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Abstract: Processing-in-memory (PIM) is a promising architecture to design various types of neural
network accelerators as it ensures the efficiency of computation together with Resistive Random
Access Memory (ReRAM). ReRAM has now become a promising solution to enhance computing
efficiency due to its crossbar structure. In this paper, a ReRAM-based PIM neural network accelerator
is addressed, and different kinds of methods and designs of various schemes are discussed. Various
models and architectures implemented for a neural network accelerator are determined for research
trends. Further, the limitations or challenges of ReRAM in a neural network are also addressed in
this review.
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1. Introduction

A major bottleneck in power consumption and performance in the Internet of Things is
the data exchange between processor and memory [1]. The commonly used von Neumann
architecture separates the processing unit and memory, thus causing a large amount
of data movement energy and data access latency [2]. To overcome these limitations,
memristor technology emerged, which is a type of Resistive Random Access Memory
(ReRAM). Unlike commonly used Random Access Memory, it is able to provide non-
volatile storage. ReRAM also offers storage capabilities that are multi-state and have
high endurance and high density with much faster access speed [3]. With this, ReRAM
is able to overcome the bottleneck faced by conventional CMOS (Complementary Metal
Oxide Semiconductor)-based architecture [4]. For example, SRAM (Static Random Access
Memory), which is formed by cross-coupled CMOS inverters, has high energy leakage and
is unable to efficiently support a wide range of operations in memory [5].

ReRAMs are also relatively small in size, making the integration of memory with
computing circuits possible. This leads to an efficient architecture for learning algorithms
and neural network applications [6]. With the capabilities of ReRAM, it is a potential
element for computing in-memory (CIM), also known as processing-in-memory (PIM).
Many proposed ReRAM-based PIM architectures work in the direction of machine learning
(ML) accelerators. This is because the ReRAM has the characteristics of an activation-
dependent dynamic passive analog device, making it ideal for modeling and updating
synaptic weights [6]. Moreover, ReRAM-based processors are able to significantly enhance
the efficiency of Convolutional Neural Networks (CNNs) as they involve matrix vector
multiplication (MVM), which is supported by ReRAM (Mittal, 2019). This enhancement is
achieved because the ReRAM crossbar structure is able to efficiently improve the computa-
tional complexity of MVM from O

(
n2) to O(1) while eliminating the parameter fetching
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procedure [7]. Hence, many ReRAM-based PIMs have been proposed to serve the purpose
of accelerating neural networks. These include CNNs for image-related tasks, Recurrent
Neural Networks (RNNs) and long short-term memory (LSTM) models for audio or voice
recognition tasks [8].

The ReRAM device is also known as a metal–insulator–metal (MIM) device, causing it
to have an insulator resistance value that can be adjusted [9]. This characteristic of ReRAM
causes it to have high potential in machine learning and neural network architectures, as
the resistance in ReRAM can be programmed. Resistance modulation is performed on
the filament in ReRAM by applying bias to the electrodes, where it can have a different
polarity or magnitude, or even both [9]. However, faults can occur in ReRAM, such as
an inability to accurately tune the resistance in ReRAM. There are two classifications of
ReRAM faults, which are soft faults and hard faults. Soft faults are where the actual tuned
resistance is different from the expected value, while hard faults are where the resistance
of a ReRAM cell cannot be altered at all [10]. Moreover, neural network training requires
large amounts of iterations, where each iteration includes three phases, which are inference,
backpropagation and weight updates [11]. With huge training iterations, the weights have
to be updated frequently, therefore causing a substantial amount of write operations and
meaning that a huge amount of energy is required.

Achieving high throughput and high accuracy are the challenges in ReRAM architec-
ture. It is vital to address these challenges as this will improve the adoption of ReRAM in
neural network architectures or neuromorphic computing systems.

2. Background and Related Work
2.1. Processing In-Memory Architecture

The idea of processing in-memory (PIM) was first introduced in the 1960s, where the first
computer that used PIM architecture performed processing-in-memory by merging a collection
of processing elements and Random Access Memory (RAM). Then, until the early 2000s, it was
suggested to join this withthe Dynamic Random Access Memory (DRAM) structure to increase
the capability of computation [12]. However, the proposed idea did not gain much recognition
in computer architecture as it failed to work practically due to the obstacle of poor technology
development during that time. Currently, with the rapid development of technology, research
dealing with PIM architectures has been vigorously conducted.

For a better understanding of the PIM architecture, we refer to von Neumann’s architec-
ture, in which memory and processing are two separate things. Data are fetched and stored
between the CPU and memory, and instead of frequent memory accesses, the cache is intro-
duced in the architecture [13]. The PIM architecture applies the idea of reducing the access rate
of memory, and computation is performed in memory rather than in the CPU to reduce the
data movement [12]. Due to the limits faced in the DRAM architecture, it became difficult to
increase density and reduce energy consumption; therefore, two new approaches for memory
system designs have been developed to carry out the PIM architecture, i.e., 3D-stack memory
and byte-addressable resistive non-volatile memory (NVM) [12].

Han et al. [14] proposed a ReRAM-based PIM architecture named RPBFS to optimize
the graph travelling, specifically on breath first search (BFS), which reduces the data
movement on graph traversal. A segment of the memory bank was used to store the graph
data, and there was a primary memory bank used to record the data and handle the graph
travesal procedure. An algorithm applied on the RPBFS was developed by Han et al. [14]
to describe the three phases: graph mapping in one bank, with the information updated in
the primary bank; graph initialization, where the status bitmap was initialized; and BFS
traversal, where both the graph bank and primary bank worked together.

2.2. Processing-In-Memory vs. Near-Memory Processing

The two approaches mentioned above can be further discussed with the terms in-memory
and near-memory. As the name shows, near-memory processing (NMP) refers to the ability to
perform computation near the data, thus achieving the aim of speeding up execution. NMP
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integrates computing cores or PIM logic such as accelerators close to the main memory [12,15].
Three-dimensional stack memory, usually DRAM, contains multiple layers, which include a
compute layer for the integration of computing cores [15,16]. Conversely, PIM takes advantage
of the original characteristics of the memory cells by interacting and sharing properties
between cells themselves to perform the processing [12,15]. Research works have been
conducted on the PIM architecture in SRAM, DRAM, phase-change memory (PCM), Magnetic
RAM and Resistive RAM, which is the main focus of this paper [12]. Both PIM and NMP are
used to reduce unnecessary data movements, but only simple operations such as arithmetic
and Boolean logic operations are enabled in the PIM architecture; in addition, even NMP
uses the instruction set architecture (ISA) on the computing cores, and the thermal issue of
3D-stack memory has also caused a problem [15].

