Enhanced Metaheuristic Algorithm-Based Load Balancing in a 5G Cloud Radio Access Network
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.3. Objectives
- To achieve minimum call blocking in the network and to solve the load balancing optimization problem with the proposed enhanced cat swarm optimization algorithm;
- To identify suitable BBU-RRH configuration by the host manager based on collected information from all the RRHs in the network;
- To analyze the QoS information of the current BBU-RRH configuration and to utilize its optimization step to analyze the QoS of each candidate solution for the new BBU-RRH configuration;
- To evaluate the performance of this proposed approach in terms of blocking probability, response time, and throughput.
2. Cloud-RAN System Architecture
Load Balancing in the 5G Cloud Radio Access Network
3. Enhanced CAT Optimization Algorithm Based Load Balancing in the 5G Cloud Radio Access Network
- The individual position of each cat is represented.
- Visual memory pool copy locations are remembered.
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BBU | Baseband unit |
CSO | Cat swarm optimization |
Cloud-RAN | Cloud Radio Access Network |
COMP | Coordinated multipoint transmission |
CMRI | Common Public Radio Interface |
ECSO | Enhanced Cat Swarm Optimization Algorithm |
GPP | General Purpose Processors |
IOT | Internet of Things |
KPI | Key Performance Indicators |
LAN | Local Area Network |
MIMO | Multiple Input Multiple Output |
NPV | Network Performance Virtualization |
PSO | Particle Swarm Optimization |
QoS | Quality of service |
RRH | Remote Radio Head |
References
- Wu, J.; Zhang, Z.; Hong, Y.; Wen, Y. Cloud radio access network (C-RAN): A primer. Inst. Electr. Electron. Eng. Netw. 2015, 29, 35–41. [Google Scholar] [CrossRef]
- Dai, B.; Yu, W. Sparse Beamforming and User-Centric Clustering for Downlink Cloud Radio Access Network. Inst. Electr. Electron. Eng. Access 2014, 2, 1326–1339. [Google Scholar] [CrossRef]
- Simeone, O.; Maeder, A.; Peng, M.; Sahin, O.; Yu, W. Cloud radio access network: Virtualizing wireless access for dense heterogeneous systems. J. Commun. Netw. 2016, 18, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Yu, W. Optimized Backhaul Compression for Uplink Cloud Radio Access Network. IEEE J. Sel. Areas Commun. 2014, 32, 1295–1307. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Tay, W.P.; Quek, T.Q.S. Cross-Layer Resource Allocation With Elastic Service Scaling in Cloud Radio Access Network. IEEE Trans. Wirel. Commun. 2015, 14, 5068–5081. [Google Scholar] [CrossRef]
- Suresh, K.; Kumaratharan, N. SDN Controller Allocation and Assignment based on Multicriterion Chaotic Salp Swarm Algorithm. Intell. Autom. Soft Comput. 2021, 27, 89–102. [Google Scholar] [CrossRef]
- Hung, S.-C.; Hsu, H.; Lien, S.-Y.; Chen, K.-C. Architecture Harmonization Between Cloud Radio Access Networks and Fog Networks. IEEE Access 2015, 3, 3019–3034. [Google Scholar] [CrossRef]
- Tran, T.X.; Kazemi, F.; Karimi, E.; Pompili, D. Mobee: Mobility-aware energy-efficient coded caching in cloud radio access networks. In Proceedings of the IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems, Orlando, FL, USA, 22–25 October 2017; pp. 461–465. [Google Scholar]
- Suresh, K.; Kumaratharan, N. Performance Modelling of Service Function Chaining in Distributed Controllers Secure Black SDN with NFV Architecture. Solid State Technol. 2020, 63, 7558–7567. [Google Scholar]
- Li, J.; Peng, M.; Cheng, A.; Yu, Y.; Wang, C. Resource allocation optimization for delay-sensitive traffic in fronthaul constrained cloud radio access networks. IEEE Syst. J. 2014, 11, 2267–2278. [Google Scholar] [CrossRef] [Green Version]
- Ugur, Y.; Awan, Z.H.; Sezgin, A. Cloud radio access networks with coded caching. In Proceedings of the 20th International ITG Workshop on Smart Antennas, Munich, Germany, 9–11 March 2016; pp. 1–5. [Google Scholar]
