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Abstract: An 11-bit 10 MS/s successive approximation register (SAR) analog-to-digital converter
(ADC) is proposed for low-power and small-area applications. A 10-bit differential capacitor–resistor
(C–R) digital-to-analog converter (DAC) is used to minimize the area of a DAC. The use of a C–R DAC
reduces the capacitor area of a SAR ADC used CDAC by 75%. A capacitor calibration for the upper
5-bit capacitors of the C–R DAC is proposed to increase the linearity of the C–R DAC. To evaluate the
proposed SAR ADC, an 11-bit 10 MS/s SAR ADC is implemented using a 180 nm 1-poly six-metal
CMOS process with a supply of 1.8 V. The proposed SAR ADC has an effective number of bits
(ENOBs) of 10.3 bits at a sampling rate of 10 MS/s for a 3.6-VPP differential sinusoidal analog input
with a frequency of 4.789 MHz. The measured ENOBs is 10.45 bits when the frequency of the analog
input signal is 42.39 kHz. The proposed C–R DAC calibration including comparator offset calibration
improves the performances of differential nonlinearity (DNL) and integral nonlinearity (INL) from
−1/+1.26 LSBs and −1.98/+1.96 LSBs to −0.97/+0.85 LSBs and −0.79/+0.83 LSBs, respectively.

Keywords: successive approximation register; analog-to-digital converter; C–R DAC; capacitor
calibration; offset calibration; comparator

1. Introduction

Recently, analog-to-digital converters (ADCs) used in various fields including mobile
applications require low power, high resolution, and low area characteristics. A successive
approximation register (SAR) ADC has a suitable structure for low-power design because it
uses only capacitors, switches, logics, and one comparator without an amplifier consuming
a static current [1–5]. However, as the resolution of the SAR ADC increases, the number
and area of capacitors increase proportionally to the power of two of the resolutions [6].
A capacitor–resistor DAC (C–R DAC) combined a capacitor digital-to-analog converter
(CDAC) and a resistor digital-to-analog converter (RDAC) can be used to reduce the area
that increases with increasing resolution of the SAR ADC [7]. Although the SAR ADC uses
a C–R DAC to reduce the area, in order to further reduce the area and power consumption
of the DAC for the SAR ADC, the unit capacitor of the CDAC generally uses the minimum
capacitor which is supported by the CMOS process. In this case, capacitor values are
sensitive to process variations and parasitic components [8–10]. The mismatch between
capacitors used in the CDAC deteriorates the performances of not only the CDAC but also
the SAR ADC. A capacitor calibration of a CDAC has been reported for the improvement
of a SAR ADC [11–15]. This capacitor calibration for the CDAC requires an accurate
comparator that can sense voltages less than 1 LSB without an offset voltage [16].

In this paper, an 11-bit 10 MS/s SAR ADC is designed to be implemented in a small
area using a C–R DAC. The C–R DAC calibration including the comparator offset calibration
is proposed for the performance improvement of the SAR ADC. Section 2 describes the
architecture and operation of the SAR ADC proposed in this paper. Section 3 explains the
proposed C–R DAC calibration including comparator offset calibration. Section 4 presents
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the implementation and measurement results of the SAR ADC. Finally, Section 5 provides
the conclusion of this paper.

2. Design of 11-Bit 10 MS/s SAR ADC Using C–R DAC

Figure 1a shows the block diagram of the proposed 11-bit 10 MS/s SAR ADC. A C–R
DAC, a comparator with calibration of offset voltage, and a SAR logic with calibration logic
and voting logic are used for the proposed SAR ADC.
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Figure 1. Proposed SAR ADC: (a) block diagram; (b) timing diagram.

