Factors Affecting the Adoption of Digital Information Technologies in Higher Education: An Empirical Study
Abstract
:1. Introduction
2. Review of the Literature
2.1. Digital Flow Information
2.2. Tutor Quality
2.3. TAM Model and Experience
3. Methodology
3.1. Data Collection
3.2. Students’ Personal Information/Demographic Data
3.3. Study Instrument
3.4. Common Method Bias (CMB)
3.5. Pilot Study of the Questionnaire
3.6. Survey Structure
- Personal data about the respondents were the subject of the first part;
- The generic concern on “intention to use digital information” was represented by two questions in the second part;
- The final component had 15 items that were divided into four categories: “Perceived Ease of Use, Perceived Usefulness, DIE Experience, and Tutor Quality.”
4. Findings and Discussion
4.1. Data Analysis
4.2. Convergent Validity
4.3. Discriminant Validity
4.4. Hypotheses Testing Using PLS-SEM
5. Discussion
5.1. Theoretical Implication
5.2. Managerial Implications
6. Conclusions, Limitations and Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almaiah, M.A.; Alfaisal, R.; Salloum, S.A.; Al-Otaibi, S.; Al Sawafi, O.S.; Al-Maroof, R.S.; Lutfi, A.; Alrawad, M.; Al Mulhem, A.; Awad, A.B. Determinants Influencing the Continuous Intention to Use Digital Technologies in Higher Education. Electronics 2022, 11, 2827. [Google Scholar] [CrossRef]
- Leshchenko, M.P.; Kolomiiets, A.M.; Iatsyshyn, A.V.; Kovalenko, V.V.; Dakal, A.V.; O Radchenko, O. Development of informational and research competence of postgraduate and doctoral students in conditions of digital transformation of science and education. J. Phys. Conf. Ser. 2021, 1840, 012057. [Google Scholar] [CrossRef]
- Dudhat, A.; Santoso, N.P.L.; Henderi; Santoso, S.; Setiawati, R. Blockchain in Indonesia University: A Design Viewboard of Digital Technology Education. Aptisi Trans. Technopreneurship ATT 2021, 3, 68–80. [Google Scholar] [CrossRef]
- He, T.; Huang, Q.; Yu, X.; Li, S. Exploring students’ digital informal learning: The roles of digital competence and DTPB factors. Behav. Inf. Technol. 2020, 40, 1406–1416. [Google Scholar] [CrossRef]
- Siddiq, F.; Scherer, R.; Tondeur, J. Teachers’ emphasis on developing students’ digital information and communication skills (TEDDICS): A new construct in 21st century education. Comput. Educ. 2016, 92–93, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, M.I.; Khan, N.; Raza, H.; Imran, A.; Ismail, F. Digital Technologies in Education 4.0. Does it Enhance the Effectiveness of Learning? A Systematic Literature Review. Int. J. Interact. Mob. Technol. 2021, 15, 31–47. [Google Scholar] [CrossRef]
- Jeffrey, L.; Hegarty, B.; Kelly, O.; Penman, M.; Coburn, D.; McDonald, J. Developing Digital Information Literacy in Higher Education: Obstacles and Supports. J. Inf. Technol. Educ. Res. 2011, 10, 383–413. [Google Scholar] [CrossRef] [Green Version]
- Çetin, E. Digital storytelling in teacher education and its effect on the digital literacy of pre-service teachers. Think. Ski. Creat. 2020, 39, 100760. [Google Scholar] [CrossRef]
- Börnert-Ringleb, M.; Casale, G.; Hillenbrand, C. What predicts teachers’ use of digital learning in Germany? Examining the obstacles and conditions of digital learning in special education. Eur. J. Spéc. Needs Educ. 2021, 36, 80–97. [Google Scholar] [CrossRef]
- Moreno-Morilla, C.; Guzmán-Simón, F.; García-Jiménez, E. Digital and information literacy inside and outside Spanish primary education schools. Learn. Cult. Soc. Interact. 2021, 28, 100455. [Google Scholar] [CrossRef]
- Sayaf, A.M.; Alamri, M.M.; Alqahtani, M.A.; Al-Rahmi, W.M. Information and Communications Technology Used in Higher Education: An Empirical Study on Digital Learning as Sustainability. Sustainability 2021, 13, 7074. [Google Scholar] [CrossRef]
