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Abstract: The introduction and application of the Vision Transformer (ViT) has promoted the develop-
ment of fine-grained visual categorization (FGVC). However, there are some problems when directly
applying ViT to FGVC tasks. ViT only classifies using the class token in the last layer, ignoring the
local and low-level features necessary for FGVC. We propose a ViT-based multilevel feature fusion
transformer (MFVT) for FGVC tasks. In this framework, with reference to ViT, the backbone network
adopts 12 layers of Transformer blocks, divides it into four stages, and adds multilevel feature fusion
(MFF) between Transformer layers. We also design RAMix, a CutMix-based data augmentation
strategy that uses the resize strategy for crop-paste images and label assignment based on attention.
Experiments on the CUB-200-2011, Stanford Dogs, and iNaturalist 2017 datasets gave competitive
results, especially on the challenging iNaturalist 2017, with an accuracy rate of 72.6%.
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1. Introduction

Image classification is a classic problem in computer vision, whose goal is to categorize
images [1]. Fine-grained visual categorization (FGVC) refers to more refined subcategory
division on the basis of basic categories, such as distinguishing types of birds and dogs,
which is essentially intra-class classification [1–3]. The problem is to achieve a more detailed
division of the categories obtained in the traditional classification problem [4,5].

FGVC has common research needs and application scenarios in fields such as smart
agriculture and unmanned retail. Therefore, the question of how to design an accurate and
efficient FGVC algorithm is of great significance [6]. Compared with ordinary image classi-
fication tasks, the image data seen by FGVC have similar appearances and features, and
there is interference, such as posture, illumination, perspective, occlusion, and background,
resulting in small inter-class variations and large intra-class variations. These difficulties
make FGVC a challenging research task [7–9].

Feature extraction is a key factor in determining the accuracy of image classification.
Traditional FGVC methods are based on manually extracting image features [9]. However,
the artificial feature description ability is limited, and the classification effect is not good.
With the rapid development of deep learning, features extracted by neural network training
have stronger predictive ability than those extracted manually, which promotes the rapid
development of FGVC [10,11].

The self-attention neural network Transformer has become the object of much research
in the CV field. The Vision Transformer (ViT) [12] makes full use of the modeling ability of
the Transformer’s attention mechanism by dividing an image into multiple patch tokens,
and it promotes the development of vision tasks such as image classification [12,13]. A
number of FGVC algorithms based on ViT, such as TransFG, AFTrans, and FFVT, have also
been produced [14–16]. These methods improve the model structure to different degrees,
to effectively improve the performance of FGVC algorithms. Nonetheless, there are issues
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to consider when applying ViT to FGVC tasks. ViT only uses the class token of the last
layer for classification, and the deep class token is obtained based on all image patches
in the self-attention mode, so it pays more attention to global information. In the FGVC
task, landmark details and parts are the key information for classification. According to
our experiments, class tokens can extract different levels of information features, and these
are complementary. Therefore, better utilization of these levels of information in the FGVC
task will allow the model to obtain more comprehensive information from the image for
final prediction.

For the model to grasp more detailed information that is helpful for classification,
instead of only the most discriminative information, CutMix data augmentation covers
the image with part of another image, so that the model can discover more useful infor-
mation [17,18]. However, this brings new problems. Random cropping and pasting of
background image patches that do not contribute to classification will lead to a loss of
object information and incorrect label assignment [18–22].

We therefore propose a ViT-based multilevel feature fusion vision transformer (MFVT)
for the FGVC task. In addition to a ViT backbone, multilevel feature fusion (MFF) is in-
cluded. To solve the problem of possible object information loss and label errors due to
CutMix, referring to ResizeMix and TransMix, we design RAMix, a CutMix data enhance-
ment strategy based on Resize for image cropping and pasting, and a Transformer-based
attention mechanism for label assignment. This paper makes the following contributions.

• The MFVT algorithm has a backbone network that is consistent with ViT. The 12-layer
Transformer block divides it into four stages, which require no additional labeling in-
formation such as bounding boxes, so as to achieve fine-grained visual categorization.

• The MFF module extracts the features of the last block output of different stages in
the backbone network, and uses a lightweight method for fusion, introducing visual
information at different levels and effectively improving feature expression.