2.3. Resistive RAM

Metal-oxide resistive RAM (ReRAM or RRAM) is a new memory technology that
has been developed recently due to the disadvantages of SRAM and DRAM. Apart from
ReRAM, PCM and Magnetic RAM are also being researched as new memory technologies.
From [17–19], we have collated Table 1 to show the comparison between existing and
modern types of technologies. We can see that ReRAM offers a fast write/read speed
compared to other memory devices. Although SRAM has the fastest write/read speed, its
cell area is considerably large (at least 25 times that of ReRAM). Compared with ReRAM,
the Hard Disk Driver (HDD) has a higher endurance than ReRAM, and its cell area is
smaller, but its write/read time is longer [17]. In contrast, ReRAM also has a long duration
and low programming voltage while maintaining the cell area [18]. On the other hand,
ReRAM has the disadvantage of high energy consumption compared to DRAM, SRAM,
STTRAM and Flash, and its energy consumption per bit is tens or even hundreds of times
that of other memory devices [19]. However, overall, among all the emerging memory
technology candidates, the performance of ReRAM is competitive.

Table 1. Comparisons between different types of memory device [17–19].

Memory
Technology ReRAM DRAM SRAM PCM STTRAM Flash

(NAND) HDD

Energy per bit (pJ) 2.7 ~0.05 ~0.0005 2–25 0.1–2.5 ∼ 0.00002 ∼ 1 × 105

Read time (ns) 5 ~10 ~1 50 10–35 ∼ 1 × 105 > 5 × 106

Write time (ns) 5 ~10 ~1 10 10–90 ∼ 1 × 105 > 5 × 106

Retention time > 3 × 108s ~64 ms - > 3 × 108s > 3 × 108s > 3 × 108s > 3 × 108s

Voltage (V) 1 <1 <1 1.5 <2 <10 <10

Endurance (circle) 1011 > 1016 > 1016 > 109 > 1015 > 104 > 1015

There are two main purposes of designing these memory technologies: (I) combining
the advantages of SRAM and DRAM, which are the switching speed and storage density,
respectively, and (II) the property of non-volatile flash memory [20]. The fundamental
structure of the ReRAM cell is generally a metal–insulator–metal form, which can be
understood as a sandwich layer with the insulator in between two metal layers [20]. It has
various types of chemical compositions built on the three layers, and each layer can be
formed with different electrodes for the top and bottom metal layers and oxide materials
for the insulator layer [20].

As with other traditional electronic devices, the chosen type of electrode material
has a huge influence on the performance of ReRAM. For example, ReRAM with a Cu
electrode has a more stable resistive switching behavior than that with a Pt electrode [20].
Generally, the electrode materials utilized by ReRAM can be divided into five different
categories based on the composition, which are elementary substance electrodes, silicon-
based electrodes, alloy electrodes, oxide electrodes and nitrite-based electrodes [21]. The
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most frequently used materials are elementary substance electrodes, including Al, CU, Ag,
Pt, etc. [22–24].

The state of the ReRAM cell switches with the rise of the conductive filament (CF) inside
a dielectric. The CF is a nanoscale component connecting the top and bottom electrodes
of the memory cell of ReRAM [25]. According to the type of CF material, ReRAM can be
grouped into two kinds: (i) metal ion filament-based ReRAM is referred to as conductive
bridge random access memory (CBRAM), and (ii) ReRAM based on an oxygen vacancies
filament is known as OxReRAM [25].

Due to the fundamental structure of ReRAM, there is a close relationship between
ReRAM and the memristor, which was first introduced to ReRAM by HP in 2008 [26] and
attracted a great deal of attention from electronics designers due to its nanometer size and
special electrical properties [27]. With the special properties of memristors, the burgeoning
memristor-based ReRAM has competitive advantages of high density, low-power, good-
scalability, and non-volatility [28]. The concept of the memristor first came from memristor
theory, which was put forward earlier in the 1970s. It describes the behaviors of components
whose resistances change with the amount of charge flowing through [29], has dramatically
influenced the design of ReRAM by providing further theoretical instructions of their
behaviors and has been widely used by ReRAM scientists to develop devices and explain
corresponding properties more conveniently [30,31].

Payam et al. [27] proposed a type of ReRAM based on the hybrid structure of the
memristor and Complementary Metal-Oxide Semiconductor (CMOS). By storing data
in the binary or non-binary logic, this design increases the quantities of stored data by
increasing the volume of saved data per square area of a memory chip. In their experiment
results, the proposed ReRAM design showed a comparable read time and a competitive
power consumption with other RAMs [27].

The structure of ReRAM cells can be combined into a crossbar array without much
difficulty and distributed into 3D architecture [32]. Due to the crossbar array, ReRAM
can perform computation and functions of memory [14]. Though ReRAM has many
advantages such as low energy consumption, high density and low operation voltage, it
has its challenges as well, such as stability of performance and storage systems on devices
with various types of materials [32]. Chi et al. [33] proposed a PIM-based NN accelerator.
The accelerator utilized the ReRAM crossbar arrays that can be used to implement Matrix-
Vector Multiplication (MVM) in fully connected layers by preprogramming the weight
matrix in ReRAM cells to achieve acceleration. The vector is represented by input signals on
the worldlines (WLs), each element of the matrix is programmed into the cell conductance
in crossbar arrays, and the result of the MVM can refer to the accumulation of the current
flowing to the end of each bit line (BL). Because the synaptic weights have already been
pre-programmed in ReRAM cells and do not require data to be fetched from the main
memory during computation, this highly improves computing efficiency.

