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Abstract: The posting of offensive content in regional languages has increased as a result of the
accessibility of low-cost internet and the widespread use of online social media. Despite the large
number of comments available online, only a small percentage of them are offensive, resulting in an
unequal distribution of offensive and non-offensive comments. Due to this class imbalance, classifiers
may be biased toward the class with the most samples, i.e., the non-offensive class. To address class
imbalance, a Multilingual Translation-based Data augmentation technique for Offensive content
identification in Tamil text data (MTDOT) is proposed in this work. The proposed MTDOT method is
applied to HASOC’21, which is the Tamil offensive content dataset. To obtain a balanced dataset, each
offensive comment is augmented using multi-level back translation with English and Malayalam
as intermediate languages. Another balanced dataset is generated by employing single-level back
translation with Malayalam, Kannada, and Telugu as intermediate languages. While both approaches
are equally effective, the proposed multi-level back-translation data augmentation approach produces
more diverse data, which is evident from the BLEU score. The MTDOT technique proposed in this
work achieved a promising improvement in F1-score over the widely used SMOTE class balancing
method by 65%.

Keywords: offensive content identification; imbalanced data; data augmentation; MuRIL; back translation

1. Introduction

The term ‘offensive’ refers to behavior that irritates, angers, or upsets a person or
group. The rise of social media has led to a surge in offensive and hateful content on
the internet. Because of the user’s ability to remain anonymous, they believe they may
express themselves freely and without constraints. All of these unpleasant comments
deteriorate the mental health of the targeted individual or group. One way to avoid this
from happening is to remove offensive comments. A manual approach to finding and
removing the offending comment can take considerable effort. Therefore, automated
systems that use machine learning and natural language processing tools are being applied
in research and technology around the world to detect and reduce the use of offensive
content on social media.

Several researchers have studied the issue of identifying offensive content, but as the
amount of multilingual content has increased, it has become more challenging. The majority
of research has focused on high-resource languages such as English, and only recently have
low-resource languages such as different Indic languages been given more attention [1–3].
Dravidian languages, which are mainly spoken in south India and northeast Sri Lanka,
include Tamil, Malayalam, Telugu, and Kannada. These languages also have a large
number of offensive comments on social media, and there is a huge demand for automated
systems that can classify into offensive and non-offensive regional YouTube comments.
The limitations of this low-resource language include a small corpus and the lack of
standard/benchmarked annotated data.
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In this paper, the focus is on identifying YouTube comments written in Tamil script
as either offensive or non-offensive. The dataset from the HASOC’21 shared task [4] that
included YouTube comments in Tamil is used in this work. Every comment is classified as
either offensive or non-offensive in this annotated corpus. The dataset included a total of
5877 YouTube comments, each labeled as offensive or non-offensive. The distribution of
data among classes is substantially skewed, particularly for the offensive class. The number
of offensive comments is considerably lower than that of non-offensive comments. Out of
the 5877 comments, 4724 are not offensive and 1153 are offensive. The ratio of offensive
comments to non-offensive comments is 1:4. As a result, the text classifiers become biased
toward the non-offensive class which is having a large number of samples, and offensive
class samples are frequently misclassified.

To address this class imbalance, a Multilingual Translation based Data augmentation
technique for Offensive content identification in Tamil text data (MTDOT) is proposed in
this work. In data augmentation, new data points are generated artificially from existing
data points. Data augmentation is useful for reducing the cost of collecting and labeling
data as well as improving model prediction accuracy. The class imbalance problem is
addressed through data augmentation by generating artificial samples of a rare class in the
dataset. Data augmentation approaches are divided into two categories: linguistic and non-
linguistic [5]. The meaning is preserved after data augmentation in the linguistic category.
In the linguistic category, the word or sentence is replaced or an entirely new statement
is generated. Back translation is one such linguistic data augmentation techniques in
which text is translated into another language and then back into the original language.
In this work, offensive class comments are generated using the back-translation data
augmentation technique.

Extensive experiments are conducted by applying the widely used SMOTE data level
method [6], single-level back-translation augmentation method and our proposed MTDOT
method for balancing the HASOC’21 Tamil dataset. Then, the text embedding vectors
are generated for the balanced dataset using the MuRIL pre-trained model embedding
layer. Six different classifiers namely Support Vector Machine, Naive Bayes, K-Nearest
Neighbor (K-NN), Decision Tree, Random Forest and Majority Voting are trained using
the text embedding vectors. The experimental findings demonstrate that the balanced
dataset achieved precision, recall, and F1-score of 0.82, 0.80, and 0.81, respectively, using
the MTDOT class balancing approach.

The key contributions of this paper are:

• We proposed the data-level class balancing technique for addressing class imbalance
in offensive content datasets. To the best of our knowledge, we are the first to use
data augmentation for handling unequal class distribution in a non-English offensive
content dataset i.e., Tamil dataset.