• RAMix data augmentation reasonably mixes images, and the attention mechanism
in ViT effectively guides image label assignment without introducing additional
parameters.

2. Related Work

Fine-grained visual categorization has been extensively explored in convolutional
neural network (CNN)-based methods [23]. Early work such as Part-Based R-CNN and
Mask-CNN relied on bounding boxes and part annotation to locate and distinguish re-
gions, but this requires extensive manual annotation, which limits practical application.
Subsequent work used only image labels, with an attention mechanism to localize key
regions in a weakly supervised manner. Typical methods include RA-CNN, MA-CNN, and
DP-Net [2,24]. There is also a focus on enriching the feature representation to achieve better
classification results. For example, in Bilinear-CNN [25], two networks coordinate with
each other for overall and local detection and feature extraction with high accuracy.

2.1. ViT-Based Image Classification

The Vision Transformer (ViT) first realized the application of the Transformer to image
classification. Experimental results have shown that the visual field does not necessarily
rely on the CNN, and inputting the image patch sequence into the Transformer can also
achieve a good image classification effect. ViT introduced the Transformer to the visual
field.

Due to the excellent performance of ViT, many Transformer-based image classification
models have been proposed, improving ViT from perspectives in five categories [26]:
(1) Transformer-enhanced CNN, where a Transformer block is used to replace part of
the convolution module in a convolutional neural network, e.g., VTs, BoTNet; (2) CNN-
enhanced Transformer for image classification enhances the Transformer and accelerates
its convergence with convolutional biases, e.g., DeiT, ConViT; (3) Transformer image
classification with local attention enhancement adapts the image patch structure through a
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local self-attention mechanism, e.g., TNT, Swin Transformer; (4) Hierarchical Transformer
image classification applies similar structures to Transformers, following a hierarchical
CNN, e.g., CvT, PVT; (5) Deep Transformer image classification enables the network to learn
more complex representations by increasing the depth of the model, e.g., CaiT, DeepViT.

2.2. Fine-Grained Visual Categorization Based on ViT

TransFG is said to be the first method to validate the effectiveness of visual Transform-
ers on FGVC tasks. With the introduction and application of ViT, several ViT-based FGVC
methods have been proposed, e.g., TransFG, AFTrans, FFVT, and R2-Trans.

In TransFG [14], a region selection module (PSM) integrates all the original attention
weights of the Transformer into an attention map to guide the efficient and accurate selection
of discriminative image patches and compute the relationship between them. Repetition
loss encourages multiple attention heads to focus on different regions, and contrastive
loss is applied to further increase the distance between feature representations of similar
subclasses. FFVT extends ViT to large-scale FGVC and small-scale ultra-fine-grained visual
categorization, with a feature fusion visual Transformer that aggregates local information
from low-, mid-, and high-level tokens for classification. Mutual attention weight selection
(MAWS) selects a representative token on each layer and adds it as the input of the last
Transformer layer.

AFTrans [15] and RAMS-Trans [27] use the same strategy. The most discriminative
part of the image is extracted, and it is enlarged and re-input into the network for further
learning. The selective attention collection module (SACM) in AFTrans leverages the atten-
tion weights in ViT and adaptively filters input patches based on their relative importance.
Global and local multiscale pipelines are supervised by weight-sharing encoders, enabling
end-to-end training.

To learn local discriminative regional attention, the strength of attention weights is
used to measure a patch’s importance to the original image, and a multiscale recurrent
attention Transformer, RAMS-Trans, utilizes the Transformer’s self-attention force mecha-
nism to cyclically learn discriminative regional attention in a multiscale manner. The core
of the algorithm, the dynamic patch proposal module (DPPM), guides region enlargement
to integrate multiscale image patch blocks.

R2-Trans [28] adaptively adjusts the masking threshold by calculating the proportion of
high-weight regions in the segmentation, and moderately extracts background information
in the input space. An information bottleneck approach guides the network to learn a
minimum sufficient representation in the feature space. MetaFormer [10] is a simple,
effective method for the joint learning of vision and various meta-information, using meta-
information to improve the performance of fine-grained recognition, providing a strong
baseline for FGVC.

