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Abstract: In this paper, a novel method termed the cosine approach is proposed to address the
sidelobe suppression problem in MIMO radar transmit beampattern matching design. In contrast to
the traditional optimization algorithms that try to find the optimum solutions from feasible regions,
the proposed method, starting from outside the feasible regions, aims to obtain a satisfactory solution
from a series of optimal transmit beampatterns. We first standardized the sidelobe suppression
problem in MIMO radar transmit beampattern matching design and put forward four criteria to
guide the micro-adjustment to the desired beampattern. Then, the cosine method was proposed
to adjust the desired beampattern as well as increase the main-to-sidelobe ratio (MSLR) of the
transmit beampattern. Finally, several numerical examples were chosen to test the effectiveness and
advantages of the proposed method.

Keywords: sidelobe suppression; transmit beampattern matching design; main-to-sidelobe ratio;
cosine method; MIMO radar

1. Introduction

In attempts to solve the MIMO radar transmit beampattern matching design problem,
many optimal algorithms have been developed to obtain transmit signals [1–33], such as
the gradient search algorithms [1,2], semi-definite programming algorithm [3,4,14,20], con-
vex optimization techniques [5,23], cyclic minimization algorithm [6,7,9–11], and transmit
beamspace processing techniques [8,12,13]. Although all these methods provide a compar-
atively good match to the desired beampattern, high sidelobes may still appear because the
number of element positions is limited, or the desired beampattern cannot be expanded
with finite Fourier series. Thus, it has become a challenge to design transmit signals to
satisfy the constraint of the main-to-sidelobe ratio (i.e., the ratio of the maximum peak
values of main lobe to sidelobe) as well as to match the desired beampattern as perfectly
as possible.

Recently, several methods have been put forward to address the sidelobe suppression
problem [29,34–39], in which various optimal models are established with the objective of
reducing sidelobe peaks. In contrast with these optimal models, sidelobe suppression in
transmit beampattern matching designs aims to minimize the errors between the desired
and the transmit beampatterns, while accepting the constraint of the sidelobe. Thus far,
there has been little discussion of this issue in the literature. Li and Stocia [3] provided
a weighted optimization model to reduce the sidelobe peak in a MIMO radar transmit
beampattern matching design; Hua and Abeysekera [22] developed another weighted
optimization model to control the ripple levels within the energy focusing section and the
transition bandwidth. However, in these approaches it is difficult to determine the weights,
making it hard to balance the sidelobe suppression and the error between the desired and
the transmit beampatterns.
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In this paper, we propose a novel method termed the cosine method to address the
sidelobe suppression problem in MIMO radar transmit beampattern matching design.
Through matching the continually micro-adjusted desired beampattern, the final transmit
beampattern can not only provide relatively good matching to the original desired beam-
pattern but also has higher MSLR. In contrast to the traditional optimization algorithms
which try to find the optimum solutions from feasible regions, the proposed cosine method,
starting from the outside of a feasible region, obtains a satisfactory solution from a series of
optimal transmit beampatterns.

This paper is organized as follows: Section 2 introduces the sidelobe suppression
problem in transmit beampattern matching design, and establishes a sidelobe suppression
model; Section 3 discusses the cosine method in detail, including its theoretical analysis
and algorithm; Section 4 provides several examples to test the practicability and efficiency
of the proposed method and conclusions are drawn in Section 5.

The notations in this paper are standard: (·)T represents the transpose of a matrix
or vector, (·)H is the conjugate transpose of a matrix or vector, E(·) denotes the statistical
expectation, and ‖ · ‖means the Euclidean norm of a vector.

2. Sidelobe Suppression Model

Consider an M-element uniform linear array (ULA) with inter-element spacing
d = λ/2 in a MIMO radar system and targets at the far field of the array. The transmit
signals are defined as

S =
[
s1 s2 · · · sM

]T (1)

where sm (m = 1, 2, . . . , M) means the mth transmit signal with the power equal to 1. The
beampattern of S can be written as

P(φ) = aH(φ)Ra(φ) (2)

where the steering vector a(φ) is given by

a(φ) =
[
1, e−jφ, e−j2φ, · · · , e−j(M−1)φ

]T
, φ = 2πd sin θ/λ (3)

where θ denotes the azimuth angle and θ ∈ [−π/2, π/2]. The correlation matrix R of S
can be written as