• In order to achieve a completely balanced dataset, new offensive comments are gen-
erated through single-level back translation and multi-level back translation using
Malayalam and English as an intermediate language.

• Extensive experiments are conducted to demonstrate the effectiveness of proposed
method using various classifiers and existing oversampling and undersampling methods.

The rest of this paper is structured as follows. Section 2 discusses existing work in
offensive content detection and class balancing methods. Section 3 contains a description of
the dataset used in our study. Section 4 describes the methodology, and in Section 5, details
of the experiments conducted are provided. The results and discussion are in Section 6.
Finally Section 7 concludes the paper.

2. Related Works

The existing works in offensive content identification are described in Section 2.1.
In Section 2.2, the different existing techniques for handling class imbalance in text data
are discussed.
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2.1. Offensive Content Identification

Many researchers studied the problem of offensive content detection in social media
comments in widely used English language, and some work is also existing for languages
such as Hindi and German [1,2]. However, few efforts are made to identify offending
content in low-resource Dravidian languages such as Tamil, Malayalam, and Kannada.
The offensive content detection method for code-mixed language pairs such as Kannada–
English, Malayalam–English, and Tamil–English is proposed by Garain et al. [7]. It is a
multi-label classification model based on the ensemble of IndicBERT and generic BERT
(Bidirectional Encoder Representations from Transformers) models.

Kedia and Nandy [8] proposed a multi-label classifier to classify code-mixed offensive
language comments on social media platforms. They used multi-label classifiers including
Multinomial NB, Linear SVM, and Random Forest to conduct the classification. Results
significantly improved when a trained-from-scratch vanilla LSTM model and a transfer
learning framework called ULMFiT were used. The proposed system is an ensemble of an
AWD-LSTM-based model and two distinct transformer model architectures based on BERT
and RoBERTa.

Jayanthi and Gupta [9] proposed a transformer model using multilingual BERT and
XLM-RoBERTa. The model is an ensemble of six different mBERT and XLM-RoBERTa
models. They also proposed a fusion architecture to boost performance by combining
character-level, subword-level, and word-level embeddings. They applied their model to
datasets in the languages Kannada, Malayalam and Tamil.

Ghanghor et al. [10] also proposed a model for the same dataset used by Jayanthi
and Gupta [9]. They proposed a multilingual BERT cased model for offensive language
detection and troll meme classification in Dravidian languages such as Tamil, Malayalam,
and Kannada. To fix the class imbalance, loss functions such as NLL with class weights
and Sadice were used. mBERT-cased was better than the other multilingual models used
such as XLM-RoBERTa and IndicBERT. This model was used for text modality in the meme
classification task.

Hate speech detection in a code-mixed dataset was proposed by Dave et al. [11] using
Google’s MuRIL pre-trained Transformer model. TF-IDF character n-grams and the MuRIL
model are used for feature extraction from the text. Logistic regression and linear SVM
models were used as classifiers to perform predictions.

Chinnappa and Dhivya [12] proposed a framework for hope speech prediction in the
English, Tamil, and Malayalam datasets. The system uses a two-phase approach. In the first
phase, a classifier is built to identify the text’s language. In the second phase, the classifier
is trained to distinguish between hope speech, non-hope speech, and not-lang labels.
Ref. [13] proposed a transformer-based approach for identifying hate speech comments
in code-mixed Tamil-English tweets. The dataset contains Tamil and English words and
phrases. They first converted Tamil words to English using a Tamil to English mapping
corpus. On the validation and test sets, the F1-scores were 65% and 64%, respectively.
Ref. [14] presented machine learning-based methods for the HASOC’21 dataset to identify
offensive content. Additionally, they tried pre-trained multilingual transformer models
including mBERT, MuRIL, and XLM-RoBERTa, of which XLM-RoBERTa achieved the
maximum accuracy.

The studies on Tamil offensive content identification mostly used the HASOC-Dravidian-
CodeMix shared task dataset [4]. This dataset contains YouTube comments collected from
movie trailers using the YouTube comment scraper. Some comments in the dataset contain
more than one sentence, but the average sentence length is one. Each comment is labeled
as ‘OFF’ (offensive comment) or ‘NOT’ (non-offensive comment).

2.2. Handling Class Imbalance in Text Data

Imbalanced datasets are those in which the distribution of class labels is unequal.
The number of samples from one class greatly outnumber those from the other. For example,
in HASOC’21, the dataset used in this work, the number of non-offensive comments is four
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times higher than offensive comments. Here, the class ‘Not Offensive’ is called the majority
class, and the class ‘Offensive’ having fewer samples is called the minority class. In the
presence of imbalanced data, it is crucial to identify minority classes accurately. Therefore,
the model should not be biased to identify only the majority class but should also provide
equal weight to the minority class.