3. Method

On the whole, our work is mainly divided into two parts. First, for the FGVC task,
to extract more detailed image features, we designed a multilevel feature fusion module
to improve the ViT. Second, we designed a data enhancement method called RAMix to
enhance the network capability.

3.1. Algorithm Framework

Figure 1 shows the algorithm framework, which follows ViT and includes patch
embedding, a Transformer encoder, a multilevel feature fusion module, classification head
components, and data augmentation.
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Figure 1. Algorithm framework.

The patch embedding module blocks and transforms the image, and embeds the class
token and position. The backbone network is consistent with ViT, and includes 12 layers of
Transformer blocks for basic feature extraction. A lightweight feature fusion module, MFF,
further improves the expressiveness of features. Through parallel classification heads, the
final classification is obtained from the weighted average method of three classifications.

In the model training stage, starting from the data, referring to ResizeMix [21] and
TransMix [19], RAMix is based on Resize for image cropping and pasting, and a Transformer-
based attention mechanism is used for label assignment.

3.2. Backbone and MFF

The key challenge of FGVC is to detect discriminative regions that significantly con-
tribute to finding subtle differences between subordinate classes, which can be well met
for the multi-head self-attention MSA mechanism in ViT. Deep MSA pays more attention
to global information, while FGVC tasks require more attention to detail. Therefore, we
propose multilevel feature fusion to ensure the use of high-level global information while
obtaining mid- and low-level information. The backbone network and multilevel feature
fusion module are the core parts of the algorithm and are, respectively, shown in the left
and right of Figure 2.
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Figure 2. Backbone structure and multilevel feature fusion.

The backbone network is consistent with the original ViT. We use a division method
similar to Swin Transformer [13] to divide the 12-layer Transformer block into stages 1–4.
Stages 1, 2, and 4 have two blocks, and stage 3 has six blocks. The output of each stage
contains certain feature information, which is effective and complementary, and the fused
features have stronger expressiveness.
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The Transformer block is the basic unit of the backbone network. Figure 3 shows the
structure of two Transformer blocks connected in series.
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A Transformer block includes multi-head self-attention (MSA), multilayer perceptron
(MLP), and layer normalization (LN). The forward propagation of layer l is calculated as

z′l = MSA(LN(zl−1)) + zl−1 (1)

zl = MLP
(

LN
(
z′l
))

+ z′l (2)

and multi-head self-attention is calculated as

MSA(Q, K, V) = Concat(head1, . . . , headh)Wo (3)

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(4)

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (5)

where Q, K, and V refer to the query, key, and value, respectively; dk refers to the key vector
dimension; W refers to parameters when performing linear transformations on Q, K, and
V; and h is the number of heads. The Concat operation concatenates the outputs of multiple
heads.

Feature fusion combines features from different layers or branches, and often fuses
features of different scales to improve the deep learning performance. In the network
architecture, low-level features have a higher resolution and more detailed information,
and high-level features have stronger semantic information but a poorer perception of
details [16]. Their efficient integration is the key to improving the classification model.

After the basic features are extracted from the backbone network, a lightweight feature
fusion method is adopted. A consult feature pyramid (FPN) [29,30] in CNN, top-down
pathways, and horizontal connections are added to the network structure. As shown on
the right side of Figure 2, the last features of stages 4 and 3 are fused. We use three features
for classification from different layers: P4 is the output of stage 4, P3 is obtained by fusing
the output of stage 3 and P4, and P2 is obtained by fusing the output of stage 2 and P3.

3.3. Classification Head and Loss Function

The detection performance can be improved by combining the detection results of
different layers. Before the final fusion is completed, detection starts on the partially fused
layer; there will be multiple layers of detection, and the multiple detection results are finally
fused.
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Instead of using the output features of the last layer for classification prediction, we use
multilevel features and fuse the classification prediction results to obtain the final prediction.
As shown in Figure 4, we use three classification heads for classification prediction, and
each classification head consists of a fully connected layer.
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We obtained three different levels of features from MFF; we use three classification
heads to classify the three levels of features. Classification heads 1, 2, and 3 were classified
using features P4, P3, and P2, respectively, and the final classification result was obtained
by averaging the three classification results.