Qiu et al. [34] proposed a novel ReRAM crossbar-based (RCA) CNN accelerator, Re-
siRCA, due to the difficulty of sensing-match latencies in energy-harvesting IoT nodes
and the great enhancement of NN accelerator performance in ReRAM. ResiRCA enables
the accelerator to fit the energy-harvesting scenario and performs multiplication-and-
accumulation (MAC) computations. With the support of the design of lightweight hard-
ware and low power, ResiRCA is allowed to perform scalable computations. Besides, Qiu
et al. [34] proposed the ResiSchedule approach, which merges the functions of sequential
and pipelined computation modes in order to realize the flexibility of computation schedul-
ing. The approach uses three techniques to achieve high throughput: loop tiling-based
computation, ReRAM duplication and inter-layer pipelining.

2.4. Neural Network

The Neural Network (NN) or so-called Artificial Neural Network (ANN) was devel-
oped based on the human brain’s neural system. It is highly related to Artificial Intelligence
(AI). AI is known for its anthropomorphic behavior and ability to learn. Studies on the
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biological neural system have provided a modeling algorithm for the NN, with the ability to
undertake non-linear and parallel tasks such as learning, pattern recognition, memorizing,
sensation and control [35].

As mentioned above, the NN architecture uses the idea of the human brain; hence, it
is a directed acyclic graph that contains nodes and edges [36]. Figure 1 shows the layers of
the NN architecture. Ln refers to the nth layer, while the Is are the inputs and Qs are the
outputs or results. The layers between the input and output layers are the layers used to
perform computations, which are considered as hidden layers or so-called black boxes [37].
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There are many existing research works on NN accelerators based on ReRAM that
have utilized the memory wall itself and no extra components, greatly reducing the com-
plication of hardware design [38]. Although NN accelerators work well in ReRAM-based
architectures with significant efficiency, NN accelerators were unable to fully utilize the
advantages of ReRAM due to the inability to satisfy the huge requirements for PE com-
munication, resulting in a communication bottleneck. Therefore, Ji et al. [39] proposed a
ReRAM-based NN accelerator based on FPGA, a reconfigurable architecture, to solve the
bottleneck problem. Ji et al. [39] found that the weight mapping was imbalanced, where
0.028% of PEs performed 12.5% of computations; therefore, the weight layers were adjusted
by duplicating them.

2.5. ReRAM Based Processing-In-Memory Architecture vs. Memristor-Based Neural Network
Circuit of Associative Memory

The mainstream opinion [40–42] is that it is better to combine the work on ReRAM
and the memristor into one field, since plenty of designs of ReRAM are actual instantiations
of the memristor [43]. Hence, apart from the concept of ReRAM-based PIM architecture,
other technology based on the memristor, such as the Neural Network circuit design of
associative memory, have also attracted researchers’ attention. In contrast to the idea of
ReRAM-based PIM architecture for reducing the access rate of memory and accomplishing
all principal computational tasks in memory [12], the memristor-based Neural Network
circuit of associative memory has mainly tended to store the intermediate state data for
Artificial Neural Networks [44]. It provides auxiliary functions to simulate human brain
neurons to construct more complex Neural Network computing circuits [45,46].

Sun et al. [47] proposed a novel design of the memristor-based Neural Network
circuit of Pavlov associative memory, which is a composite system based on a memristor
that provides significant biological synaptic functions. This technique simulates learning
functions in Artificial Neural Networks by mimicking more realistic situations of memory.
In [48,49], the authors further implemented the simulation of the forgetting process among
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neurons by realizing multiple generalization and differentiation in the memristor-based
Neural Network circuit of associative memory.

3. Research Methodology

This paper aims to perform a review of ReRAM-based in-memory processing or com-
puting architecture for neural networks. Challenges and recent research trends regarding
Neural Networks using ReRAMs are presented, and various articles and journals relating
to the topic are thoroughly studied. The materials were carefully selected based on some
criteria listed below.

3.1. Search Strategies

To ensure the review did not lose focus, potential articles and journals were selected
based on related keywords. The search string used was as follows:

(“ReRAM” OR “Resistive RAM” OR| “RRAM”) AND (“neural network architec-
ture” OR “NN” OR “neural network”) AND (“in-memory computing” OR “processing-in-
memory” OR “in-memory processing”) AND “accelerator”.

IEEEXplore and ACM (Association for Computing Machinery) Digital Library were
the main sources of our selections, as they are able to provide large amounts of quality
literature and research papers. However, some articles outside of these sources were also
considered with given reliable and quality content.

3.2. Inclusion Criteria

Any articles or research papers with topics regarding ReRAM and Neural Networks
were included, specifically those on ReRAM-based accelerators for Neural Networks and
also their limitations. Studies on improving Neural Network accelerators using ReRAM or
overcoming ReRAM’s challenges were emphasized when reviewing various articles.

3.3. Exclusion Criteria

Articles and journals unrelated to Neural Networks or ReRAM were excluded. This
was done to focus on the topic and prevent side tracking. In addition, any outdated articles
and journals were not included.

3.4. Study Design

The study design of this research is a qualitative systematic literature review. This
method was chosen as the purpose of this research is to review the direction of recent studies
on NN, specifically on ReRAM-based PIM architecture. This method was conducted in a
few steps. Firstly, in the planning stage, research purposes were identified, and a review
protocol was drafted and developed. In the conducting stage, research papers for review
were selected according to the inclusion and exclusion criteria. Data were extracted by
following the guidance in section F (data extraction), and then the quality of the studies
was assessed as stated in section E (assessment of quality). Lastly, in the execution stage,
data and information were analyzed and distributed.

3.5. Assessment of Quality

The quality of the journals or research papers was evaluated by two reviewers. Each
reviewer had to check the titles, abstracts and publication dates to meet the inclusion
criteria. To ensure the latest information in the research, journals and research articles
earlier than 2015 were rejected.

3.6. Data Extraction

As mentioned, with the aim of reviewing trends and challenges, the following infor-
mation was extracted:

1. Publication details: The names of the authors and publication year;
2. Model: An overview of the novel model proposed in existing research;
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3. Method: The detailed steps and frameworks used for the models to setup experiments;
4. Experiment results: Statistical output of each model for comparison and discussion

on the effects; and
5. Future work and challenges: The difficulties faced and flaws detected for future

improvements.

3.7. Outcome

The outcome of this review paper is to determine the recent research trends of Neural
Networks based on ReRAM-based PIM architecture and the existing limitations of ReRAM-
based PIM architecture.