There are three types of methodologies for addressing class imbalance in machine
learning: data-level techniques, algorithm-level methods, and hybrid approaches [15].
Data-level strategies use various data sampling methods to try to reduce the degree of
imbalance. The learning process is adjusted to increase the importance of minority class
during training in algorithm-level methods. Typically, this is achieved by incorporating
class weights into the loss function. In hybrid methods, both data-level and algorithmic-
level methods are combined.

Data-level methods such as SMOTE and its variants [6,16,17] have been shown to
work well in the past. Synthetic Minority Oversampling Technique or SMOTE is a tech-
nique to oversample the minority class. In SMOTE, new instances are created from the
existing data. SMOTE examines minority class examples and uses K-NN to find a random
nearest neighbor; then, a synthetic instance is generated at random in feature space. In
Borderline-SMOTE [16], the samples near class borders are oversampled, while in Safe-
Level-SMOTE [17] safe regions are defined to prevent oversampling in overlapping or
noise regions.

In the undersampling data level method, the samples from the majority class are
removed to balance the class distribution of underlying data. RUS (random undersam-
pling) is the simplest undersampling method, where instances from the majority class are
randomly chosen and removed from the training dataset. The disadvantage of random
undersampling is that examples are eliminated without regard for their potential impor-
tance or value in determining the decision boundary between the classes [18]. Different
Near-Miss algorithms have been proposed by Zhang and Mani [19], in which the majority
samples are removed based on their distance from minority samples using the K-nearest
neighbors (K-NN) classifier. Kubat and Matwin [20] proposed a one-sided selection method
in which noisy and repeated majority class instances discovered through the 1-NN rule
and Tomek Links are removed. Undersampling has the disadvantage of removing poten-
tially important information, and oversampling may result in overfitting due to producing
duplicate copies of existing samples.

Data augmentation refers to a set of algorithms that creates synthetic data from an
existing dataset. In comparison to computer vision, NLP is still in its early stages of apply-
ing data augmentation. The most common application of data augmentation is to prevent
overfitting. Data augmentation is accomplished through the use of symbolic or neural
approaches. Neural approaches [21] include back-translation, style augmentation, and gen-
erative data augmentation. According to Shorten et al. [21], data augmentation may be
effective for addressing the issue of class imbalance. Data augmentation tasks are classified
as conditional or unconditional augmentation tasks. Unconditional data augmentation
models, such as generative adversarial networks and variational autoencoders, generate
random texts regardless of context. Unconditional data augmentation is used for this task
because the context of the information as defined by the label must be preserved.

Another augmentation technique that is used as a pipeline for text generation is back
translation (BT) or round-trip translation [22]. The BT method changes the text from
language A to language B, then back to language A for the same text. By preserving the
context of the original data, this back translation [5] aids in data diversification.

In this paper, we proposed a back-translation data augmentation method MTDOT
using Malayalam and English as an intermediate language for handling class imbalance.

3. Dataset

The dataset is collected from FIRE 2021’s Dravidian CodeMix under the sub-division
of HASOC’21 [4] competition. The data set contains Tamil YouTube comments along with
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the labels and text IDs. The labels indicate whether the comment is offensive (OFF), non-
offensive (NOT), or not-Tamil. Since there were only three not-Tamil comment entries and
the testing data did not include any other language comments, they were discarded. The
examples of offensive comment and non-offensive comment are shown in Figure 1.

Figure 1. YouTube Comments in HASOC’21 dataset

There are 6531 YouTube comments without the not-Tamil comments. The class dis-
tribution in the dataset is shown in Table 1. The labels are thus: OFF indicating offensive
and NOT indicating non-offensive. A total of 5877 comments were used as training data,
where the data were further split into 80–20 percent, with 4701 serving as training data and
1176 serving as validation data. The remaining 654 comments from the overall data set are
used for testing purposes. The testing set contains 536 non-offensive comments and 118
offensive entries.

Table 1. HASOC’21 Dataset class distribution.

Label Category Count

NOT Non-offensive 4724
OFF Offensive 1153
not-Tamil Language other than Tamil/code-mixed Tamil and English 3

4. Methodology

In this work, a class balancing method is proposed for balancing the HASOC’21 [4]
dataset in Tamil for offensive content identification. The architecture of proposed system is
shown in Figure 2.

The proposed system (Figure 2) for the detection of offensive content from YouTube
comments in Tamil contains the following steps:

• The proposed Multilingual Translation based Data augmentation technique (MTDOT)
is applied on the imbalanced Tamil text data, and the balanced data are obtained in
the first step.

• In the second step, MuRIL (Multilingual Representation for Indian Languages) is used
as an embedding layer to obtain the representation of YouTube comments written in
Tamil script.

• The embedding vectors generated from MuRIL layers are then provided to differ-
ent classifiers.