We use soft target cross-entropy as the loss function in each classification head,

lossh = − 1
N

N

∑
j=1

n

∑
i=1

(ylog(ỹ) + (1− y) log(1− ỹ)) (6)

where N is the number of samples, n is the number of categories, y represents the input
label, ỹ represents the prediction label, lossh is the loss function of headh, and h takes values
from 1 to 3.

To adjust the influence of the classification results of different levels on the final
classification, the overall loss function is the weighted average of three loss functions,

L =
1

α + β + γ
(αloss1 + βloss2 + γloss3) (7)

where α, β, and γ are weight parameters.

3.4. RAMix Data Augmentation

The Transformer has great expressive power, but, according to the experiments of ViT
and DeiT [17], the network needs a large quantity of data for model training. Hence, data
augmentation is an important part of model training, which can prevent overfitting and
improve model performance. We use CutMix data augmentation in the FGVC task, but the
random crop and paste operation adds no usefulness to the target image when the cropped
area is in the background, without object information. However, when labels are calculated,
they will be allocated according to the size ratio of the mixed images, resulting in the loss
of object information and label allocation errors. This has a greater impact on the use of
small datasets for training in the FGVC task. We design RAMix to address this problem, as
Figure 5 shows.

In the training set, images A and B are randomly selected, and x ∈ RW×H×C and y are
used to represent the training image and its label, respectively. The goal is to generate a
new training sample (x̃, ỹ) by combining training samples (xA, yA) and (xB, yB).
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Image A is randomly cropped to Wµ× Hµ through the crop value µ and is reduced to
a small image block PA by the scale ratio τ and the resize operation, i.e., PA = T(xA), where
T() represents the reduction operation, τ ∼ U(min, max), which means that τ is evenly
distributed between min and max, and minmax denotes the minimum and maximum of the
image block PA. To ensure that the image block contains as many objects as possible, and
the objects are not too small to be distinguished, we set µ = 0.7, min = 0.25, and max = 1.
This means that the minimum image block PA is a quarter of the size of the input image,
and the maximum of the PA is the same as the input image size.

Image block PA is pasted onto a random area RB of image B to generate a new image.

x̃ = Paste(PA , B, M) (8)

where M ∈ {0, 1}W×H is a binary mask representing location RB. Since scale ratios and
paste regions are obtained randomly, this mixing operation adds little cost.

The last step is to assign labels. Due to the different sizes of pasting areas, the occlusion
of the target in the original image will be different, as should the assignment of labels, so
we have improved the label assignment. We utilize the attention map A instead of the size
of the paste region to compute the mixing weight λ. Labels yA and yB of images A and B,
respectively, are mixed according to λ to obtain the label of the mixed image,

ỹ = λyA + (1− λ)yB (9)

The calculation of λ is guided by the attention map A and calculates the weights that
mix the labels of the two sample images,

λ = A·N ↓ (M) (10)

where A is the attention map from the class token to the image patch tokens, summarizing
which patches are most useful to the final classifier. N ↓ () denotes nearest-neighbor
interpolation down-sampling to transform the original M from HW to p pixels. In this
way, the network can learn to dynamically reassign the weights of labels for each data
point based on their responses in the attention map. An input that is better focused by the
attention map will be assigned a higher value in the mixed label.

4. Algorithm Verification

We performed multiple experiments on three datasets in a Linux environment, using
the PyTorch deep learning framework on an Nvidia 3090 GPU.
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4.1. Dataset and Experimental Details

We evaluated MFVT on the widely used fine-grained datasets iNaturalist 2017 [31],
CUB-200-2011, and Stanford Dogs [32]. Details are shown in Table 1.

Table 1. Statistics of three datasets.

Datasets Training Testing Category

iNaturalist 2017 579,184 95,986 5089
CUB-200-2011 5994 5794 200
Stanford Dogs 12,000 8580 120

In the preprocessing stage, we used the same training strategy for the relatively small
CUB-200-2011 and Stanford Dogs. The input image was resized to 600 × 600 and randomly
cropped to 448 × 448. For iNaturalist 2017, to reduce the training time, we resized images
to 400 × 400 and randomly cropped them to 304 × 304. Finally, random horizontal flipping
and RAMix data augmentation were employed for the three datasets.