4. Recurrent Neural Network
4.1. ReRAM-Based System Architecture

Long, Na and Mukhopadhyay [2] proposed an RNN accelerator design using ReRAM-
based PIM architecture that is different from previous studies where the accelerators were
designed for CNN. The purpose of the design of the RNN accelerator was the different
features between the CNN and RNN. In the CNN, the inputs are computed independently,
and the outputs are based only on its current inputs. However, the outputs are based not
only on current inputs but also on previous outputs for RNN. In a previous study [50], the
accelerator was only supported for the basic RNN; then, they further proposed an accelerator
that supports long short-term memory (LSTM) and the gated recurrent unit (GRU).

The architecture was designed in a similar way to the previous PIM architecture. The
memory bank was divided into three sections, which are the memory, buffer and processing
subarrays. To make the PIM architecture suitable for the RNN, the processing subarrays were
then further divided into three sections again: (1) a ReRAM crossbar subarray for matrix-vector
multiplication (MVM), (2) special function unit (SFU) subarrays for non-linear functions, and
(3) multiplier subarrays for element-wise operations. In contrast to other works, Long, Na and
Mukhopadhyay [2] focused on circuit design: a two-stage Op-amp was used to reduce power
consumption, and 16-cycle DAC was used to compute matrix-vector multiplication since the
16-bit fixed point number was divided into 16 individual bits.

The experiment was conducted to evaluate the performance of two RNN applications:
Natural Language Processing (NLP) and Human Activity Recognition (HAR). The per-
formance was evaluated on RNN, LSTM, and GRU bases, and the whole experiment was
performed on an NVIDIA GPU, with the baseline given. The evaluation of computing
was compared with the GPU baseline. As a result, the computing efficiency of this system
improved by an average of 79 times, and there was a slight reduction in the accuracy when
the standard deviation was less than 0.2.

There are a few challenges when using ReRAM with the RNN accelerator. It is not
practical to compute matrix-vector multiplication (MVM) and the element-wise operations
with the ReRAM crossbar, as it is the most expensive operation. Furthermore, unnecessary
time was spent to wait for the previous output to be calculated from the hidden layers due
to the time dependency [2].

4.2. PSB-RNN

Challapalle et al. [51] proposed a ReRAM-based PIM architecture for an RNN acceler-
ator using the block circulant compression approach. The approach achieved the benefits
of reducing the computational complexity and space complexity by decomposing the op-
erations into Fourier transforms and point-wise operations. However, the accuracy was
reduced slightly. The decomposed operations then were formulated into in-situ Multiply
and Accumulations (MAC) operations to provide high throughput. Apart from the block
circulant compression, systolic dataflow was employed for communication, improving
the energy efficiency and avoiding global data flow. Due to the complex operations, the
weight matrices of the block circulant were not able to be mapped directly onto the ReRAM
crossbars. Therefore, the mapping was conducted based on the in-situ MAC operations.
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The main operation used in this study was matrix-vector multiplication (MVM). The
input vectors and previous hidden state vectors in MVM were multiplied with the weight
matrices of the block circulant to obtain the output vectors. As mentioned before, MVM was
decomposed into discrete Fourier transform and point-wise operations by the fast Fourier
transform (FFT) algorithm. The input vector and hidden state vectors were required to be
converted into the frequency domain, where its values were pre-calculated and mapped
to the crossbar arrays. The procedure for MVM operations was first to compute the input
and previous hidden state vectors using FFT and then perform the block-wise element
multiplication. Next, the partial products were accumulated, and lastly, the inverse FFT
was performed to obtain the MVM result.

Challapalle et al. [51] conducted their experiment by evaluating the computational
efficiency. Tensorflow was employed for the implementation of baseline LSTM and GRU
networks. In this experiment, CPU and GRU power consumption and the performance
evaluation of PSB-RNN were compared with other accelerators, specifically C-LSTM, a
Field-Programmable Gate Array (FPGA)-based block circulant and a custom ReRAM
crossbar as the baseline architectures. The performance was evaluated on NLP, HAR and
TIMIT. PSB-RNN achieved a 44-fold improvement on average in computational efficiency
compared to the FPGA-based method and a 17-fold improvement compared to the ReRAM
crossbar-based method.

5. Convolutional Neural Network
5.1. ReRAM Memory Wall Accelerator

Chi et al. [33] proposed a PIM-based NN accelerator by simply utilizing the ReRAM
crossbar arrays, namely PRIME. Instead of adding an extra processing unit for computation,
PRIME takes part of the memory arrays to serve as the accelerator. It fully utilizes the
advantages of ReRAM and the PIM architecture in terms of computation capability and
accelerates the processing of data. There are other types of memory technologies that can
be used for such research, e.g., 3D-stack memory. However, PRIME uses ReRAM instead of
3D-stack memory due to the ease of manufacturing as well as uncomplicated logic of ReRAM.
Moreover, the high cost and thermal issues of 3D-stack memory came into consideration.
Some other works made use of non-volatile memory technologies to build ternary content
addressable memory (TCAM), in which it is necessary to redesign the memory cells to a larger
size to support the search operation, which is costly. Therefore, for PRIME, it was decided not
to retain the design but to be able to support more advanced computations.

PRIME divided ReRAM into three sections, i.e., memory arrays that are only capable of
storage, full function (FF) arrays that contain both computation and storage capabilities and
buffer arrays that work with FF arrays as a data buffer. There was a total of 66 subarrays
for 2 FF subarrays and 1 buffer subarray per bank by taking 8 levels and 2 levels of input
voltage for computation and memory, respectively. By following the input and synapse
composting schemes, for computation, 6 bits of dynamic fixed points were given to the
input and output, and 8 bits were used for weights. The experiment was conducted by
comparing PRIME with pNPU-co and pNPU-pim, using the parallel NPU as a secondary
processor and NPU with 3D-stack memory instead of ReRAM.