- Wahyuningsih, T.; Gunawan; Oganda, F.P.; Anggraeni, M. Design and Implementation of Digital Education Resources Blockchain-Based Authentication System. Blockchain Front. Technol. 2021, 1, 74–86. [Google Scholar] [CrossRef]
- Aydin, E.; Erol, S. The Views of Turkish Language Teachers on Distance Education and Digital Literacy during Covid-19 Pandemic. Int. J. Educ. Lit. Stud. 2021, 9, 60–71. [Google Scholar] [CrossRef]
- Labrecque, L.I.; vor dem Esche, J.; Mathwick, C.F.; Novak, T.P.; Hofacker, C. Consumer Power: Evolution in the Digital Age. J. Interact. Mark. 2013, 27, 257–269. [Google Scholar] [CrossRef]
- Peltier, J.W.; Dahl, A.J.; Swan, E.L. Digital information flows across a B2C/C2C continuum and technological innovations in service ecosystems: A service-dominant logic perspective. J. Bus. Res. 2020, 121, 724–734. [Google Scholar] [CrossRef]
- Teo, T.; Luan, W.S.; Thammetar, T.; Chattiwat, W. Assessing e-learning acceptance by university students in Thailand. Austral. J. Educ. Technol. 2011, 27. [Google Scholar] [CrossRef] [Green Version]
- Kear, K.; Donelan, H.; Williams, J. Using wikis for online group projects: Student and tutor perspectives. Int. Rev. Res. Open Distrib. Learn. 2014, 15, 70–90. [Google Scholar] [CrossRef] [Green Version]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Karahanna, E. Cognitive absorption and beliefs about information technology usage. MIS Q. 2000, 24, 665–694. [Google Scholar] [CrossRef]
- Saadé, R.; Bahli, B. The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: An extension of the technology acceptance model. Inf. Manag. 2005, 42, 317–327. [Google Scholar] [CrossRef]
- Csikszentmihalyi, M. Literacy and intrinsic motivation. Daedalus 1990, 119, 115–140. [Google Scholar]
- Krejcie, R.V.; Morgan, D.W. Determining Sample Size for Research Activities. Educ. Psychol. Meas. 1970, 30, 607–610. [Google Scholar] [CrossRef]
- Chuan, C.L.; Penyelidikan, J. Sample size estimation using Krejcie and Morgan and Cohen statistical power analysis: A comparison. J. Penyelid. IPBL 2006, 7, 78–86. [Google Scholar]
- Aburayya, A.; Alshurideh, M.; Marzouqi, A.A.; Diabat, O.A.; Alfarsi, A.; Suson, R.; Bash, M.; Salloum, S.A. An Empirical Examination of the Effect of TQM Practices on Hospital Service Quality: An Assessment Study in UAE Hospitals. Syst. Rev. Pharm. 2020, 11, 347–362. [Google Scholar]
- Wang, Y.-S.; Wu, M.-C.; Wang, H.-Y. Investigating the determinants and age and gender differences in the acceptance of mobile learning. Br. J. Educ. Technol. 2009, 40, 92–118. [Google Scholar] [CrossRef]
- Alamri, M.M.; Almaiah, M.A.; Al-Rahmi, W.M. The role of compatibility and task-technology fit (TTF): On social networking applications (SNAs) usage as sustainability in higher education. IEEE Access 2020, 8, 161668–161681. [Google Scholar] [CrossRef]
- Vargo, S.L.; Lusch, R.F. Service-dominant logic: Continuing the evolution. J. Acad. Mark. Sci. 2007, 36, 1–10. [Google Scholar] [CrossRef]
- Parasuraman, A.; Zeithaml, V.A.; Malhotra, A. E-S-QUAL a multiple-item scale for assessing electronic service quality. J. Serv. Res. 2005, 7, 213–233. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, S. Excitement or sophistication? A preliminary exploration of online brand personality. Int. Mark. Rev. 2006, 23, 279–303. [Google Scholar] [CrossRef] [Green Version]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Nunnally, J.C.; Bernstein, I.H. Psychometric Theory; Tata McGraw-Hill: New Delhi, India, 1978. [Google Scholar]
- Hair, J.; Hollingsworth, C.L.; Randolph, A.B.; Chong, A.Y.L. An updated and expanded assessment of PLS-SEM in information systems research. Ind. Manag. Data Syst. 2017, 117, 442–458. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS 3; SmartPLS: Bönningstedt, Germany, 2015. [Google Scholar]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: New York, NY, USA, 2016. [Google Scholar]