R = E
[
S*SH

]
= [rm,n]M×M (4)

where R satisfies

R=RH ‖rmn‖ ≤ 1, rnn = 1; m, n = 1, 2, · · · , M (5)

The sidelobe suppression problem in MIMO radar transmit beampattern matching
design can be expressed as follows:

On condition of fixed transmit element positions and constant transmit energy for each
element, and given a desired beampattern P̃(φ) and sidelobe constraint (MSLR > δ dB),
how can we produce the transmit signal S, making the transmit beampattern generated
by S match the desired beampattern P̃(φ) as closely as possible? We may standardize this
sidelobe suppression problem using the following model:

(I)



min
S

∫ π
−π

[
aH(φ)E

[(
S ∗ SH

)]
a(φ)− P̃(φ)

]2
dφ

s.t.

sn · sH
n = 1, n = 1, 2, · · · , M

MSLR > δ dB
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3. Cosine Method for Sidelobe Suppression

For Model (I), due to the main lobe broadening in the solving process, it is often
difficult to identify its feasible region. In this section, we propose a novel method, namely
the cosine method, to obtain a satisfactory solution. The iterative method includes 3 steps:

Step 1: Make the micro-adjustment to the desired beampattern to obtain a new desired
beampattern;

Step 2: Provide a minimum mean square error matching the new desired beampattern
and obtain an optimal transmit beampattern;

Step 3: Calculate the MSLR of the transmit beampattern. If it is not meet the MSLR
constraint, go back to Step 1.

Indeed, since [27] has provided a minimum mean square approximation of the de-
sired beampattern, our cosine method focuses on how to make the micro-adjustment
to the desired beampattern. In the following sections, we will explain how to achieve
this adjustment.

3.1. Criteria for Micro-Adjustment to the Desired Beampattern

The purpose of continual micro-adjustments to the desired beampattern is to ensure
the final transmit beampattern not only has a relatively good match to the original desired
beampattern, but also a higher MSLR. Therefore, the slightly adjusted desired beampattern
should not only meet the basic requirements of the desired beampattern [27], but also meet
the basic properties of the transmit beampattern. To guide these adjustments, we provide
the following four criteria:

1. P̂(φ) ≥ 0;

2. 1
2π

∫ π
−π P̂(φ)dφ = M;

3. P̂(φ) should be continuous and exists first order derivative;

4. lim
M→+∞

1
2π

∫ π
−π

[
P̃(φ)− P̂(φ)

]2
dφ = 0.

where P̂(φ) is micro-adjustments to the desired beampattern P̃(φ). The criteria 1–2 derive
from the basic requirements of the desired beampattern [27]; criteria 3 derives from the
transmit beampattern that can be expanded with finite Fourier series; as M increases, the
mean square error between transmit beampattern and P̃(φ) will tend to zero, so we have
criteria 4. In order to obtain a good matching transmit beampattern with higher MSLR, all
four criteria are necessary for the micro-adjustment to the desired beampattern.

According to the above four criteria, we may find many approaches to adjust the
desired beampattern. Among them, Fourier expansion is often used as an approximation
to a function. Let the Fourier expansion of the desired beampattern P̃(φ) be

P̃(φ) = a0 +
+∞

∑
k=1

ak cos kφ + bk sin kφ (6)

Then the sum of the first M items is

F̃(φ) = a0 +
M−1

∑
k=1

ak cos kφ + bk sin kφ (7)

For F̃(φ), we have the following conclusion:
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Lemma 1. [40]: Let F̃(φ) be the sum of the first M items of the Fourier expansions for the desired
beampattern P̃(φ), and T(φ) be the arbitrary M-1 trigonometric polynomial, i.e.,

T(φ) = A0 + 2
M−1

∑
k=1

Ak cos kφ + Bk sin kφ

then we have
δ2
(

P̃, F̃
)
≤ δ2

(
P̃, T

)
where

δ2
(

P̃, T
)
=

1
2π

∫ π

−π

[
P̃(φ)− T(φ)

]2
dφ

Lemma 1 shows that F̃(φ) is the minimum mean square approximation to P̃(φ) in
all M-1 trigonometric polynomial. It is obvious that F̃(φ) satisfies criteria 2–4. However,
according to [27], the desired beampattern P̃(φ) and its finite Fourier expansion F̃(φ)
have the same optimal transmit beampattern P(φ). Therefore, if P(φ) cannot satisfy the
MSLR constraint, we need to explore other approach to increase MSLR as well as meet the
four criteria.