In addition, four aspects were compared, i.e., speedup performance, execution time
breakdown, energy saving and energy breakdown. PRIME had the highest speedup,
achieving a 4.1-fold increase compared to pNPU-pim-x86. In contrast, pNPU-co had the
lowest result. In the evaluation of execution time breakdown, Chi et al. [33] separated the
results into memory and computation. pNPU-pim reduced most of the memory access
time from pNPU-co previously, whereas PRIME even reduced it to 0, thus reducing the
processing time. Due to the reductions in accessing the memory, PRIME saved a great
deal of energy. On the other hand, the energy consumption breakdown of pNPU-co
reached almost 100%; however, PRIME’s consumption was estimated to be not more than
2%. Generally, PRIME improved the overall performance ~2360-fold and showed an a
~895-fold reduction in energy.
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5.2. CNN Accelerator Reusing Data at Multiple Levels

Convolutional Neural Networks (CNN) have contributed greatly towards artificial
intelligence applications such as image processing and image classification or image recogni-
tion. In addition, ReRAM has great potential for the development of in-memory processing
techniques, e.g., CNN accelerators. However, writing to ReRAM takes substantial amount
of time compared to reading from ReRAM. Therefore, it is better to map weights from CNN
filters to ReRAM and keep it constant until there are any further updates to the weights [52].
This has also caused dataflow control methods and weight mapping schemes to become
significant factors in improving processing efficiency.

Luo et al. [52] came up with a ReRAM CNN accelerator called FullReuse. This method
aims to achieve the maximum utilization of reusability of weights, input and output data.
CNN computing operations are nearly all Multiply and Accumulations (MACs). Out of
the total computation in convolutional layers, 90% of them are MACs [53]. This results in
massive movements of data due to the large number of weight filters, which also causes
large energy consumption. Hence, it is more efficient if data such as input data can be
reused instead of reading data from off-chip memory and sending it to ReRAM arrays.

There are a few ways to reuse input data such as convolutional reuse, filter reuse
and Input Feature Map (IFM) reuse. Convolutional reuse is where each IFM pixel, during
convolution with a filter, is reused except for pixels on the edges. As for filter reuse, when
the convolution of multiple IFMs takes place on a filter, the filter weights are able to be
reused. While IFM reuse indicates the reuse of each IFM pixel when the particular IFM is
convoluted with various different filters, FullReuse uses all data reuse types mentioned,
also implementing horizontal and vertical convolutional reuse. To maximize the reuse of
data, 3 × 3 processing elements contain the mappings of filter weights. This shows that
this system can simultaneously execute three convolution operations.

The evaluation of FullReuse is done on a VGG-8 network using a 32 nm DNN+NeuroSim
framework. To determine the performance and energy efficiency of the proposed method,
CIFAR-10 images were used and processed for FullReuse. Then, the approach is compared to a
baseline architecture that adopts a filter mapping scheme where data in the PE on the same row
can be reused [54]. The results show that in the layer with the most data movements, FullReuse is
able to reduce energy consumption in the buffer and interconnect by 75% and 38%, respectively.
As for processing speedup, FullReuse is 1.6 times faster than the baseline architecture.

6. Generative Adversarial Network
6.1. ReRAM-Based Accelerator for Deconvolutional Computation

Z. Li et al. [55] proposed an improved accelerator, known as RED, to improve the
execution and energy of deconvolution. Deconvolution is also known as transpose convolu-
tion, which is a new type typically used NNs, generative adversarial networks (GANs) and
fully convolution networks (FCNs). Deconvolution involves two algorithms that are not
seen in traditional convolution: (1) zero padding, which performs padding by adding extra
zeros first and then performs convolution; and (2) padding-free, which contains three steps:
multiplication, summation and cropping. However, there were some limitations found by
Z. Li et al. [55] that led to ineffective computation. With that, Z. Li et al. [55] proposed a
novel accelerator using the ReRAM crossbar for computation and optimization.

Figure 2 shows the inefficiency that appeared in deconvolution algorithms. Zero
padding inserted extra zeros for the input, causing unnecessary and redundant operations.
The padding-free approach based on CMOS can achieve high performance, while in
the ReRAM-based PIM, extra storage and significant efforts were needed for circuitry
adjustment. Moreover, overlap matrices were generated due to the multiplication of the
input and kernel, causing extra calculations and circuits to be needed to obtain the final
output. Therefore, the pixel-wise mapping scheme and zero-skipping data flow were
suggested and also taken into action by Z. Li et al. [55]. The function of the pixel-wise
mapping scheme is to remove unnecessary zeros and provide the ability to execute the
computations in parallel. It was designed to match the location of the pixels and support
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parallel processing. Furthermore, zero-skipping data flow was further expanded to skip the
positioning of zeros and maximize the data reuse throughout the processing by distributing
the original input to the processing engine (PE) buffers.
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The experiment was performed by evaluating the execution performance and energy
consumption on GAN and FCN models under the zero-padding and padding-free design
scenarios. Z. Li et al. [55] executed the RED model by deconvolutional layers; a single layer
required multiple processing cycles to complete, and multiple processing modes were exe-
cuted simultaneously in one cycle. The executing stages were performed as follows: (1) fetch
inputs from global memory to the input buffer, (2) process data that passed to Pes, (3) store
intermediate output data in the output buffer and (4) transfer back the data to global memory,
hence completing the processing cycle. The evaluation was performed by using the modified
NeuroSim+, adjusting the clock frequency to 2 GHz and using 2 V of voltage.

RED achieved a 4-fold to 56.16-fold speedup compared to zero-padding, and voc_FCN8s
had the highest speedup among all models tested by Z. Li et al. [55]. However, RED only
showed slight improvements compared to the padding-free approach. In terms of the ex-
ecution time breakdown, the data show that RED had the same results for the array and
peripheral latency as the padding-free design; the only difference was that the padding-free
approach had different output buffer latencies, which can cost an extra 29% to 104% in ex-
ecution time, but RED did not have this issue in output buffer latency. In terms of energy
consumption, RED saved energy 1.05-fold to 18.17-fold compared to the zero-padding design,
achieving an 18% to 49% increase in energy efficiency.

6.2. LerGAN

Mao et al. [56] proposed a novel GAN accelerator based on the PIM architecture known
as LerGAN. The purpose of LerGAN is to solve two main issues that GAN encountered,
i.e., zero-insertion that loads on storage and the complicated data transfer pattern causing
the system bottleneck. The problems found in previous studies about GAN accelerators
were the unnecessary zero-related works and poor I/O connection. Therefore, LerGAN
involved two novel schemes to solve the problems. Mao et al. [56] proposed the zero free
data reshaping (ZFDR) scheme and reconfigurable 3D connection scheme to tackle the
above problems accordingly. The ZFDR scheme was supported by the memory controller
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and responsible for solving the zero-related task, whereas the 3D interconnection supports
the complicated dataflow.