The C–R DAC samples the analog input signal and also performs a subtraction opera-
tion between the sampled analog value and the reference voltage generated according to
the SAR operation. The C–R DAC has an architecture that combines a VCM-based 8-bit
CDAC with a 2-bit RDAC. Since the 2-bit RDAC drives only the LSB capacitor (C0) of the
CDAC, it is designed for low power even when supplying the reference voltage. Table 1
shows the number of capacitors used in the DAC for the 11-bit SAR ADC. When a CDAC
and a C–R DAC are used for the DAC for the 11-bit SAR ADC, capacitors of 2048·C and
512·C are used, respectively. The C–R DAC can reduce the capacitor area of the DAC by
75% compared to the CDAC.

Table 1. Capacitors used in DAC for 11-bit SAR ADC.

Item CDAC C–R DAC

CDAC 2048·C 512·C

The calibration capacitors (C8′–C4′ ) are additionally used to reduce the mismatch
occurring in the upper 5-bit capacitor (C8–C4) of the 8-bit CDAC. The comparator has an
architecture of a sense-amplifier-based voltage comparator and includes a meta-stability
detector for stable asynchronous SAR operation [17]. The comparator compares the differ-
ential output voltages of the C–R DACs to each other. For the operation of the asynchronous
SAR ADC, it uses the VALID signal indicating the completion of the current comparison
operation as a synchronization signal for the next comparison operation. The capacitor
calibration logic determines the 15-bit digital code (CAP_CAL5[2:0], ···, CAP_CAL1[2:0])
by the proposed C–R DAC calibration and supplies it to the calibration capacitors.

Figure 1b shows the timing diagram of the proposed SAR ADC. When the sample
signal of the SAR logic is high, the differential analog input (VINP and VINM) is sampled to
the bottom plates of the capacitors of the CDAC, and the VCM voltage is supplied to the top
plates of the capacitors. This sample operation is finished in synchronization with the rising
edge of the EXCLK. When the sample operation is completed, the VCM is supplied to the
bottom plates of the capacitors, and VDAC+ and VDAC- are output on the top plates of the
capacitors of the CDAC. The comparator compares VDAC+ and VDAC- in synchronization
with the CLKC. When the comparison is completed, the comparator outputs the VALID
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signal to high and stores the comparison result in the register in synchronization with
VALID. In addition, the SAR logic generates a control signal for reference generation for the
next conversion of the C–R DAC using the result of the comparison and turns the CLKC
and VALID signals low. This process is repeated 11 times to generate an 11-bit digital code,
and the next sample operation is performed in synchronization with the rising edge of the
last VALID.

3. Proposed C–R DAC Calibration and Comparator Offset Calibration

Figure 2 shows a transfer curve of the CDAC. The gray line of the transfer curve is
the ideal analog output, and the black line is the analog output generated by the real DAC.
The capacitor mismatch in the CDAC worsens its linearity characteristics, as shown in
Figure 2a. In this case, as indicated by the red line, overlapping analog voltages or missing
analog voltages may be generated as the digital code increases. Figure 2b shows the transfer
curve of the CDAC when the mismatch between capacitors in CDAC is ideally calibrated.
In this case, the CDAC output outputs a monotonic analog signal, and its output value
has quantized analog voltages at regular intervals. As a result, the linearity properties of
the CDAC such as differential non-linearity (DNL) and integral non-linearity (INL) are
improved. In general, the mismatch of the capacitor corresponding to the upper bit of the
CDAC greatly worsens the DNL and INL of the CDAC more than the mismatch of the
capacitor corresponding to the LSB. Thus, the proposed C–R DAC calibration calibrates the
capacitors of the upper five bits in this work.
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Figure 2. Transfer curves of CDAC: (a) with capacitor mismatch in CDAC; (b) after capacitor
calibration in CDAC.