3.2. Cosine Method

In this study, a novel method termed the cosine method is proposed to make the
micro-adjustment to the desired beampattern.

First, we identify the largest bias point φ∗ between the transmit beampattern P(φ) and
the desired beampattern P̃(φ), i.e.,∣∣∣P(φ∗)− P̃(φ∗)

∣∣∣ = max
−π≤φ≤π

∣∣∣P(φ)− P̃(φ)
∣∣∣ (8)

where P(φ) is the minimum mean square matching design of P̃(φ) [27].
Then, we select the maximum monotone interval [α, β] within φ∗ satisfying

F̃′(α) = F̃′(β)= 0, φ∗ ∈ [α, β] (9)

Finally, we use F̃(φ) in [α, β] to replace the corresponding part of P̃(φ) as follows:
(a) In the case of φ∗ ∈ (α, β), we use F̃(φ) in [α, β] to replace the corresponding part

of the desired beampattern P̃(φ). Then the adjusted desired beampattern P(φ) is

P(φ) =


P̃(β)−P̃(α)
F̃(β)−F̃(α)

[
F̃(φ)− F̃(α)

]
+ P̃(α) φ ∈ [α, β]

P̃(φ) φ /∈ [α, β]
(10)

(b) In the case of φ∗ = β, we may adjust the desired beampattern in the strict monotone
intervals [α, β] and [β, γ]. F̃(φ) in [α, β] and [β, γ] is used to replace the corresponding
parts of the desired beampattern P̃(φ). Then, the adjusted desired beampattern P(φ) is

P(φ) =


P̃(β)−P̃(α)
F̃(β)−F̃(α)

[
F̃(φ)− F̃(α)

]
+ P̃(α) φ ∈ [α, β]

P̃(γ)−P̃(β)

F̃(γ)−F̃(β)

[
F̃(φ)− F̃(β)

]
+ P̃(β) φ ∈ [β, γ]

P̃(φ) else

(11)
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(c) In the case of φ∗ = α, we may adjust the desired beampattern in the strict monotone
intervals [γ, α] and [α, β]. Similar to (b), the adjusted desired beampattern P(φ) is

P(φ) =


P̃(α)−P̃(γ)
F̃(α)−F̃(γ)

[
F̃(φ)− F̃(γ)

]
+ P̃(γ) φ ∈ [γ, α]

P̃(β)−P̃(α)
F̃(β)−F̃(α)

[
F̃(φ)− F̃(α)

]
+ P̃(α) φ ∈ [α, β]

P̃(φ) else

(12)

3.3. Four Criteria Examination

For the P(φ) in Equations (10)–(12), we may use stretch transformation to change P(φ)

P̂(φ) =
2πM∫ π

−π P(φ)dφ
P(φ) (13)

Considering P̃(φ) ≥ 0, it is obvious that P̂(φ) ≥ 0, satisfying criterion 1.
From Equation (13), we have

∫ π
−π P̂(φ)dφ = 2πM. Thus P̂(φ) also meets criterion 2.

Consider
lim

M→+∞
F̃(φ) = P̃(φ) (14)

We have the following conclusions:

Lemma 2. For a sufficiently large M, if [α, β] is a strict monotone interval of F̃(φ), then [α, β] is
also the monotone interval of P̃(φ).

From Lemma 2, since

P̂′(α) = F̃′(α) = P̃′(α) = 0, P̂′(β) = F̃′(β) = P̃′(β) = 0

P̂(φ) satisfies criterion 3.