- Goodhue, D.L.; Lewis, W.; Thompson, R. Does PLS have adavantages for small sample size or non-normal data? MIS Quaterly 2012, 36, 981–1001. [Google Scholar] [CrossRef] [Green Version]
- Urbach, N.; Ahlemann, F. Structural equation modeling in information systems research using partial least squares. J. Inf. Technol. Theory Appl. 2010, 11, 5–40. [Google Scholar]
- Barclay, D.; Higgins, C.; Thompson, R. The Partial Least Squares (pls) Approach to Casual Modeling: Personal Computer Adoption Ans Use as an Illustration. Technol. Stud. Spec. Issue Res. Methodol. 1995, 2, 284–324. [Google Scholar]
- Almaiah, M.A.; Alamri, M.M.; Al-Rahmi, W.M. Analysis the effect of different factors on the development of Mobile learning applications at different stages of usage. IEEE Access 2019, 8, 16139–16154. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Al-Maroof, R.; Ayoubi, K.; Alhumaid, K.; Aburayya, A.; Alshurideh, M.; Alfaisal, R.; Salloum, S. The acceptance of social media video for knowledge acquisition, sharing and application: A com-parative study among YouTube users and TikTok Users’ for medical purposes. Int. J. Data Netw. Sci. 2021, 5, 197–214. [Google Scholar] [CrossRef]
- Al-Maroof, R.; Alshurideh, M.; Salloum, S.; AlHamad, A.; Gaber, T. Acceptance of Google Meet during the Spread of Coronavirus by Arab University Students. Informatics 2021, 8, 24. [Google Scholar] [CrossRef]
- Al-Maroof, R.S.; Salloum, S.A. An Integrated Model of Continuous Intention to Use of Google Classroom. In Recent Advances in Intelligent Systems and Smart Applications; Al-Emran, M., Shaalan, K., Hassanien, A., Eds.; Springer: Cham, Switzerland, 2021; Volume 295. [Google Scholar]
- Salloum, S.A.; AlAhbabi, N.M.N.; Habes, M.; Aburayya, A.; Akour, I. Predicting the Intention to Use Social Media Sites: A Hybrid SEM-Machine Learning Approach. In International Conference on Advanced Machine Learning Technologies and Applications; Springer: Cham, Switzerland, 2021; pp. 324–334. [Google Scholar] [CrossRef]
- Alhumaid, K.; Habes, M.; Salloum, S.A. Examining the Factors Influencing the Mobile Learning Usage During COVID-19 Pandemic: An Integrated SEM-ANN Method. IEEE Access 2021, 9, 102567–102578. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Alfaisal, R.; Salloum, S.A.; Al-Otaibi, S.; Shishakly, R.; Lutfi, A.; Alrawad, M.; Mulhem, A.A.; Awad, A.B.; Al-Maroof, R.S. Integrating Teachers’ TPACK Levels and Students’ Learning Motivation, Technology Innovativeness, and Optimism in an IoT Acceptance Model. Electronics 2022, 11, 3197. [Google Scholar] [CrossRef]
- Almarzouqi, A.; Aburayya, A.; Salloum, S.A. Determinants predicting the electronic medical record adoption in healthcare: A SEM-Artificial Neural Network approach. PLoS ONE 2022, 17, e0272735. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-H.; Liao, H.-L.; Peng, C.-J. Applying the technology acceptance model and flow theory to online e-learning users’ acceptance behavior. E-Learn 2005, 4, H8. [Google Scholar]
- Sapta, I.; Muafi, M.; Setini, N.M. The role of technology, organizational culture, and job satisfaction in improving employee performance during the Covid-19 pandemic. J. Asian Financ. Econ. Bus. 2021, 8, 495–505. [Google Scholar]
- Monardo, G.; Pavese, C.; Giorgi, I.; Godi, M.; Colombo, R. Evaluation of Patient Motivation and Satisfaction During Technology-Assisted Rehabilitation: An Experiential Review. Games Health J. 2021, 10, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Kabát, M. Teaching Metaverse. What and how to (not) teach using the medium of virtual reality. Edutainment 2016, 1. Available online: https://ogrodynauk.pl/index.php/EDUT/article/view/10.15503.edut.2016.1.53.59 (accessed on 12 October 2022).