Figure 3 shows the sequence of performing the C–R DAC calibration for the linearity of
the SAR ADC. First of all, since the proposed C–R DAC calibration is performed according
to the output of the comparator used in the SAR ADC, it is necessary to remove the
comparator offset voltage before this calibration. The VINP and VINM are analog inputs of
the C–R DAC and are sampled to the same value. α and β mean the calibration code of the
comparator offset calibration and the comparison result of the comparator. α is actually
implemented as a binary 5-bit code in this work. However, it is expressed in decimal
code for convenience in Figure 3. α and β have an initial value of 0. During β is 0, the
comparator offset calibration continues and α is increased by 1. When β becomes 1, the
comparator offset calibration is completed, and the value of α is stored as the calibration
code of the comparator offset calibration. After the comparator offset calibration, the C–R
DAC calibration is started. The C–R DAC differentially samples a voltage of zero as the
differential input signal. i is an index indicating the calibration of the upper 5-bit capacitors
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of the C–R DAC, and λ and β are a capacitor calibration code and the comparison result of
the comparator, respectively. The initial values of these three values are both 0. The C–R
DAC calibration is performed similarly to the comparator offset calibration. To improve the
comparison performance in the C–R DAC calibration and the comparator offset calibration,
the result of the comparator is determined by a voting process [18,19].
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3.1. C–R DAC Calibration

Figure 4a shows the concept of calibration for the upper 5-bit capacitors of the
C–R DAC [14]. The comparator offset calibration is performed by the sequence shown in
Figure 3. The calibration codes (CAP_CAL#[2:0]) are sequentially increased and stored by
the control of the SAR logic with calibration logic and voting logic until the comparator
outputs a high. The calibration process is performed five times to calibrate capacitors C8
to C4. Figure 4b shows the block diagram of calibration for upper 5-bit capacitors of C–R
DAC. The proposed C–R DAC consists of an 8-bit CDAC, a 2-bit RDAC, and a calibration
capacitor. Each capacitor of the upper 5-bit capacitors is determined by the sum of CN and
CN’. The calibration capacitor is composed of a minimum unit of 0.25C, so the capacitor
calibration of the C–R DAC is performed with a resolution of 1/4 LSB.
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3.2. Comparator Offset Calibration

Figure 5a shows the circuit diagram of the comparator with a pre-amplifier and offset-
calibration circuit. The comparator has an architecture of a sense-amplifier-based voltage
comparator and includes a pre-amplifier and an offset-calibration circuit to remove the
comparator offset voltage while increasing the voltage gain of the comparator. The 5-bit
RDAC is used to supply an offset voltage into the offset-calibration circuit. The comparator
senses the operational results of (INP − INM) + (OFFSETINP − OFFSETINM) using a pre-
amplifier and an offset-calibration circuit and outputs its result to the CMOS voltage level.
The comparator offset voltage is removed by the difference voltage between OFFSETINP
and OFFSETINM generated by the comparator offset calibration code OFFSET [4:0] in the
5-bit RDAC. Figure 5b shows a simulation result about the calibration voltage range of the
comparator offset voltage. The calibration voltage range designed in this work is about
−4 mV to 4 mV, and the calibration resolution voltage is about 0.2 mV, considering the
voltage of 1 LSB.
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3.3. Voting Logic

The calibration code of the proposed C–R DAC calibration is determined based on the
comparison results of the comparator. Thus, the comparator needs to compare a voltage
lower than the voltage of 1 LSB even if there is dynamic noise such as power supply noise
and various switching noises. In this work, the comparator performs a voting process for
accurate comparison in the C–R DAC calibration. In the voting process, the comparator
performs three comparisons for the same analog voltage, and the final result is determined
by the majority result. Figure 6a shows the block diagram of the voting logic. The voting
logic consists of three flip-flops and some static logics. The two comparator outputs are
sampled at the rising edge of OCLKB_LSB [2] and OCLKB_LSB [1], respectively. The voting
process proceeds as the two sampled signals, Q1 and Q2, are logically operated together with
the final third comparator output COMP_OUT. This result is sampled at the rising edge of the
final OCLKB_LSB and output as the result of the voting process, as shown in Figure 6b.
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4. Chip Implement and Measurement Results

The proposed 11-bit 10 MS/s SAR ADC was designed using a 180 nm CMOS process
with a 1.8-V supply voltage. The CMOS process used in this work supports a metal-
insulator–metal capacitor of at least 25 fF for the unit capacitor of the C–R DAC. The active
area of the proposed 11-bit 10 MS/s SAR ADC is 650 µm × 450 µm, as shown in Figure 7.
It was reduced by the use of the C–R DAC. The SAR ADC with a full rail-to-rail input
voltage range consumes 583 µW of power when operating at a sampling rate of 10 MHz.
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Figure 7. Chip photograph of implemented 11-bit SAR ADC.