- Khan, M.; Alhumaima, R.S.; Al-Raweshidy, H.S. QoS-Aware Dynamic RRH Allocation in a Self-Optimized Cloud Radio Access Network With RRH Proximity Constraint. IEEE Trans. Netw. Serv. Manag. 2017, 14, 730–744. [Google Scholar] [CrossRef]
- Tran, T.X.; Le, D.V.; Yue, G.; Pompili, D. Cooperative Hierarchical Caching and Request Scheduling in a Cloud Radio Access Network. IEEE Trans. Mob. Comput. 2018, 17, 2729–2743. [Google Scholar] [CrossRef]
- Liu, L.; Patil, P.; Yu, W. An uplink-downlink duality for cloud radio access network. In Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 1606–1610. [Google Scholar]
- Wang, X.; Wang, K.; Wu, S.; Di, S.; Yang, K.; Jin, H. Dynamic resource scheduling in cloud radio access network with mobile cloud computing. In Proceedings of the IEEE/ACM 24th International Symposium on Quality of Service (IWQoS), Beijing, China, 20–21 June 2016; pp. 1–6. [Google Scholar]
- Niu, B.; Zhou, Y.; Shah-Mansouri, H.; Wong, V.W. A dynamic resource sharing mechanism for cloud radio access networks. IEEE Trans. Wirel. Commun. 2018, 12, 8325–8338. [Google Scholar] [CrossRef]
- Marotta, M.A.; Kaminski, N.; Gomez-Miguelez, I.; Granville, L.Z.; Rochol, J.; DaSilva, L.; Both, C.B. Resource sharing in heterogeneous cloud radio access networks. IEEE Wirel. Commun. 2015, 22, 74–82. [Google Scholar] [CrossRef]
- Karneyenka, U.; Mohta, K.; Moh, M. Location and mobility aware resource management for 5G cloud radio access networks. In Proceedings of the International Conference on High Performance Computing & Simulation (HPCS), Genoa, Italy, 17–21 July 2017; pp. 168–175. [Google Scholar]
- Medeiros, G.O.; Costa, J.C.W.A.; Cardoso, D.L.; Santos, A.D.F. An Intelligent SDN Framework Based on QoE Predictions for Load Balancing in C-RAN. Wirel. Commun. Mob. Comput. 2020, 2020, 7065202. [Google Scholar] [CrossRef]
- Mahapatra, B.; Turuk, A.K.; Panda, S.K.; Patra, S.K. Utilization-aware VB migration strategy for inter-BBU load balancing in 5G cloud radio access networks. Comput. Netw. 2021, 181, 107507. [Google Scholar] [CrossRef]
- Mahapatra, B.; Turuk, A.K.; Ray, N.; Yadav, A.K. H-RAN: An Approach toward Cloud-RAN Load Balancing. In Proceedings of the International Conference on Information Technology (ICIT) 2018, Bhubaneswar, India, 19–21 December 2018; pp. 216–220. [Google Scholar]
- Patil, A.; Gala, H.; Kapoor, J. Dynamic Load Balancing in Cloud Computing using Swarm Intelligence Algorithms. Int. J. Comput. Appl. 2015, 15, 15–21. [Google Scholar]
- You, Q.; Tang, B. Efficient task offloading using particle swarm optimization algorithm in edge computing for industrial internet of things. J. Cloud Comput. Adv. Syst. Appl. 2021, 10, 1–11. [Google Scholar] [CrossRef]
- Jo, M.; Maksymyuk, T.; Strykhalyuk, B.; Cho, C.H. Device-to-device-based heterogeneous radio access network architecture for mobile cloud computing. IEEE Wirel. Commun. 2015, 3, 50–58. [Google Scholar] [CrossRef]
- Pompili, D.; Hajisami, A.; Viswanathan, H. Dynamic provisioning and allocation in Cloud Radio Access Networks (C-RANs). Ad Hoc Netw. 2015, 30, 128–143. [Google Scholar] [CrossRef]
- Liu, L.; Bi, S.; Zhang, R. Joint Power Control and Fronthaul Rate Allocation for Throughput Maximization in OFDMA-Based Cloud Radio Access Network. IEEE Trans. Commun. 2015, 63, 4097–4110. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Han, S.; Yang, C.; Zhang, Q. Semi-dynamic User-Specific Clustering for Downlink Cloud Radio Access Network. IEEE Trans. Veh. Technol. 2015, 65, 2063–2077. [Google Scholar] [CrossRef]
- Boulos, K.; ElHelou, M.; Lahoud, S. RRH clustering in cloud radio access networks. In Proceedings of the International Conference on Applied Research in Computer Science and Engineering (ICAR), Beiriut, Lebanon, 8–9 October 2015; pp. 1–6. [Google Scholar]
- Miyanabe, K.; Suto, K.; Fadlullah, Z.M.; Nishiyama, H.; Kato, N.; Ujikawa, H.; Suzuki, K.I. A cloud radio access network with power over fiber toward 5G networks: QoE-guaranteed design and operation. IEEE Wireless Commun. 2015, 4, 58–64. [Google Scholar] [CrossRef]