The detailed description of each step in the proposed system is provided in the
following subsections.
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Figure 2. Architecture of proposed MTDOT method.

4.1. Balancing the Dataset

In Data Augmentation (DA) algorithms, synthetic data are constructed from the
samples of the dataset. One application of data augmentation is fixing imbalance by
augmenting minority class samples. In the back-translation method, text is translated
from one language to another and then back to the original language. The process of data
augmentation using back translation is shown in Figure 3.

Figure 3. Balancing the dataset using the back-translation method for data augmentation.

In this method, three different ways of back translation have been used. The comments
in the dataset were in Tamil language and written in Tamil script. Because the imbalance
ratio is 4, the offensive comments must be augmented three times to balance the dataset
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completely. For each offensive comment, we generated three augmented comments using
the following methods:

• Tamil comment is translated to English and then back to Tamil (TET).
• Tamil comment is translated to Malayalam; then, the Malayalam comment is translated

to English, and it is then back-translated to Tamil (TMET). Here, Malayalam and
English are used as intermediate languages.

• Tamil comment is translated to Malayalam; then, the Malayalam comment is translated
to English, and finally to Tamil (TMEMT). Here, Malayalam is used as an intermediate
language twice.

The first balanced dataset (TET+TMET+TMEMT) contains all comments from the
original dataset and augmented comments generated by the above methods.

The second balanced dataset (TMT+TKT+TTeT) contains the original dataset and the
augmented offensive comments. Each offensive comment is augmented three times using
the following methods:

• Tamil comment is translated to Malayalam and then back to Tamil (TMT).
• Tamil comment is translated to Kannada and then back to Tamil (TKT).
• Tamil comment is translated to Telugu and then back to Tamil (TTeT).

4.2. Word Embeddings

Word embedding is a term used for the representation of words for text analysis,
which is typically in the form of a real-valued vector that encodes the meaning of the word
such that the words that are closer in the vector space are expected to be similar in meaning.

In text embedding, tokens are represented as vectors which are a numerical repre-
sentation of the word´s semantic meaning. These vectors can be utilised to train machine
learning models for NLP-related tasks. TF-IDF is one of these text-embedding techniques.
Classic embedding models have one disadvantage, though. They undergo polysemy dis-
ambiguation, in which a token or word with multiple meanings is represented by the
same vector.

MuRIL [23], or Multilingual Representations for Indian Languages, is a BERT model
that has been pre-trained by Google’s Indian Research Unit. It is a multilingual language
model trained exclusively on Indian text corpora. The corpora used by the authors is also
subject to augmentation by translation and transliteration. The model has been trained
on 17 languages, including English and 16 different Indian languages. It is trained in two
phases: masked language modeling and translation language modeling. By evaluating
the model on Indian language tasks and comparing it to the mBERT model, the authors
conclude that MuRIL outperforms mBERT for all objectives. In this work, the MuRIL model
is used as an embedding layer. After tokenization, the tokens are provided to the MuRIL
pre-trained model to generate embedding vectors.

The first dimension of output represents the number of layers (12 layers + embed-
ding layer), the second represents the number of tokens, and the third is the hidden size.
The sentence embedding can be extracted by averaging over the layers and tokens (usually,
the last four layers are considered, but one can take the average over all the layers as well).
The contextual word embeddings can be extracted by the sum over the corresponding
token outputs (as input, tokens here are subword units and not the words) with an average
over the layers.

Although some comments in the offensive content dataset contain multiple sentences,
the average sentence length is one. Each comment is labeled as ‘OFF’ (Offensive) or ‘NOT’
(Non-offensive). The text in the comment (single or multi-sentence) is tokenized and
provided to the MuRIL embedding layer, which generates embedding vectors for the input
tokens. These embedding vectors and their labels are fed into classifiers as training data.
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4.3. Classifiers

Various classifiers that were trained on the dataset are used to study the effect of
balancing the dataset. The embedding vectors generated from the pre-trained model
are provided as input to these classifiers. Classifiers such as Support Vector Machine,
Naive Bayes, K-NN, Decision Tree, Random Forest and Majority Voting are used for
the experiments.

Support Vector Machine (SVM) is a supervised learning model used for classification,
regression, and outlier detection. The objective of the SVM algorithm is to generate the
optimal line or decision boundary that divides n-dimensional space into classes, so that
subsequent data points can be classified easily. This optimal decision boundary is referred
to as a hyperplane.

Naive Bayes classifiers are a family of simple probabilistic classifiers based on applying
Bayes’ theorem. It is a highly scalable classifier used in various classification application
domains. The fundamental idea behind Naive Bayes is that each feature makes an equal
and independent contribution to the outcome.

K-Nearest Neighbor (K-NN) is a supervised machine learning algorithm. The K-NN
algorithm assumes similarity between the new case/data and existing cases and places the
new case in the category that is most similar to the existing categories.