Theorem 3. If the desired beampattern P̃(φ) is a continuous function and P̂(φ) is obtained from
Equations (10)–(12), then

lim
M→+∞

δ2
(

P̂, P̃
)
= 0

Proof: Here, we only provide the proof in the case of φ∗ ∈ (α, β). The other cases are
similar to this case. Since

lim
M→+∞

F̃(φ) = P̃(φ)

for ∀ ε > 0, ∃M∗ > 0 when M > M∗, we have

|A(φ)| =
∣∣∣∣∣ P̃(β)− P̃(α)

F̃(β)− F̃(α)

[
F̃(φ)− F̃(α)

]
−
[

P̃(φ)− P̃(α)
]∣∣∣∣∣ ≤ ε
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By Equations (10) and (13)

1
2π

∫ π
−π

[
P̂(φ)− P̃(φ)

]2
dφ

= 1
2π

∫ β
α

[
2πM

2πM+
∫ β

α A(φ)dφ
A(φ) + 2πM

2πM+
∫ β

α A(φ)dφ
P̃(φ)− P̃(φ)

]2
dφ+

1
2π

∫ α
−π

[
2πM

2πM+
∫ β

α A(φ)dφ
P̃(φ)− P̃(φ)

]2
dφ + 1

2π

∫ π
β

[
2πM

2πM+
∫ β

α A(φ)dφ
P̃(φ)− P̃(φ)

]2
dφ

≤ 2
2π

∫ β
α

[
2πM

2πM−ε(β−α)

]2
ε2dφ + 2

2π

∫ π
−π

[ ∫ β
α A(φ)dφ

2πM+
∫ β

α A(φ)dφ

]2
P̃2(φ)dφ

≤ π[2M(β−α)]2

[2πM−ε(β−α)]2
ε2 +

[(β−α)]2
∫ π
−π P̃2(φ)dφ

π[2πM−ε(β−α)]2
ε2

≤ 2πε2

that is,

lim
M→+∞

1
2π

∫ π

−π

[
P̃(φ)− P̂(φ)

]2
dφ = 0

From Theorem 3, we know that P̂(φ) satisfies criterion 4. �

3.4. Algorithm

According to the theoretical analysis above, given the sidelobe suppression level
MSLR > δ dB, here we provide an algorithm to explain our proposed cosine method:

Step 1: Let i = 0, P̃i(φ) = P̃(φ);
Step 2: Use the one-step approach in [27] to obtain the transmit beampattern Pi(φ) with

minimum mean square error to the desired beampattern P̃i(φ);
Step 3: If MSLR > δ dB, then go to end; otherwise, go to Step 4;
Step 4: Solve φ∗, satisfying∣∣∣Pi(φ

∗)− P̃i(φ
∗)
∣∣∣ = max

−π≤φ≤π

∣∣∣Pi(φ)− P̃i(φ)
∣∣∣

and let F̃i(φ) be the first M items of P̃i(φ) Fourier expansion, identify the strict
monopoly area [αi, βi] with φ∗ in F̃i(φ).

Step 5: If φ∗ ∈ (α, β), use Equation (10) to obtain Pi(φ);
If φ∗ = β, use Equation (11) to obtain Pi(φ);
If φ∗ = α, use Equation (12) to obtain Pi(φ);

Step 6: Implement stretch transformation to Pi(φ), let

P̃i+1(φ) =
2πM∫ π

−π Pi(φ)dφ
Pi(φ)

Step
7:

Let i = i + 1, return to Step 2.

Note: If the desired beampattern is a symmetric figure, we may simultaneously adjust
P̃i(φ) in the strict monopoly areas [αi, βi] and [−βi, −αi] for F̃i(φ).

4. Numerical Examples

Example 1. Consider the following standardized symmetric triangle desired beampat-
tern [4,29,34].

P̃(φ) =
{

2M −π
9 ≤ φ ≤ π

9
0 else

(15)

Here, MSLR ≥ 16 dB, M = 10.
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Figure 1 shows the optimal matching transmit beampattern P(φ) = P0(φ) with the
first sidelobe peak, 2.6285. The MSLR = 12.334 dB is lower than the sidelobe suppression
level δ(16 dB), thereby not satisfying the sidelobe constraint. Hence, the cosine approach is
employed to increase MSLR. As shown in Figure 1, since the bias between F̃(φ) = F̃0(φ)
and P̃(φ) reaches the maximum at φ∗ = ±π

9 , the monotone intervals [−β1, −α1] and
[α1, β1] containing φ∗ = ±π

9 are chosen to adjust the desired beampattern P̃(φ).
Figure 2 illustrates the optimal matching beampatterns after using the cosine method,

where P1(φ), P2(φ), P3(φ) represents using the cosine method 1, 2, 3 times, respectively. As
we can see, the first sidelobe peak of P3(φ) is 1.0912 with MSLR = 16.152 dB, satisfying the
sidelobe constraint. Table 1 provides the results after using the cosine method each time.