We chose the SGD optimizer for training, with momentum = 0.9, weight decay = 5× 10−4,
and cosine annealing to adjust the learning rate. The initial learning rate was 0.03 for CUB-
200-2011 and Stanford Dogs, and 0.02 for iNaturalist 2017. The batch size for all three
datasets was 16. The parameters of weighted summation in the loss function were set to
α = β = 1, γ = 0.5.

4.2. Ablation Experiment

To evaluate the effectiveness and impact of MFF and two-level data augmentation, we
conducted ablation studies on the CUB-200-2011 dataset, and the same performance could
be observed on the other datasets.

To confirm the validity and complementarity of information at each level, we used
different layer classification heads to make final predictions and tried to use the features
of multiple stages for fusion. The results are shown in Tables 2 and 3. Experiments were
performed without RAMix data enhancement.

Table 2. Accuracy of different layers.

Layer Accuracy

Stage 4 (12th layer) 90.8
Stage 3 (10th layer) 89.9
Stage 2 (4th layer) 68.2
Stage 1 (2nd layer) 32.1

Table 3. Multilevel feature fusion ablation test.

Feature Fusion Layers Accuracy

None 90.8
Stage 4 + stage 3 91.2

Stage 4 + stage 3 + stage 2 91.3
Stage 4 + stage 3 + stage 2 + stage 1 91.2

From Table 2, we can see that even if only the class token of the fourth layer is used for
the final classification, an accuracy rate of more than 68% can be achieved, which means
that the class token of this layer has features that are effective for classification. It can be
seen from Table 3 that feature fusion significantly improves the performance of the model.
With the increase in the number of fusion layers, the performance is stronger, which shows
the effectiveness and complementarity of the features at each level. However, after merging
the features of the first stage, the accuracy of the model decreases. Combined with the
results in Table 2, we believe that the underlying features have more noise; hence, the
model cannot satisfactorily extract useful information.
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We used stage 4 + stage 3 + stage 2 for feature fusion, which resulted in a 0.5%
accuracy improvement and a 0.4% increase in computation due to the increased number of
classification heads, which we consider reasonable given the performance gain.

As shown in Table 4, we conducted experiments using MFF. Compared with the
original ViT, after simple CutMix data enhancement, the accuracy rate is improved, which
is consistent with the results in DeiT, but the improvement effect is not obvious. We used
RAMix data augmentation to further improve the accuracy, making it more efficient and
reliable.

Table 4. Accuracy of different data augmentation methods.

Method Accuracy

ViT 90.8
ViT + CutMix 91.1
ViT + RAMix 91.6

When using RAMix, the attention map is the most important point. We obtained this
in two ways: obtaining it from the last layer, and obtaining it from each layer and taking
the average. The experimental results of these two methods on the CUB-200-2011 dataset
are shown in Table 5, which shows little difference between them. To reduce the network
complexity and improve the training speed, we choose the first method, which is relatively
simple. The results of the complete ablation trial are shown in Table 6.

Table 5. Impact of different attention maps.

Method Attention Map Accuracy

MFVT Last layer 91.62
MFVT Average 91.59

Table 6. Overall ablation experiments.

Method Accuracy

ViT 90.8
ViT + MFF 91.3

ViT + MFF + RAMix 91.6

4.3. Comparison with State-of-the-Art Methods

We present experimental results on three datasets and compare our method with some
state-of-the-art algorithms. On the iNaturalist 2017 dataset, our method achieves the best
results with the same data preprocessing method, with a huge improvement of 0.9%. The
method performs competitively on CUB-200-2011 and Stanford Dogs.

iNaturalist 2017 is a large dataset for fine-grained image recognition. The pictures
feature visually similar species from around the world, captured in a wide variety of
situations. The images are acquired with different types of cameras, differ in image quality,
and have a large class imbalance, making them quite challenging. As shown in Table 7,
similarly to TransFG and RAMS-Trans, our ViT-based method far outperforms the CNN-
based method. Compared to the ViT baseline, we achieved a 3.9% improvement. Consistent
with TransFG and RAMS-Trans, our method uses ViT-B_16 as the backbone, and the image
input is 304; we achieve a 4.2% improvement compared to RAMS-Trans, and a 0.9%
improvement compared to TransFG using the overlapping strategy, which is better than all
SOTA methods, proving the effectiveness of our method.
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Table 7. Accuracy of different methods on iNaturalist 2017.