A Decision Tree is a simple yet powerful and useful tool for data prediction and
classification. The primary purpose of this model is to forecast an instance’s values by
learning decision rules based on data properties. An instance begins at the root node and
descends to the next equivalent node based on the categorization produced by the test
property. This instance advances down the tree branch and repeats the operation with the
next sub-tree.

In ensemble learning, several models are combined to achieve better predictive per-
formance compared to a single model. Ensemble learning is frequently used to enhance
a model’s performance (classification, prediction, function approximation, etc.) Bagging,
stacking, and boosting are the three main categories of ensemble learning methods. In
bagging, many Decision Trees are trained on different samples of the same dataset, and the
predictions are averaged. In stacking, different models are trained on the same data, and
another model is used to determine the best way to combine the predictions. In boosting,
models are added sequentially to correct the prior model predictions, and the weighted
average of the predictions is produced.

One such ensemble model is the Random Forest, which uses the bagging ensemble
approach and decision trees as individual models. When working collectively, a large
number of highly non-correlated models will outperform each of the component models
separately. Here, the main element is the low correlation between models. Despite the fact
that individual trees may make false predictions, the majority of them will be right; thus,
the tree moves in the right direction as a group.

The Majority Voting Ensemble is yet another approach to ensemble learning in which
the predictions from multiple other models are combined. When it comes to classification,
the predictions for each label are added together, and the label with the most votes is
predicted. It is a meta model i.e., a model of models with a collection of existing ma-
chine learning models. The models used are: Naive Bayes, K-NN, Decision Tree and
Random Forest.

The above-mentioned models have been abbreviated for ease of representation, as
shown in Table 2.
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Table 2. Classifiers and their abbreviations.

Classifier Abbreviation

Support Vector Machine SVM
Naive Bayes NB
K-Nearest Neighbor KNN
Decision Tree DT
Random Forest RF
Majority Voting Ensemble MV

4.4. Evaluation Metrics

To assess the effectiveness of the downstream model, performance metrics such as
accuracy, precision, recall, and F1-score were used. The ratio of the number of correct
predictions over the total number of predictions is referred to as accuracy and is given
in Equation (1). Precision (Equation (2)), recall (Equation (3)), and F1-score were used as
performance metrics because accuracy alone is insufficient to measure true performance.
F1-score is a harmonic mean of precision and recall. The formula for F1-score is given in
Equation (4).

Accuracy =
True Positive + True Negative

True Positive + False Positive + False Negative + True Positive
(1)

Precision =
True Positive

True Positive + False Positive
(2)

Recall =
True Positive

True Positive + False Negative
(3)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

Since the dataset is imbalanced with more non-offensive comments than offensive
ones, accuracy is not a suitable evaluation metric. The offensive class, which has fewer
samples in the dataset we used for this study, is more important, but its misclassification
has little effect on accuracy. So, the weighted average for precision, recall and F1-score has
been used. Here, the precision, recall, and F1-scores are calculated for each label, and then,
the average is weighted by support.

In addition to the above listed metrics, the Bilingual Evaluation Understudy Score
(BLEU score) proposed by Kishore Papineni [24] has also been used. It is a metric used to
compare a generated sentence to a reference sentence. A score of 1.0 indicates a perfect
match, whereas a score of 0.0 indicates a perfect mismatch. Although it was designed
for translation, it can also be used to assess text output for a variety of natural language
processing tasks. The BLEU score can also be used to various language generating issues
using deep learning techniques, such as text summarization, language generation, image
caption generation, and speech recognition. The BLEU score is used to evaluate how the
generated augmented comments varies from the original one. An implementation of the
BLEU score is provided by the Python Natural Language Toolkit library or NLTK.

5. Experiments

In this study, we have used the HASOC’21 dataset [4] for offensive content identifi-
cation. Since the data are written in native/Tamil script, the task of identifying offensive
content is challenging. As a result, techniques applicable to commonly used English-
language NLP models will not be applicable to this type of data.

Various experiments are conducted with the following objectives:

1. To study the classifiers’ performance for the original imbalanced Tamil text data.
2. To study the effect of balancing the data using the NearMiss undersampling technique.
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3. To study the effect of balancing the data using the SMOTE oversampling technique.
4. To study the effect of balancing the data using the single-level back-translation aug-

mentation method for balancing.
5. To study the impact of the proposed MTDOT class balancing method.

5.1. Experimental Setup

The dataset is preprocessed by removing special characters such as [, +, /, #, @, &, etc.
After preprocessing, the dataset is split into a training and validation set with a validation
set size of 20% and a random state of 42. The tokenizer provided for the MuRIL model
is used to tokenize the dataset’s texts. The model is imported using the Python package
for the Hugging Face Transformer. The maximum token size is 512 characters. The pre-
trained MuRIL model embedding layer receives the tokenized text as input and returns
embedding vectors. After max pooling, the model generates a final vector with a length of
768. The different downstream classifiers, such as Support Vector Machine, Naive Bayes,
K-Nearest Neighbor, Decision Tree, Random Forest, and Majority Voting, are then trained
using the vectors. The Translators python library is used for translating the Tamil text into
different languages.