Table 1. Results of the cosine method for Example 1.

Sidelobe Peak MSLR Mean Square Error

P0(φ) 2.6285 12.334 dB 24.6343

P1(φ) 1.4607 14.885 dB 26.7382

P2(φ) 1.1994 15.741 dB 28.6358

P3(φ) 1.0913 16.152 dB 29.7273
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As shown in Table 1, the sidelobe peaks of the transmit beampatterns P1(φ), P2(φ), P3(φ)
are decreasing while their MSLR are increasing. After three adjustments, the MSLR in-
creases 30.96% with only a 20.67% increase of the mean square error between the transmit
beampattern and the original desired beampattern P̃(φ). Thus, P3(φ) is a satisfactory
solution of Example 1. As illustrated in Figure 2, the proposed cosine method can not
only increase the MSLR significantly but also provide a comparatively good match to the
desire beampattern.
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Compared with [34], our cosine method can obtain a lower MSLR. For M = 16,
Figure 3 illustrates the optimal matching beampatterns after using the cosine method,
where P1(φ), P5(φ), P10(φ) represents using the cosine method 1, 5, and 10 times, respec-
tively. After ten adjustments, the MSLR increased from 10.123 dB to 18.125 dB. Compared
with [29], our cosine method also obtained a lower MSLR.

Example 2. Consider an asymmetric desired beampattern.

P̃(φ) =


8M

3 (1− cos(24φ)) −π
2 ≤ φ ≤ − 5π

12
16M

3
(
1− cos

(
6φ− π

2
))

π
12 ≤ φ ≤ 5π

12
0 else

(16)

Here, MSLR ≥ 14 dB, M = 20.
Figure 4 illustrates the comparisons between the transmit beampattern P0(φ) and the

transmit beampattern P7(φ) using the cosine method 7 times. For the P0(φ), the MSLR is
9.7842 dB, lower than the sidelobe suppression level δ. However, after using the cosine
method 7 times, the MSLR increased 43.24%, reaching 14.0183 dB, while the mean square
error to the desired beampattern P̃(φ) only increased 19.05% to 14.4256, showing the
advantage of the cosine method for suppressing sidelobes in the beampattern matching
design problem.
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Example 3. Consider a desired beampattern with a nonuniform linear array:

P̃(φ) =


3πM

2 cos(3φ− π/2) − 2π
3 ≤ φ < −π

3
3πM

2 cos(3φ + π/2) π
3 ≤ φ < 2π

3

0 else

(17)

Here, MSLR ≥ 11 dB, M = 10 and D = 7λ. The positions of the elements are
[1, 3, 4, 5, 7, 9, 10, 11, 13, 15].

Figure 5 compares P0(φ) and the transmit beampattern P20(φ). The MSLR of P0(φ)
is 9.7754 dB, much lower than δ. After 20 times adjustments by the cosine approach, the
MSLR reached 11.0002 dB, satisfying the sidelobe suppression level δ. Compared to the
12.53% increase in the MSLR, the mean square error between P(φ) and P̃(φ) only increased
1.26%, reaching 16.584.

From Examples 1–3, we may find that the proposed cosine method can not only
significantly increase the MSLR, but also provide very good matching to the desired
beampattern. In addition, this cosine method is suitable for both symmetric and asymmetric
arrays. Therefore, the cosine method is an effective and efficient solution to the problem of
sidelobe suppression in beampattern matching design.
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Figure 5. The desired beampattern vs. the transmit beampattern obtained by using the cosine method
20 times (M = 10).

5. Conclusions

In this paper, a novel method, the cosine method, is proposed for addressing the
problem of sidelobe suppression in beampattern matching design, in which the MSLR is
a constraint. The theoretical justification and algorithm for this method were provided
and several numerical examples were tested to examine the advantages of the proposed
method. Indeed, the cosine method showed significant improvement in MSLR but also
increased the mean square error between the desired and transmit beampatterns. However,
considering the trade-off between sidelobe level and total bias, the proposed method
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produces a substantial increase in the MSLR at the expense of a relatively small increase of
the mean square error. In real application, we may combine this cosine method with more
radar transmit arrays to increase the sidelobe suppression level as well as to obtain better
matching beampattern.
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