- Louro, L.C. METAVERSE—The Learning in the Immersive Worlds. Slactions 2009, 2009, 142. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. In Advances in International Marketing; Sinkovics, R.R., Ghauri, P.N., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2009; Volume 20, pp. 277–319. [Google Scholar] [CrossRef]
- Mulhem, A.A.; Almaiah, M.A. A conceptual model to investigate the role of mobile game applications in education during the COVID-19 pandemic. Electronics 2021, 10, 2106. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Al-lozi, E.M.; Al-Khasawneh, A.; Shishakly, R.; Nachouki, M. Factors Affecting Students’ Acceptance of Mobile Learning Application in Higher Education during COVID-19 Using ANN-SEM Modelling Technique. Electronics 2021, 10, 3121. [Google Scholar] [CrossRef]
- Al-Emran, M.; Arpaci, I.; Salloum, S.A. An empirical examination of continuous intention to use m-learning: An integrated model. Educ. Inf. Technol. 2020, 25, 2899–2918. [Google Scholar] [CrossRef]
- Salloum, S.A.; Alhamad, A.Q.M.; Al-Emran, M.; Monem, A.A.; Shaalan, K. Exploring Students’ Acceptance of E-Learning Through the Development of a Comprehensive Technology Acceptance Model. IEEE Access 2019, 7, 128445–128462. [Google Scholar] [CrossRef]
- Lutfi, A.; Saad, M.; Almaiah, M.A.; Alsaad, A.; Al-Khasawneh, A.; Alrawad, M.; Alsyouf, A.; Al-Khasawneh, A.L. Actual Use of Mobile Learning Technologies during Social Distancing Circumstances: Case Study of King Faisal University Students. Sustainability 2022, 14, 7323. [Google Scholar] [CrossRef]
- Al-Maroof, R.S.; Salloum, S.A.; AlHamad, A.; Shaalan, K.A. Understanding an Extension Technology Acceptance Model of Google Translation: A Multi-Cultural Study in United Arab Emirates. Int. J. Interact. Mob. Technol. 2020, 14, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Almaiah, M.A.; Almulhem, A. A conceptual framework for determining the success factors of e-learning system implementation using Delphi technique. J. Theor. Appl. Inf. Technol. 2018, 96, 5962–5976. [Google Scholar]
- Almaiah, M.A.; Nasereddin, Y. Factors influencing the adoption of e-government services among Jordanian citizens. Electron. Gov. Int. J. 2020, 16, 236–259. [Google Scholar] [CrossRef]
- Elareshi, M.; Habes, M.; Youssef, E.; Salloum, S.A.; Alfaisal, R.; Ziani, A. SEM-ANN-based approach to understanding students’ academic-performance adoption of YouTube for learning during Covid. Heliyon 2022, 8, e09236. [Google Scholar] [CrossRef] [PubMed]
- Chin, W.W. The partial least squares approach to structural equation modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Almaiah, M.A.; Jalil, M.A.; Man, M. Extending the TAM to examine the effects of quality features on mobile learning acceptance. J. Comput. Educ. 2016, 3, 453–485. [Google Scholar] [CrossRef]
- Ntsiful, A.; Kwarteng, M.A.; Pilík, M.; Osakwe, C.N. Transitioning to Online Teaching During the Pandemic Period: The Role of Innovation and Psychological Characteristics. Innov. High. Educ. 2022, 1–22. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Al Mulhem, A. Analysis of the essential factors affecting of intention to use of mobile learning applications: A comparison between universities adopters and non-adopters. Educ. Inf. Technol. 2019, 24, 1433–1468. [Google Scholar] [CrossRef]
