because the threshold and weight memories in
TORRES are designed to support the double-buffering technique, as described in Figure 7.
After processing every block, the inference process is finalized by producing the results
stored in the feature map memory in TORRES, which may be used for the post-processing
by MCU.
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0-th block

Time

(0,0)

(0,0)

(0,1)

(0,M0−2)

(0,M0−1)

(0,M0−1)

(1,0)

(N−1)-th block

(N−1,0)

(N−1,0)

(N−1,1)

(N−1,MN−1−2)

(N−1,MN−1−1)

(N−1,MN−1−1)(N−2,MN−2−1)

TORRES (Processing the j-th part in the i-th block)

MCU (Controlling)

DMA (Data-loading for the j-th part in the i-th block)

MCU (Post processing)

(i,j)

(i,j)

Figure 8. Overall flow for the BCNN inference process composed of N blocks, where the n-th block
is processed by being decomposed into Mn parts.

4. Results and Evaluation

The prototype inference system based on TORRES has been synthesized for a 28 nm
FPGA using Xilinx Vivado v2022.1. The entire system has been successfully fitted into a
device; its resource usage is 11.8 K LUTs, 16.1 K flip-flops (FFs), and 384 K-bit BRAMs; the
resource usage of TORRES itself is 2.31 K LUT, 0.9 K FFs, and 384 K-bit BRAMs, where one
LUT corresponds to a six-input look-up table. No digital signal processors (DSPs) are used
for synthesizing TORRES since even the MAC unit necessitated for the address generator
for the weight memory has been implemented efficiently using LUTs because of the low
bitwidth. (Note that DSPs are usually instantiated to synthesize general MAC units in
FPGAs.) The maximum operating frequency and power consumption of TORRES for the
synthesized design were estimated to be 211.1 MHz and 95 mW, respectively. Under the
prototype inference system, the functionality of TORRES has been verified for practical
inference tasks. Figure 9 shows the environmental setup for functional verification. A video
demonstrating the functionality is provided through the webpage (https://abit.ly/torres
(accessed on 13 October 2022)).

Inference results

from TORRES Ethernet 

connection

Verification frontend (Web-based)

Target images

Prototype inference system in 

FPGA

Status of TORRES

Figure 9. Environment setup for the functional verification.

The effects of the operation-skipping scheme proposed for TORRES have been analyzed
for the practical inference tasks using CIFAR10 [25] and SVHN [26] datasets. (TORRES has
been developed to perform the inference process based on XNOR-Net as stated in Section 2.
Though XNOR-net is hardware-friendly as can be decomposed into several blocks of the
consistent structure of binary-input and binary-output, it is known that the performance
degradation from that achievable by the full-precision models is considerable in particular
for the large-scale tasks [2]. Therefore, XNOR-Net is practically useful for the small-scale
tasks; hence, most of the previous studies [7,8,13,14,17] presenting the efficient processors for

https://abit.ly/torres
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XNOR-net, evaluated the efficiency mainly for small-scale tasks, such as CIFAR10 classifi-
cation task. Here, this study evaluates the performance of TORRES under the CIFAR10 as
well as SVHN classification tasks.) Table 2 presents the BCNN models employed for these
tasks. The proposed scheme can be applied by configuring the parameters (η and τ) for
each block with pooling. The analysis has been conducted using the two parameter sets in
Table 2, where Parameter Sets A and B are accuracy-oriented and operation-skipping-oriented,
respectively. To find the effects more elaborately, the analysis has also been conducted without
any operation-skipping scheme and with the previous schemes in [8]. Figure 10 presents the
analysis results for the operation skipping schemes. The results are the averaged ones for the
test data sets. The last two results in each figure have been obtained for the model trained
with the proposed regularization technique with ω > 0.
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Figure 10. Cycle count and accuracy for the (a) CIFAR10 and (b) SVHN classification tasks. The
second results in each figure have been obtained based on the previous operation skipping tech-
niques [8].
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Table 2. BCNN models and the parameters for the proposed operation skipping scheme used for
the evaluation.

Target Task
Model Structure Parameter Set A Parameter Set B

Block a (w, h, k, c′, s) (η, τ) (η, τ)

CIFAR10 classification c

CV1 (32, 32, 3, 128, 1) - -
CV2 (32, 32, 3, 128, 2) (1, 4) b (1, 3)
CV3 (16, 16, 3, 256, 1) - -
CV4 (16, 16, 3, 256, 2) (1, 3) (1, 3)
CV5 (8, 8, 3, 512, 1) - -
CV6 (8, 8, 3, 512, 2) (1, 3) (1, 2)
FC1 (1, 1, 1, 1024, 1) - -
FC2 (1, 1, 1, 1024, 1) - -
FC3 (1, 1, 1, 10, 1) - -

SVHN classification

CV1 (32, 32, 3, 128, 1) - -
CV2 (32, 32, 3, 128, 2) (2, 3) (1, 2)
CV3 (16, 16, 3, 128, 1) - -
CV4 (16, 16, 3, 256, 2) (2, 3) (1, 2)
CV5 (8, 8, 3, 256, 2) (2, 3) (2, 1)
FC1 (1, 1, 1, 128, 1) - -
FC2 (1, 1, 1, 10, 1) - -

a CVn and FCn stand for the n-th convolutional and fully-connected blocks, respectively. b The zero-prediction
technique is not applied effectively by configuring τ to s2. c The model for the CIFAR10 task has the same structure
of that widely used for the evaluation of the BCNN inference processors in previous studies including [8,17].