The design of the ZFDR scheme involves T-CONV ZFDR and W-CONV-S ZFDR
components for the purpose of reshaping and reusing weight matrices. The types of each
component can be further divided into CornerReshape, where no reuse of reshaped weights
occurs; EdgeReshape, where more reuses occur; and InsideReshape, where less reuse
occurs. The imbalance of reuse causes an instability of runtime; therefore, EdgeReshape
and InsideReshape were replicated to a suitable amount. In the 3D data wire connection unit
(3DCU), the wires were used to connect the nodes between different layers. Furthermore,
switches were added somewhere between connections due to the bandwidth limitation,
and adders were attached to each node, which were Smode and Cmode in 3DCU for
memory read/write and computing, respectively.

Considering the two design architectures as a whole, the mapping of reshaped data
from ZFDR was basically conducted by the compiler, while 3DCU was used as the memory
controller. The two interfaces in ZFDR did not directly reshape the data, but dataflows
and place holders were created to remove the zeros. There were mapping generators with
both T-CONV and S-CONV and a mapping discriminator with only T-CONV. The data
mappings were then recorded by the memory controller for management, and the switches
were arranged to update the finite states. The experiment for evaluating the performance
was conducted by comparing LerGAN with the FPGA-based GAN, a GAN running on a
GPU and a GAN running on an improved ReRAM-based NN accelerator. The hardware
used for LerGAN was 4 bits of a ReRAM cell, 16 bits of input, weight and output and a
ReRAM array of size 128,128. The benchmark used was a state-of-the-art GAN.

ZFDR improved the overall parallelism by inserting more space for the weights. The
transfer inputs was achieved by duplicating the weights after only using up 75% more
space. In contrast, 3DUC achieved a reduction of data movements by aligning each part of
the phase vertically. Besides, there were two possible results from the two methods: (1) split
weights resulted in more spaces saved but less parallelism, and (2) duplicate weights
caused more parallelism but used more spaces. The results of the experiment showed the
improvements and achievements of LerGAN, where it achieved 47.2-fold, 21.42-fold and
7.46-fold speedup performance compared with the three other architectures, respectively.
However, in terms of energy-saving performance, LerGAN consumed 1.04 times more
energy than the FPGA-based GAN, but it still resulted in 9.75-fold and 7.68-fold energy
savings compared to the other two architectures.

7. Sparse Neural Network
7.1. ReRAM-Based Accelerator for Sparse Neural Network

Lin et al. [7] proposed a mapping and pruning scheme for sparse NNs. Current NNs
often bring immense amounts of pressure for storage and computation, as NNs usually
contain large numbers of parameters. Hence, sparsity through weight pruning can be used
as a powerful approach for compressing the NN model. The method of pruning is able to
reduce the redundant parameters, bringing some relief from the storage and computation
pressure. Pruning weights can be done by setting individual parameters to zero, which
causes the NN to become sparse [57]. However, a sparse matrix still has to be stored in
the same way as a dense matrix as the crossbar structure has to retain the proper order of
columns and rows. This causes the efforts of weights pruning to be wasted, as the zeros
in NN cannot be eliminated. Therefore, Lin et al. [7] came up with a k-means clustering
scheme for sparse NN mapping, as shown in Figure 3 which has been adapted from [7],
and a crossbar-grained pruning algorithm.

In order to retain the computational complexity of O(1) for matrix-vector multiplica-
tion in ReRAM crossbar computing, the whole matrix has to be mapped into the crossbar,
even though it includes a large number of zeroes. With k-means clustering, Lin et al. [7] is
able to make non-zero elements more concentrated by using column exchanging. However,
it is difficult to cluster a very large matrix. Therefore, the matrix goes through a pre-split
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before performing k-means clustering. The proposed system flow resembles PRIME’s
system flow, only with extra indexing units added due to the matrix having disordered
columns and rows.
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After concentrating the non-zero elements as closely as possible, the sparse NN is
further compressed using crossbar-grained NN pruning. This allows ReRAM crossbars
with only a few parameters to be discarded to minimize hardware resources. Then, the NN
is fine-tuned to minimize accuracy loss after weights pruning. Using 8-bit precision, the
degrading accuracy with deeper pruning represents less than 1% of accuracy loss.

Different NN structures were included in the stimulation, including CNNs such as
ResNet-18 and RNNs such as LSTM-5 (long short-term memory). Based on the results,
there was a 3 to 5-fold energy efficiency improvement after crossbar-grained pruning. The
results are better for large layered NNs, as the layers occupy a large amount of the energy
cost. This results in the NN ending up quite sparse after pruning. The system proposed by
Lin et al. [7] also achieved more than a 2.5 to 6-fold speedup for most NNs. However, the
result for convolutional layers, e.g., ResNet, is not as good. This is due to it being difficult
to compress with pruning and map sparse irregular weights.

7.2. Sparse ReRAM Engine

Several proposed sparse NN/accelerators methods use very ideal architectures of
ReRAM such as the PRIME design. The scheme proposed by Lin et al. [7] also uses idealized
ReRAM architectures as it is similar to the PRIME system flow, where these optimal or ideal
designs assume that the entire crossbar array can be triggered in one cycle. However, this
idealized assumption causes a degradation of accuracy towards the inference by NN [58].
This is due to the fact that simultaneously activating a large number of wordlines in the
crossbar array causes the analog-to-digital converter (ADC) to have trouble accurately
determining the accumulated values on the bitline. For practical applications of ReRAM
Neural Network accelerators, a single cycle only allows a limited number of wordlines
and bitlines to be turned on. Hence, in a cycle, the accelerator can only carry out a portion
of computations.