- Nezamdoust, S.; Abdekhoda, M.; Rahmani, A. Determinant factors in adopting mobile health application in healthcare by nurses. BMC Med. Inform. Decis. Mak. 2022, 22, 47. [Google Scholar] [CrossRef] [PubMed]
- Almaiah, M.A.; Al-Khasawneh, A.; Althunibat, A. Exploring the critical challenges and factors influencing the E-learning system usage during COVID-19 pandemic. Educ. Inf. Technol. 2020, 25, 5261–5280. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.S.; Masukujjaman, M.; Susmit, S.; Susmit, S.; Aziz, H.A. Augmented reality adoption intention among travel and tour operators in Malaysia: Mediation effect of value alignment. J. Tour. Futur. 2022. ahead of print. [Google Scholar] [CrossRef]
- Erdener, K.; Perkmen, S.; Shelley, M.; Kandemir, M.A. Measuring Perceived Attributes of the Interactive Whiteboard for the Mathematics Class. Comput. Sch. 2022, 39, 1–15. [Google Scholar] [CrossRef]
- Alamer, M.; Almaiah, M.A. Cybersecurity in Smart City: A systematic mapping study. In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 719–724. [Google Scholar]
- Tatnall, A. Editorial for EAIT issue 2, 2019. Educ. Inf. Technol. 2019, 24, 953–962. [Google Scholar] [CrossRef] [Green Version]
- Alghazi, S.S.; Kamsin, A.; Almaiah, M.A.; Wong, S.Y.; Shuib, L. For sustainable application of mobile learning: An extended UTAUT model to examine the effect of technical factors on the usage of mobile devices as a learning tool. Sustainability 2021, 13, 1856. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Jalil, M.M. Investigating Students’ Perceptions on Mobile Learning Services. Int. J. Interact. Mob. Technol. 2014, 8, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Almaiah, M.A.; Al Mulhem, A. Thematic analysis for classifying the main challenges and factors influencing the successful implementation of e-learning system using NVivo. Int. J. Adv. Trends Comput. Sci. Eng. 2020, 9, 142–152. [Google Scholar] [CrossRef]
- Lutfi, A.; Alsyouf, A.; Almaiah, M.A.; Alrawad, M.; Abdo, A.A.K.; Al-Khasawneh, A.L.; Ibrahim, N.; Saad, M. Factors Influencing the Adoption of Big Data Analytics in the Digital Transformation Era: Case Study of Jordanian SMEs. Sustainability 2022, 14, 1802. [Google Scholar] [CrossRef]
- Althunibat, A.; Almaiah, M.A.; Altarawneh, F. Examining the Factors Influencing the Mobile Learning Applications Usage in Higher Education during the COVID-19 Pandemic. Electronics 2021, 10, 2676. [Google Scholar] [CrossRef]
- Lutfi, A.; Al-Khasawneh, A.L.; Almaiah, M.A.; Alsyouf, A.; Alrawad, M. Business Sustainability of Small and Medium Enterprises during the COVID-19 Pandemic: The Role of AIS Implementation. Sustainability 2022, 14, 5362. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Hajjej, F.; Shishakly, R.; Lutfi, A.; Amin, A.; Awad, A.B. The Role of Quality Measurements in Enhancing the Usability of Mobile Learning Applications during COVID-19. Electronics 2022, 11, 1951. [Google Scholar] [CrossRef]