The results in Figure 10 show that the proposed scheme skips operations significantly
while maintaining the accuracy. In the figure, less cycle counts reflect more operations have
been skipped. With Parameter Set B, the proposed scheme reduces the cycle counts taken to
perform the CIFAR10 and SVHN classification tasks by up to 54.5% and 54.8%, respectively,
and the reduction rates are further increased up to 60.5% and 75.2%, respectively, for the
two tasks by the regularization technique. The overall cycle counts are reduced by 39.8%
and 58.4% for the CIFAR10 and SVHN classification tasks, respectively. It can be seen
that the cycle count reduction in the SVHN classification task is higher than that in the
CIFAR10 classification task. This is because the ratio of the number of the blocks, which
can be performed efficiently with the proposed locality-aware operation-skipping, to the
total number of blocks is higher for the model employed to perform the SVHN task in
this experiment; in addition, the regularization technique is applied with a higher scaling
factor. The cycle count reduction by the proposed scheme is considerably high, even when
assessed relatively to the cycle counts reduced by the schemes in [8]. The degradation in
accuracy is negligible despite such a significant reduction in the cycle counts.

It is interesting to find the tradeoff between the cycle count and accuracy in Figure 10.
When the parameter set is configured so as to be operation-skipping-oriented (Parameter
Set B), the cycle counts are less than those obtained when the parameter set is configured so
as to be accuracy-oriented (Parameter Set A); however, the accuracy degradation is slightly
higher. More importantly, TORRES has been designed to provide such tradeoff between
them with the configurability of the parameters in runtime. The inference speed and cycle
counts are in inverse proportion, so are the efficiency and cycle counts.

The implementation results of TORRES are summarized in Table 3, along with those of
the previous BCNN inference processors implemented in the FPGAs of the same technology
node. TORRES shows a lot higher inference speed than our previous work [8]. Such a
higher inference speed is attributed to not only the efficient processing flow based on
the proposed operation-skipping scheme but also the efficient microarchitecture. It is
notable that the resource usage of TORRES is not so higher than that of [8] as the proposed
operation-skipping scheme has been implemented without much resource overhead. The
processors presented in [7,13,14] show higher inference speeds than TORRES; however,
they are not as resource-efficient as TORRES because their resource usages are much higher
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than that of TORRES. The resource efficiency is a metric to show how fast the inference can
be processed per each unit logic element in the implementation. This metric can be derived
by the inference speed divided by the resource usage as presented in [7,8,13,14,17]. With the
high inference speed and low resource usage, TORRES exhibits 1.45 times higher resource
efficiency than the state-of-the-art BCNN inference processors. Notwithstanding the high
resource efficiency, TORRES achieves comparable accuracy for the classification task.

Table 3. Implementation results of the BCNN inference processors in FPGAs.

BCNN Inference
Processor

TORRES a

(with Param. Set A)
TORRES a

(with Param. Set B) [7] [8] [13] [14] [17]

FPGA device b

(Part number)
Zynq®-7000
(XC7Z020)

Zynq®-7000
(XC7Z020)

Zynq®-7000
(XC7Z020)

Cyclone®V
(5CSXFC6D6)

Zynq®-7000
(XC7Z045)

Zynq®-7000
(XC7Z020)

Zynq®-7000
(XC7Z020)

Inference speed
(GOP/s) c 255.2 291.2 722.0 83.0 13,389.0 329.0 208.0

Resource usage
(KLUT) d 2.31 2.31 29.60 2.00 153.86 14.5 46.9

Energy eff.
(TOP/J) 2.69 3.07 0.22 0.94 1.23 0.14 0.04

Resource eff.
(MOP/s/LUT) 110.49 126.06 24.39 41.45 87.02 22.72 4.43

Classification acc.
(%) e 88.04 87.47 88.61 88.88 88.70 81.80 88.18

a The parameter sets are described in Table 2. b All the devices used to implement the processors in the table are
in the technology nodes of 28 nm, so that the direct comparisons of the results are viable. c Each binary operation
has been counted by one OP. d Each six-input look-up table has been counted by one LUT. e This is the accuracy
for the CIFAR10 classification task.

5. Conclusions

A resource-efficient processor for BCNN inference is proposed. The processing flow
of the proposed processor is devised based on a novel operation-skipping scheme. Con-
sidering the spatial locality inherent in feature maps, the proposed scheme reorders the
computation and predicts the results, thereby skipping some operations involved in com-
puting the elements within the pooling windows. A regularization technique is also
presented to skip more operations. The microarchitecture of the proposed processor is de-
signed to actualize the proposed skipping scheme without a significant resource overhead.
To efficiently generate addresses, the ordering types of the elements in the memories are
carefully determined. A fully integrated inference system based on the proposed processor
has been implemented in a 28 nm FPGA. Its functionality has been verified thoroughly for
practical inference tasks. The resource efficiency of the proposed processor is as high as
126.06 MOP/s/LUT. To the best of our knowledge, this work is the first BCNN inference
processor that exploits the spatial locality to skip operations. Further studies may follow
this work to improve resource efficiency more significantly by enhancing how the spatial
locality is found and how it is considered for skipping operations.
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