5.2. Baseline Experiment with Original Dataset

In the first experiment, the classifiers were trained on the original offensive content
identification dataset. The steps followed in training are described in the experimental
setup section. The precision, recall and F1-score for all the classifiers for the non-offensive
class and offensive class are shown in Figures 4 and 5, respectively. For the non-offensive
class, the highest precision of 0.93 (Naive Bayes), recall of 1.00 (Support Vector Machine)
and F1-score of 0.90 (Random Forest and Majority Voting) are achieved. Except for Naive
Bayes (NB), all classifiers achieved almost the same precision for the non-offensive class.

For the offensive class, which is of more interest, the highest precision of 0.66 (Random
Forest), recall of 0.75 (Naive Bayes) and F1-score of 0.53 (Naive Bayes) is achieved. SVM
does not perform well in the classification of offensive class comments. Due to the presence
of imbalanced data, separating the hyperplane produced by an SVM is biased toward the
minority class. The ratio of positive (offensive) to negative (non-offensive) support vectors
becomes more imbalanced as the data imbalance increases; thus, samples at the boundary
of the hyperplane are therefore more likely to be labeled as non-offensive. Naive Bayes
performs comparatively well for both the offensive and non-offensive class as compared to
other classifiers.

Figure 4. Non-offensive class results for original imbalanced dataset.
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Figure 5. Offensive class results for original imbalanced dataset.

5.3. Near Miss Undersampling Method for Addressing Class Imbalance

The classifiers perform poorly for the offensive class in comparison with the non-
offensive class, which is evident from Figures 4 and 5. This degradation in performance is
due to the class imbalance in the dataset. In this experiment, the Near Miss undersampling
method [19] is used to obtain a balanced dataset. Near Miss is a group of undersam-
pling techniques that pick examples based on the distance between the majority and
minority class examples. The technique comes in three versions: NearMiss-1, NearMiss-2,
and NearMiss-3. In this experiment, NearMiss-3 is used, where the majority of the class
examples that are closest to each minority class example is selected.

The classifier results for the offensive class are shown in Figure 6. Except for Naive
Bayes, the offensive class F1-score increased after applying the Near Miss undersampling
algorithm. For Random Forest and Majority Voting, the highest F1-score of 0.48 is achieved.
For the balanced dataset using Near Miss, the classifiers’ F1-scores range from 0.36 to
0.48 points.

Figure 6. Offensive class F1-scores for original and balanced dataset (Near Miss).
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5.4. SMOTE Based Method for Addressing Class Imbalance

In this experiment, the dataset is balanced using the SMOTE [6] oversampling method.
Synthetic Minority Oversampling TEchnique (SMOTE) [6] is a widely used oversampling
approach in which new synthetic examples are generated for the minority class (offensive
class). In this technique, first, a random minority class example is selected. Next, K-Nearest
Neighbors for that example are located (k is normally equal to 5). A synthetic example
is created at a randomly chosen point in feature space between two examples and its
randomly chosen neighbor. As many synthetic examples of the minority class as needed
can be created using this approach.

The classifier results for the offensive class are shown below in Figure 7. The F1-score
for the offensive class has increased after balancing, with the exception of Naive Bayes.
Because some minority samples are repeated in SMOTE, so no new information is gained,
Naive Bayes does not perform well in this situation. Support Vector Machines achieve the
highest F1-score of 0.53. For the Random Forest ensemble classifier, the maximum precision
of 0.52 is achieved. For the balanced dataset using SMOTE, the classifiers’ F1-scores range
from 0.39 to 0.53 points.

Figure 7. Offensive class F1-scores for original and balanced dataset (SMOTE).

5.5. Single-Level Back-Translation Augmentation Method for Addressing Class Imbalance

The ratio of offensive comments to non-offensive comments in the offensive content
identification dataset is 1:4. In this experiment, data augmentation is used to generate
new offensive comments to obtain a balanced dataset. The offensive class samples are
generated using the back-translation data augmentation method. Each offensive comment
is augmented three times using TMT, TKT, and TTeT back-translation, with Malayalam,
Kannada, and Telugu as an intermediate language, respectively. Figure 3 illustrates the
back-translation process. The number of comments per class before and after balancing
using data augmentation is shown in Figure 8.

The offensive class F1-score achieved by all the classifiers is shown in Figure 9. There is
a significant improvement in performance compared to SMOTE. The F1-score improvement
is highest for ensemble classifiers, Random Forest and Majority Voting, rising from 0.49
to 0.82.
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Figure 8. Class distribution before and after balancing the dataset.