Yang et al. [58] proposed a method to exploit sparsity in DNNs called Sparse ReRAM
Engine (SRE). The maximum number of dot-product computations in one cycle is defined
as one Operation Unit (OU). Instead of assuming that the whole of the crossbar array is
activated in a single cycle, only a small section of the crossbar or OU is activated in one
cycle. With sections of the crossbar turning on independently, this gives some form of
advantage in terms of compressing weights and the activation of NNs. The proposed
method uses both row compression and activation compression.
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Row compression removes the row vectors containing all zero elements in a single OU.
Then, the rest of the rows can be shifted up, as shown in Figure 4, which has been adapted
from [58]. Column compression is also similar to row compression except that it only
involves column operations. However, column compression alters the output mapping
of the bitline. Hence, row compression is more suitable as it does not change the output
mapping and does not need any output indexing. As for activation compression, a method
of Dynamic OU Formation is used, where computation is ignored when the inputs of the
OU are all zeros.
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Comparing SRE with an idealized design (i.e., ISAAC [59]), SRE is able to provide
better performance for NN models such as CIFAR-10, CaffeNet and GoogLeNet. In addition,
SRE can save an average of 67.0% of energy over the ISAAC design. As for evaluation with
other neural network models, SRE is capable of providing an average speedup of 13.1 times
and an average energy saving of 85.3%.

8. Deep Neural Network
8.1. HitM: Multi-Modal Deep Neural Network Accelerator

B. Li and Wang et al. [8] proposed an in-memory processing design for multi-modal
Deep Neural Network (DNN) acceleration using ReRAM called HitM. Unlike typical
unimodal NN applications (e.g., applications dealing with image recognition and natural
language processing), the multi-modal DNN is able to learn from heterogeneous data fused
from various sensors. For example, videos with auto-captions are some of the data in the
web that combine visual and linguistic information [60]. Hence, combining Neural Network
architectures such as recurrent and convolutional NNs will result in a multi-modal neural
network. This has also caused the utilization of ReRAM-based PIM to be very challenging
on multi-modal DNNs. Mainly because they consist of convolutional layers and linear
layers inside CNNs and RNNs, respectively, both layers have to be considered to perform
optimization on a multi-modal DNN.

HitM mainly consists of two stages, i.e., static analysis and adaptive optimization.
The first stage involves static analysis, which mainly extracts structural information of the
multi-modal DNN description. It parses the user input neural network description file
and generates information of the ReRAM-based PIM design. This information includes
the types of NN layers, layer dimension, number of ReRAM crossbars, etc., which is used
in the optimization stage. In the adaptive optimization stage, a scheme to perform filter
replication is produced with optimized throughput. The rate of production of a network or
throughput is evaluated recursively using an estimation model. The next objective is to
determine the highest throughput while being under resource constraints, specifically in
terms of hardware resources. This can be done by precisely assigning the number of filter
replications to each neural layer. Hence, the outputs including the optimized throughput
and list of replication numbers can be mapped onto the ReRAM-based PIM.
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For the evaluation of hardware and throughput utilization, HitM is compared with
ReRAM-based PIM designs without filter replications and an ideal–optimal throughput
design. HitM is able to achieve an optimal throughput and hardware utilization of 78.01%
and 64.52%, respectively. While comparing with other similar in-memory processing models,
HitM is able to improve power efficiency and computation efficiency by 3.80–10.34 times and
4.21–13.08 times respectively. It is expected that the research will extend in the direction of
activation in multi-modal NNs and the utilization of weights’ bit-widths.

8.2. Re2PIM: Reconfigurable ReRAM-Based Deep Neural Network Accelerator

Deep Neural Network (DNN) computing requires a massive amount of data move-
ment; hence, it demands a large amount of energy and also causes long processing intervals.
To overcome the limitations, in-memory processing techniques have emerged to act as
accelerators of DNNs. Accelerators using ReRAMs show great capabilities as they are
energy efficient and have a high density of computations. However, current ReRAM accel-
erators are still unable to reach their full potential in terms of computational efficiency. For
example, Shafiee et al. [59] determined that the peak computational efficiency for a ReRAM
crossbar with a size of 128 × 128 can go up to 1707 GOPS/s× mm2 for 16-bit operations.
However, due to peripheral circuits (e.g., buffers, buses and ADCs), an ISAAC architecture
can only achieve a computational efficiency of 479 GOPS/s× mm2. Other works such as
CASCADE and TIMELY architectures are also unable to achieve efficiencies anywhere close
to the peak efficiency [61,62]. Hence, overheads in peripheral circuits greatly impact the
execution of ReRAM accelerators.

In a DNN accelerator, a ReRAM crossbar, also known as a computing unit (CU), is
able to efficiently execute a matrix vector multiplication. However, the size of the CU can
affect the energy efficiency and throughput of the accelerators [63]. A small CU size will
divide DNN weight matrices into small blocks, resulting in a high overhead of peripheral
circuits. For a large CU size, the weight matrices will be divided into larger but fewer
blocks, decreasing the overhead. However, a large CU size will limit the throughput of the
system due to coarse granular division.

Zhao et al. [63] proposed an accelerator design with a CU size that is variable to adapt
to weight matrices with different sizes called Re2PIM. The size of the CU can be changed
by reconstructing the reconfigurable units (Rus). Re2PIM is compared to typical ReRAM
in-memory architectures, including PRIME, ISAAC and TIMELY. Under constant chip
areas, the proposed design of Zhao et al. [63] is able to achieve 27-fold, 34-fold and 1.5-fold
average energy efficiency improvements over PRIME, ISAAC and TIMELY, respectively.
As for improvements in throughput, Re2PIM is on average 5.7, 17 and 8.2 times better
than PRIME, ISAAC and TIMELY, respectively. In terms of crossbar utilization, Re2PIM
is slightly worse than ISAAC, as ISAAC has smaller granularity division. However, this
causes ISAAC to have high overheads in the peripheral circuit, while Re2PIM benefits from
low overhead and saves more energy.

9. Faults in ReRAM Based Neural Networks

Despite the outstanding characteristics of ReRAM over the conventional CMOS archi-
tecture, ReRAM still faces some challenges in terms of its reliability. Due to inexperienced
chip fabrication and the fundamental nature of ReRAM itself, ReRAM faults will occur [64].
These faults will lead to a degradation of performance and cause errors in the system.
ReRAM faults mainly consist of hard faults and soft faults.