Figure 8 shows the test environment for the implemented SAR ADC. The analog
differential input signal and clock signal were sourced from NI PXIe-5451. In addition,
Audio Precision equipment was used to supply an analog input signal with a low frequency.
The digital output code of the implemented SAR ADC was acquired using NI PXIe-6556.
The performance of the 11-bit 10 MS/s SAR ADC was analyzed through signal processing
using LabVIEW software for the acquired digital output code.
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Figure 9 shows the measured static performances of the proposed 11-bit 10-MS/s
SAR ADC according to the C–R DAC calibration. As shown in the measurement re-
sults, the proposed C–R DAC calibration improves the performances of DNL and INL
from −1/+1.26 LSBs and −1.98/+1.96 LSBs to −0.97/+0.85 LSBs and −0.79/+0.83 LSBs.
Figure 10 shows the measured dynamic performances of the proposed SAR ADC for an
analog input signal with a low frequency of 42.39 kHz. The performances of signal-to-noise
and distortion ratio (SNDR) and the effective number of bits (ENOBs) were improved from
57.93 dB and 9.33 bits to 64.71 dB and 10.45 bits by the proposed C–R DAC calibration.
The proposed C–R DAC calibration improved the ENOB of 0.99 bits even for an analog
input signal with a Nyquist frequency of 4.78 MHz, as shown in Figure 11. As a result, the
proposed SAR ADC has an ENOB of 10.3 bits at the Nyquist frequency.
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Table 2 shows the performance comparison of SAR ADCs. The proposed 11-bit 10 MS/s
SAR ADC has an ENOB performance comparable to the previous literature [20–23] at the
Nyquist frequency.

Table 2. Performance comparison of SAR ADCs.

Item [20] [21] [22] [23] This Work

Architecture Pipelined SAR SAR SAR SAR SAR

Calibration Yes Yes Yes No Yes

Resolution [bit] 12 12 11 10 11

Technology [nm] 40 90 65 65 180

Supply [V] 1.1 1.2 1.2 1.3 1.8

FS [MHz] 160 50 100 8 10

Power [µW] 4960 4700 2440 12.8 583

Area [mm2] 0.042 0.118 0.012 0.04 0.29

SFDR [dB] 86.9 82.7 68.35 66 78.57

SNDR [dB] 65.3 65.1 57.93 57.74 63.77

ENOB [bits] 10.5 10.5 9.33 9.3 10.3

5. Conclusions

The 11-bit 10 MS/s SAR ADC with C–R DAC calibration for the upper 5-bits and
comparator offset calibration was proposed for mobile applications requiring small areas
and low power consumption. The capacitor calibration for the upper 5-bits of the C–R
DAC simplifies the control logic by only performing the process of increasing the capacitor
for the upper 5-bits. The proposed C–R DAC calibration, including comparator offset
calibration and voting process, improved the linearity performance of the SAR ADC. The
proposed SAR ADC was fabricated using a 180 nm 1-poly six-metal CMOS process with
a 1.8-V supply voltage. The ENOB of the SAR ADC using the C–R DAC calibration was
improved from 9.31 bits to 10.30 bits for an analog input signal with a Nyquist frequency
of 4.789 MHz. Furthermore, the proposed C–R DAC calibration including comparator
offset calibration improved the performances of DNL and INL from −1/+1.26 LSBs and
−1.98/+1.96 LSBs to −0.97/+0.85 LSBs and −0.79/+0.83 LSBs.
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