Figure 9. Offensive class F1-scores for original and balanced dataset (TMT + TKT + TTeT).

5.6. Multi-Level Back-Translation Augmentation Method for Addressing Class Imbalance

In this experiment, we studied how the quality of generated samples and the perfor-
mance of classifiers varied when multiple languages were used as intermediate languages
instead of just one. Based on the back-translation augmentation method, we have proposed
the class balancing method ‘MTDOT’, where more than one intermediate language is used.
Malayalam and the English language are used for augmenting the offensive comments
in three ways. The first method involves translating Tamil comments into English and
then back into Tamil. The Tamil comment is translated to Malayalam, then to English,
and then back to Tamil in the second method. Finally, the Tamil comment is translated
to Malayalam, then to English, then back to Malayalam, and finally to Tamil. Figure 10
depicts the offensive class F1-score obtained by all classifiers.

Compared to SMOTE, this method also achieved a significant improvement in offen-
sive class F1-score. The highest improvement in F1-score is achieved for ensemble classifiers,
Random Forest and Majority Voting, rising from 0.49 to 0.81.
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Figure 10. Offensive class F1-scores for original and balanced dataset (TET + TMET + TMEMT).

6. Results and Discussion

To study the effect of balancing the offensive content data, experiments are conducted
using four methods, namely: Near Miss, SMOTE, the single-level back-translation aug-
mentation method and our proposed MTDOT class balancing method. Table 3 displays
the precision, recall, and F1-score for each class as well as the weighted average for all
classifiers for the original dataset and the class-balanced dataset. The precision (P), recall
(R), and F1-score (F1) for the HASOC’21 dataset are listed in the column named Original
Dataset.

Table 3. Performance analysis of existing undersampling, oversampling and proposed method.

Classifier Class Original Dataset Balanced Dataset
Near-Miss SMOTE TMT + TKT + TTeT TET + TMET + TMEMT

P R F1 P R F1 P R F1 P R F1 P R F1

SVM
NOT 0.81 1.00 0.89 0.84 0.95 0.90 0.93 0.74 0.82 0.65 0.87 0.74 0.73 0.80 0.76
OFF 0.00 0.00 0.00 0.57 0.26 0.36 0.41 0.75 0.53 0.81 0.54 0.65 0.77 0.69 0.73
Wt.avg 0.65 0.81 0.72 0.79 0.82 0.79 0.83 0.74 0.77 0.73 0.70 0.69 0.75 0.75 0.75

NB
NOT 0.93 0.74 0.82 0.88 0.68 0.77 0.90 0.75 0.82 0.74 0.71 0.72 0.76 0.75 0.76
OFF 0.41 0.75 0.53 0.31 0.61 0.41 0.38 0.66 0.48 0.72 0.75 0.74 0.74 0.76 0.75
Wt.avg 0.83 0.74 0.77 0.77 0.67 0.77 0.80 0.73 0.75 0.73 0.73 0.73 0.75 0.75 0.75

KNN
NOT 0.84 0.95 0.89 0.85 0.90 0.87 0.97 0.56 0.71 0.78 0.85 0.81 0.78 0.85 0.81
OFF 0.54 0.23 0.33 0.44 0.33 0.38 0.33 0.92 0.49 0.84 0.76 0.80 0.83 0.76 0.79
Wt.avg 0.78 0.81 0.78 0.77 0.79 0.78 0.84 0.63 0.67 0.81 0.81 0.81 0.81 0.80 0.80

DT
NOT 0.85 0.83 0.84 0.87 0.63 0.73 0.86 0.80 0.83 0.70 0.72 0.71 0.72 0.70 0.71
OFF 0.35 0.38 0.37 0.27 0.59 0.37 0.35 0.44 0.39 0.71 0.70 0.70 0.70 0.72 0.71
Wt.avg 0.75 0.75 0.75 0.75 0.62 0.66 0.76 0.73 0.75 0.71 0.71 0.71 0.71 0.71 0.71

RF
NOT 0.84 0.97 0.90 0.34 0.77 0.48 0.88 0.90 0.89 0.82 0.82 0.82 0.81 0.82 0.82
OFF 0.66 0.22 0.33 0.34 0.77 0.48 0.52 0.46 0.49 0.82 0.82 0.82 0.81 0.80 0.81
Wt.avg 0.81 0.83 0.79 0.81 0.67 0.71 0.81 0.81 0.81 0.82 0.82 0.82 0.81 0.81 0.81

MV
NOT 0.84 0.97 0.90 0.90 0.77 0.83 0.89 0.80 0.85 0.81 0.84 0.83 0.81 0.83 0.82
OFF 0.60 0.21 0.31 0.39 0.63 0.48 0.42 0.59 0.49 0.84 0.80 0.82 0.82 0.80 0.81
Wt.avg 0.79 0.82 0.78 0.80 0.74 0.76 0.80 0.76 0.78 0.83 0.82 0.82 0.82 0.82 0.82