Method Backbone Accuracy

SSN ResNet101 65.2
Huang et al. InResNetV2 66.8
IncResNetV2 InResNetV2 67.3

TASN ResNet101 68.2

ViT ViT-B_16 68.7
TransFG ViT-B_16 66.6

TransFG&overlap ViT-B_16 71.7
RAMS-Trans ViT-B_16 68.5

AFTrans ViT-B_16 68.9
MFVT ViT-B_16 72.6

As shown in Table 8, MFVT performs competitively on the CUB-200-2011 dataset,
with 91.6% accuracy, which is obviously better than the CNN algorithm. Compared to
ViT-based algorithms, we achieve comparable results to FFVT, and they are second only to
TransFG using an overlapping strategy.

Table 8. Accuracy of different methods on CUB-200-2011.

Method Backbone Accuracy

MA-CNN VGG-19 86.5
FDL DenseNet161 89.1
PMG ResNet50 89.6

API-Net DenseNet161 90.0
StackedLSTM GoogleNet 90.4

ViT ViT-B_16 90.8
TransFG ViT-B_16 90.9

TransFG&overlap ViT-B_16 91.7
RAMS-Trans ViT-B_16 91.3

R2-Trans ViT-B_16 91.5
AFTrans ViT-B_16 91.5

FFVT ViT-B_16 91.6
MFVT ViT-B_16 91.6

Using the overlapping strategy, TransFG increases the number of patches from 784
to 1296, which increases the computational cost and GPU memory consumption. MFVT
achieves similar accuracy without an overlapping strategy.

As shown in Table 9, our method achieves a 0.8% improvement over the ViT baseline
on the Stanford Dogs dataset.

Table 9. Accuracy of different methods on Stanford Dogs.

Method Backbone Accuracy

RA-CNN VGG-19 87.3
SEF ResNet50 88.8

Cross-X ResNet50 88.9
API-Net ResNet101 90.3

ViT ViT-B_16 91.2
TransFG ViT-B_16 90.4

TransFG&overlap ViT-B_16 92.3
AFTrans ViT-B_16 91.6

RAMS-Trans ViT-B_16 92.4
MFVT ViT-B_16 92.0
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4.4. Visualization

In order to analyze the effectiveness of the algorithm design and data enhancement,
we show the visualization results of RAMix during the training phase and the attention
map in the testing phase.

In Figure 6, we show the mixed images in lines 1, 3, and 5. To highlight which image
patches have more influence on the classification results, we cover those patches whose
influence on the final classification results is less than the threshold, and we display the
covered images below the mixed images. It can be seen from the figure that most of the
background is covered, while the object part is preserved. As with the object in the original
image, the objects in the mixed-in patches receive attention, which means that the strategy
of label assignment using the attention map is reasonable and efficient.
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5. Conclusions

We proposed an improved fine-grained visual categorization method, MFVT, based on
ViT. To improve the performance of the visual Transformer in FGVC, the backbone network
adopted 12 layers of Transformer blocks, divided into four stages, and feature fusion was
added between Transformer layers. The feature fusion mechanism integrated high-level
information and low-level features. For more accurate and reliable data enhancement, the
RAMix data enhancement method was designed.

Experiments on the CUB-200-2011, Stanford Dogs, and iNaturalist 2017 datasets
showed that MFVT significantly improved the classification accuracy of the standard ViT
in fine-grained environments. We achieved 91.6% and 92.0% accuracy on the CUB-200-2011
and Stanford Dogs datasets; meanwhile, on the more challenging iNaturalist 2017 dataset,
the accuracy rate of MFVT reached 72.6%. Based on the experimental results, we believe
that the ViT model still has research potential in the field of FGVC.
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