- Althunibat, A.; Altarawneh, F.; Dawood, R.; Almaiah, M.A. Propose a New Quality Model for M-Learning Application in Light of COVID-19. Mob. Inf. Syst. 2022, 2022, 3174692. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Hajjej, F.; Lutfi, A.; Al-Khasawneh, A.; Shehab, R.; Al-Otaibi, S.; Alrawad, M. Explaining the Factors Affecting Students’ Attitudes to Using Online Learning (Madrasati Platform) during COVID-19. Electronics 2022, 11, 973. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Al-Otaibi, S.; Lutfi, A.; Almomani, O.; Awajan, A.; Alsaaidah, A.; Alrawad, M.; Awad, A.B. Employing the TAM Model to Investigate the Readiness of M-Learning System Usage Using SEM Technique. Electronics 2022, 11, 1259. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Jalil, M.M.A.; Man, M. Empirical investigation to explore factors that achieve high quality of mobile learning system based on students’ perspectives. Eng. Sci. Technol. Int. J. 2016, 19, 1314–1320. [Google Scholar] [CrossRef] [Green Version]
- Almaiah, M.A.; Ayouni, S.; Hajjej, F.; Lutfi, A.; Almomani, O.; Awad, A.B. Smart Mobile Learning Success Model for Higher Educational Institutions in the Context of the COVID-19 Pandemic. Electronics 2022, 11, 1278. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Al-Khasawneh, A.; Althunibat, A.; Almomani, O. Exploring the Main Determinants of Mobile Learning Application Usage During Covid-19 Pandemic in Jordanian Universities. In Emerging Technologies during the Era of COVID-19 Pandemic; Springer: Cham, Switzerland, 2021; pp. 275–290. [Google Scholar] [CrossRef]
- Almaiah, M.A. Acceptance and usage of a mobile information system services in University of Jordan. Educ. Inf. Technol. 2018, 23, 1873–1895. [Google Scholar] [CrossRef]
Criterion | Factor | Frequency | Percentage |
---|---|---|---|
Gender | Female | 283 | 58% |
Male | 202 | 42% | |
Age | Between 18 and 29 | 315 | 65% |
Between 30 and 39 | 130 | 27% | |
Between 40 and 49 | 35 | 7% | |
Between 50 and 59 | 5 | 1% | |
Education qualification | Bachelor | 328 | 68% |
Master’s | 146 | 30% | |
Doctorate | 11 | 2% |
Constructs | Items | Instrument | Sources |
---|---|---|---|
Intention to use digital information in education | IU1 | I will keep using DIE to further my education and keep ahead more with digital information. | [25] |
IU2 | To speed up my search for digital information for my education, I shall employ DIE. | ||
Perceived ease of use | PE1 | My engagement with DIE is simple and clear. | [26] |
PE2 | The university personnel are quite transparent about engaging with DIE. | ||
PE3 | DIE interaction takes cognitive work. | ||
Perceived usefulness | PU1 | By adopting DIE, I can contribute more to class each day. | [26] |
PU2 | My comprehension of the practical disciplines I enrolled in has improved by employing DIE. | ||
PU3 | My conceptual homework and assignments benefit from employing DIE. | ||
Digital information flow | DI1 | I consider DIE important since it assists in the exchange of information. | [27] |
DI2 | I believe DIE assists in the development of innovative, beneficial technology. | ||
DI3 | DIE makes it simple for teams to share information. | ||
Tutor quality | TU1 | Using DIE, my tutor can clarify the course material. | [16] |
TU2 | My instructor assists me in honing my DIE learning techniques. | ||
TU3 | My tutor explains how to use DIE and the steps to follow. | ||
DIE experience | DE1 | I have a lot of DIE experience. | [28,29] |
DE2 | DIE is simple to operate, which is how I acquired experience using it. | ||
DE3 | I have a lot of experience with DIE since it is helpful. |
Construct | Cronbach’s Alpha |
---|---|
DE | 0.826 |
DI | 0.808 |
IU | 0.876 |
PE | 0.813 |
PU | 0.773 |
TU | 0.795 |