- Liu, L.; Yu, W. Cross-Layer Design for Downlink Multihop Cloud Radio Access Networks With Network Coding. IEEE Trans. Signal Process. 2017, 65, 1728–1740. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, K.; Wu, S.; Di, S.; Jin, H.; Yang, K.; Ou, S. Dynamic Resource Scheduling in Mobile Edge Cloud with Cloud Radio Access Network. IEEE Trans. Parallel Distrib. Syst. 2018, 29, 2429–2445. [Google Scholar] [CrossRef] [Green Version]
- Budhdev, N.; Maity, A.; Chan, M.C.; Mitra, T. Load balancing for a user-level virtualized 5G cloud-RAN. In MobiArch ’22: 17th ACM Workshop on Mobility in the Evolving Internet Architecture, Proceedings of the ACM MobiCom ’22: The 28th Annual International Conference on Mobile Computing and Networking, Sydney, NSW, Australia, 21 October 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Ari, A.A.A.; Gueroui, A.; Titouna, C.; Thiare, O.; Aliouat, Z. Resource allocation scheme for 5G C-RAN: A Swarm Intelligence based approach. Comput. Netw. 2021, 165. [Google Scholar] [CrossRef]
- Zhong, C.-H.; Guo, K.; Zhao, M. Online Sparse Beamforming in C-RAN: A Deep Reinforcement Learning Approach. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, T.; Yang, L. Joint user association and resource allocation for load balancing in RAN slicing. Phys. Commun. 2021, 49, 101459. [Google Scholar] [CrossRef]
- Suresh, K.; Kumaratharan, N. Call Admission Control Decision Maker Based on Optimized Fuzzy Inference System for 5G Cloud Radio Access Networks. Wirel. Pers. Commun. 2021, 120, 749–769. [Google Scholar] [CrossRef]
Simulation Parameter | Values Assumed |
---|---|
Cells considered | 1 |
Cell shape | Hexagonal |
RRHs Number | 10 |
GPPIdle power | 120 W |
GPPMaximum power | 215 W |
Bandwidth | 20 MHz |
Users Count | 75 |
Blocking Probability | Traffic Load | ||
---|---|---|---|
PSO | CSO | ECSO | |
0.05 | 0.22 | 0.15 | 0.1 |
0.1 | 0.53 | 0.39 | 0.2 |
0.15 | 0.57 | 0.46 | 0.25 |
0.2 | 0.61 | 0.47 | 0.3 |
0.25 | 0.66 | 0.53 | 0.42 |
0.3 | 0.71 | 0.55 | 0.45 |
0.35 | 0.78 | 0.72 | 0.67 |
0.4 | 0.85 | 0.77 | 0.70 |
0.45 | 0.89 | 0.80 | 0.76 |
0.5 | 1.1 | 1.0 | 0.9 |
Response Time | Traffic Load | ||
---|---|---|---|
PSO | CSO | ECSO | |
0.098 | 0.45 | 0.38 | 0.1 |
0.099 | 0.54 | 0.41 | 0.15 |
0.1 | 0.66 | 0.53 | 0.23 |
0.101 | 0.72 | 0.60 | 0.29 |
0.102 | 0.77 | 0.68 | 0.36 |
0.103 | 0.83 | 0.75 | 0.41 |
0.104 | 0.89 | 0.81 | 0.59 |
0.105 | 0.95 | 0.90 | 0.63 |
0.106 | 1.03 | 0.99 | 0.78 |
0.107 | 1.10 | 1.05 | 0.81 |
0.108 | 1.15 | 1.08 | 0.95 |
Throughput (Mpbs) | Traffic Load | ||
---|---|---|---|
PSO | CSO | ECSO | |
900 | 0.05 | 0.08 | 0.1 |
1000 | 0.12 | 0.15 | 0.2 |
1100 | 0.23 | 0.39 | 0.4 |
1200 | 0.59 | 0.65 | 0.7 |
1300 | 0.64 | 0.73 | 0.8 |
1400 | 0.78 | 0.81 | 0.95 |
1500 | 0.81 | 0.94 | 0.7 |
1600 | 0.90 | 0.99 | 0.108 |
1700 | 1 | 1.1 | 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suresh, K.; Alqahtani, A.; Rajasekaran, T.; Kumar, M.S.; Ranjith, V.; Kannadasan, R.; Alqahtani, N.; Khan, A.A. Enhanced Metaheuristic Algorithm-Based Load Balancing in a 5G Cloud Radio Access Network. Electronics 2022, 11, 3611. https://doi.org/10.3390/electronics11213611
Suresh K, Alqahtani A, Rajasekaran T, Kumar MS, Ranjith V, Kannadasan R, Alqahtani N, Khan AA. Enhanced Metaheuristic Algorithm-Based Load Balancing in a 5G Cloud Radio Access Network. Electronics. 2022; 11(21):3611. https://doi.org/10.3390/electronics11213611
Chicago/Turabian StyleSuresh, Krishnamoorthy, Ali Alqahtani, Thangaraj Rajasekaran, Murugan Suresh Kumar, Venugopal Ranjith, Raju Kannadasan, Nayef Alqahtani, and Arfat Ahmad Khan. 2022. "Enhanced Metaheuristic Algorithm-Based Load Balancing in a 5G Cloud Radio Access Network" Electronics 11, no. 21: 3611. https://doi.org/10.3390/electronics11213611
APA StyleSuresh, K., Alqahtani, A., Rajasekaran, T., Kumar, M. S., Ranjith, V., Kannadasan, R., Alqahtani, N., & Khan, A. A. (2022). Enhanced Metaheuristic Algorithm-Based Load Balancing in a 5G Cloud Radio Access Network. Electronics, 11(21), 3611. https://doi.org/10.3390/electronics11213611