The results of the Near Miss undersampling algorithm are displayed in the Near Miss
column in Table 3. The performance of the majority of classifiers is improved after balancing
the dataset using the Near Miss algorithm. In the third column, named SMOTE, results
from the widely used SMOTE oversampling method are presented to demonstrate the
efficacy of our balancing technique. SMOTE performed better than Near Miss. The dataset
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used in this work is of small size, containing 5880 samples. In undersampling, the majority
of the class samples are removed, making the dataset size smaller. The less training data is
the reason for Near Miss performing worse than SMOTE.

The results for the HASOC’21 dataset balanced using the back-translation data aug-
mentation method with Malayalam (TMT), Kannada (TKT), and Telugu (TTeT) as inter-
mediate languages are displayed in the column named TMT + TKT + TTeT. In the last
column named TET + TMET + TMEMT, the results for the HASOC’21 dataset balanced
using the multi-level back-translation data augmentation method (MTDOT) with Malay-
alam and English as intermediate languages are listed. Because accurately identifying
offensive comments is of more importance, the F1-scores for the offensive class are shown
in bold. The highest F1-score for the offensive class is displayed in blue. The graph of the
comparative performance of all classifiers for the offensive class is shown in Figure 11.

Figure 11. Offensive class F1-score for original dataset and balanced dataset.

The F1-score for the ‘OFF’ (offensive) class in the original dataset is extremely low,
ranging from 0 to 0.31, which is a serious issue. The F1-score of the offensive class for the
balanced dataset has improved significantly for all classifiers, as seen in Table 3. The highest
F1-score of 0.81 is achieved for the ‘OFF’(offensive) class for Random Forest and majority
voting ensemble models. The proposed data-augmentation-based class balancing technique
(MTDOT) outperforms the SMOTE oversampling method. For Support Vector Machines,
the performance improvement is greatest when compared to SMOTE.

Data augmentation is implemented in two ways. For the first, three intermediate
languages are used for back-translation: Tamil–Malayalam–Tamil (TMT), Tamil–Kannada–
Tamil (TKT), and Tamil–Telugu–Tamil (TTeT). In multi-level back translation, English and
Malayalam are used as intermediate languages at three levels: Tamil–English–Tamil (TET),
Tamil–Malayalam–English–Tamil (TMET), and Tamil–Malayalam–English–Malayalam–
Tamil (TMEMT). The performance improvement over the original unbalanced dataset is
nearly identical for both methods. As a result, any method can be adopted for data aug-
mentation. The BLEU score is computed to assess the quality of the generated statements
as discussed in Section 4.4. The BLEU scores for the balanced dataset are shown in Table 4.

Table 4. BLEU Score.

Dataset BLEU Score

TMT + TKT + TTeT 0.258
TET + TMET + TMEMT 0.205



Electronics 2022, 11, 3574 16 of 17

For the TMT + TKT + TTeT dataset, the BLEU score is 0.258, and for TET + TMET +
TMEMT, it is 0.205. This signifies that multi-layer back translation augmentation generates
more diversified data than single-level back translation augmentation.

The F1-score for the offensive class, as well as the weighted average of the F1-scores
for the offensive class and the non-offensive class, increased significantly for the balanced
dataset, as shown in Table 3. Support Vector Machine shows the highest improvement
in F1-score of offensive class from 0.0 to 0.73, Naive Bayes from 0.53 to 0.75, K-NN from
0.33 to 0.80, Decision Tree from 0.37 to 0.71, Random Forest from 0.33 to 0.81, and Majority
Voting from 0.31 to 0.81.

7. Conclusions

In this research work, we proposed a Multilingual Translation-based Data augmen-
tation technique for Offensive content identification in Tamil text data (MTDOT) that can
boost the performance of low-resource language and imbalanced data classification tasks.
The back-translation augmentation method is used in three levels for generating synthetic
offensive comments. The efficacy of the proposed method on the Tamil offensive con-
tent identification dataset (HASOC’21) is demonstrated by comparing it with the popular
SMOTE class balancing method. The experimental results showed the significant improve-
ment in the performance of various classifiers, after applying the class balancing MTDOT
method. The advantage of the proposed method is that diversified data samples can be ob-
tained without changing the contextual information. By using single-level back translation
with Malayalam, Kannada, and Telugu as intermediate languages, we constructed another
balanced dataset. Despite the fact that both methods are equally effective, our proposed
MTDOT method yields more diverse data, which is evident with the improved BLEU
score. The proposed method can be applied to any language, and it can be used for balanc-
ing extremely imbalanced datasets without the need for a large number of intermediate
languages. In the future, we aim to apply this method to other similar tasks.
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