Constructs | Items | Factor Loading | Cronbach’s Alpha | CR | AVE |
---|---|---|---|---|---|
Intention to use digital information | IU1 | 0.840 | 0.892 | 0.825 | 0.756 |
IU2 | 0.792 | ||||
Digital information flow | DI1 | 0.852 | 0.889 | 0.819 | 0.695 |
DI2 | 0.859 | ||||
DI3 | 0.855 | ||||
Perceived ease of use | PE1 | 0.905 | 0.904 | 0.902 | 0.800 |
PE2 | 0.882 | ||||
PE3 | 0.890 | ||||
DIE experience | DE1 | 0.797 | 0.828 | 0.827 | 0.808 |
DE2 | 0.890 | ||||
DE3 | 0.802 | ||||
Perceived usefulness | PU1 | 0.877 | 0.833 | 0.848 | 0.720 |
PU2 | 0.868 | ||||
PU3 | 0.871 | ||||
Tutor quality | TU1 | 0.771 | 0.897 | 0.881 | 0.744 |
TU2 | 0.799 | ||||
TU3 | 0.745 |
IU | DI | PE | DE | PU | TU | |
---|---|---|---|---|---|---|
IU | 0.800 | |||||
DI | 0.264 | 0.887 | ||||
PE | 0.675 | 0.382 | 0.873 | |||
DE | 0.307 | 0.087 | 0.244 | 0.836 | ||
PU | 0.650 | 0.532 | 0.623 | 0.432 | 0.937 | |
TU | 0.664 | 0.283 | 0.373 | 0.391 | 0.336 | 0.874 |
IU | DI | PE | DE | PU | TU | |
---|---|---|---|---|---|---|
IU | ||||||
DI | 0.092 | |||||
PE | 0.391 | 0.436 | ||||
DE | 0.285 | 0.413 | 0.406 | |||
PU | 0.659 | 0.573 | 0.501 | 0.352 | ||
TU | 0.301 | 0.149 | 0.641 | 0.495 | 0.326 |
Construct | R2 | Results |
---|---|---|
PU | 0.597 | Moderate |
IU | 0.641 | Moderate |
DE | 0.642 | Moderate |
PE | 0.666 | Moderate |
H | Relationship | Path | t-Value | p-Value | Direction | Decision |
---|---|---|---|---|---|---|
H1 | DI -> PE | 0.618 | 12.828 | 0.000 | Positive | Supported ** |
H2 | TU -> PU | 0.586 | 13.183 | 0.000 | Positive | Supported ** |
H3 | PE -> DE | 0.754 | 6.749 | 0.031 | Positive | Supported ** |
H4 | PU -> DE | 0.385 | 6.587 | 0.039 | Positive | Supported ** |
H5 | PE -> IU | 0.532 | 15.260 | 0.003 | Positive | Supported ** |
H6 | DE -> IU | 0.436 | 7.102 | 0.026 | Positive | Supported ** |
H7 | PU -> IU | 0.483 | 5.097 | 0.030 | Positive | Supported ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almaiah, M.A.; Alhumaid, K.; Aldhuhoori, A.; Alnazzawi, N.; Aburayya, A.; Alfaisal, R.; Salloum, S.A.; Lutfi, A.; Al Mulhem, A.; Alkhdour, T.; et al. Factors Affecting the Adoption of Digital Information Technologies in Higher Education: An Empirical Study. Electronics 2022, 11, 3572. https://doi.org/10.3390/electronics11213572
Almaiah MA, Alhumaid K, Aldhuhoori A, Alnazzawi N, Aburayya A, Alfaisal R, Salloum SA, Lutfi A, Al Mulhem A, Alkhdour T, et al. Factors Affecting the Adoption of Digital Information Technologies in Higher Education: An Empirical Study. Electronics. 2022; 11(21):3572. https://doi.org/10.3390/electronics11213572
Chicago/Turabian StyleAlmaiah, Mohammed Amin, Khadija Alhumaid, Abid Aldhuhoori, Noha Alnazzawi, Ahmad Aburayya, Raghad Alfaisal, Said A. Salloum, Abdalwali Lutfi, Ahmed Al Mulhem, Tayseer Alkhdour, and et al. 2022. "Factors Affecting the Adoption of Digital Information Technologies in Higher Education: An Empirical Study" Electronics 11, no. 21: 3572. https://doi.org/10.3390/electronics11213572
APA StyleAlmaiah, M. A., Alhumaid, K., Aldhuhoori, A., Alnazzawi, N., Aburayya, A., Alfaisal, R., Salloum, S. A., Lutfi, A., Al Mulhem, A., Alkhdour, T., Awad, A. B., & Shehab, R. (2022). Factors Affecting the Adoption of Digital Information Technologies in Higher Education: An Empirical Study. Electronics, 11(21), 3572. https://doi.org/10.3390/electronics11213572