Hard faults, which are also known as permanent faults, are where the resistance of
ReRAM is stuck or permanently fixed in a state. This is due to a defective wordline or
switch state becoming permanent, which means that the ReRAM cell cannot be accessed.
This will also lead to the cell being fixed in a permanent state. For example, the cell is
mistaken to have high resistance while it is in the low resistance state. This is also known as
stuck-at-one [65]. These faulty wordlines or switches can be caused during chip fabrication
or due to the low endurance of ReRAM [64].
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In contrast, soft faults cause the saved state of ReRAM to be altered, where the actual
resistance of the cell differs from the expected resistance, hence causing a degradation of
accuracy in the system. ReRAM uses oxygen vacancies and oxygen ions to form conductive
filaments. Soft faults are formed when oxygen vacancies are diffused out of the filaments [66].
This can be further triggered by the repeated switching of ReRAM and the generated heat,
thus increasing soft faults and causing disturbance in the read and write process.

To alleviate the effects of ReRAM faults, several methods are proposed. For example,
Xia et al. [10] proposed a fault-tolerant training that also includes fault detection. The
fault-tolerant training will be able to improve the lifetime of ReRAM by reducing the
number of write operations and also updating the ReRAM status. When faults are detected
through voltage comparison, the next training phase will be able to tolerate the faults.

W. Li et al. [64] presented RRAMedy, which is able to detect ReRAM faults and recover
from them. The proposed method uses a detection method in which it can detect subtle
faults that may be expensive to detect using traditional methods. This prevents small subtle
faults from affecting the accuracy of the system. Moreover, if irreversible faults are detected,
the model can be retrained by a cloud server to update the current parameters.

A faulty ReRAM cell can have a major influence on the system if not handled properly.
This is because it affects the output map, and this will propagate through the layers of
the NN, hence affecting the system as a whole and causing error. The aftereffect of these
errors can be disastrous, as it may involve critical safety functions [67]; for example, the
classification of objects in self-driving vehicles. Hence, it is important to minimize the
effects of ReRAM faults for a system to have higher reliability.

10. Research Trend

Table 2 summarizes the different types of ReRAM-based Neural Network accelerators,
including some mentioned in previous sections and other additional recently presented
ReRAM-based PIM schemes.

Table 2. Research trend summary.

No Citation NN Type Architecture Summary

1 [2] RNN
ReRAM-based PIM RNN accelerator whereby the processing engine was
divided into three subarrays for different functions, and a lower bit-precision
number was utilized to enhance computing efficiency.

2 [7] Sparse NN
Sparse NN mapping approach using k-means clustering and pruning
algorithm to minimize low utilization crossbars with minimal impact
on accuracy.

3 [8] Multimodal-DNN HitM: Combined NN accelerator model of CNN and RNN by extracting
layer-wise information and determining optimized throughput.

4 [33] MLP and CNN PRIME: PIM-based architecture using ReRAM crossbar arrays that be
configured as the accelerator, with an input and synapse composing scheme.

5 [51] RNN
PSB-RNN: ReRAM crossbar-based PIM RNN accelerator with systolic
dataflow encompassing block circulant compression. This approach has
reduced unnecessary space and complexity computation.

6 [52] CNN FullReuse: CNN accelerator that aims for maximum utilization of data
reusability, including input data, output data and weights.

7 [55] GAN and FCN
RED: ReRAM-based approach with pixel-wise mapping scheme and
zero-skipping data flow for deconvolutional computation. This approach
has solved the massive zero insertion and maximizes the reuse of input data.

8 [56] GAN LerGAN: PIM-based architecture with zero-free data reshaping scheme and
ReRAM-based reconfigurable 3D interconnection.

9 [58] Sparse NN Spare ReRAM Engine (SRE) exploiting sparsity in weight and activation in
fine-grained operational unit computations.
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Table 2. Cont.

No Citation NN Type Architecture Summary

10 [61] CNN/DNN

TIMELY: ReRAM-based PIM accelerators addressing the bottlenecks of the
high energy cost of data movement and ADC/DAC processes. This
approach adopts analoe local buggers, time-domain interfaces and an
only-once input read mapping scheme.

11 [62] DNN

Re2PIM: DNN accelerator using ReRAM with a reconfigurable size of
computing units (CUs) known as reconfigurable units. This design is able to
adapt to in-memory computing designs with variably sized matrix
vector multiplication.

12 [68] CNN

PipeLayer: ReRAM-based PIM accelerator that aims to support deep
learning applications. Improved pipelined architecture contributed to
enabling the continuous flow of data in consecutive cycles. Spike-based data
scheme was used to eliminate overhead of DAC/ADC.

13 [69] GAN
ReGAN: ReRAM-based PIM GAN accelerator with spatial parallelism and
computation sharing. This approach reduces memory accesses and increases
system throughput with layered computation.

14 [70] CNN 3DICT: Mobile PIM accelerator that is capable of quality of service (QoS),
including high accuracy, low latency and low energy consumption.

15 [71] GAN
ReRAM-based PIM GAN accelerator with a novel computation deformation
technique that completely eliminates zero-insertion. Spatial parallelism and
computation sharing has been proposed to improve the training efficiency.

16 [72] CNN
ReRAM-based network processing unit and training method with mixed
precision. This scheme enables low power edge CNN with instant
precision tuning.

17 [73] Spiking NN
A robust ReRAM-based PIM spiking NN accelerator with
frequency-dependent stochastic spike-timing-dependent-plasticity (STDP),
which achieved better accuracy under noisy input conditions.

18 [74] DNN
3D-ReG: ReRAM-based PIM architecture and Graphics Processing Unit
(GPU) with three-dimensional integration. This design exploits the diversity
of 3D-ReG to determine the optimal balance between efficiency and accuracy.

19 [75] DCNN
Deep Convolutional NN (DCNN) accelerator by avoiding expensive ADC
and DAC processes. This is done by moving the computation of network
layers to a CMOS peripheral circuit.

20 [76] RNN

ERA-LSTM: Tiled ReRAM-based PIM with an elaborate mapping scheme
that enables the concatenation of tiles for large-scale long short-term
memory (LSTM) and inter-tile pipeline. This approach supports LSTM
pruning method and saves half of the ReRAM crossbar overhead.

21 [77] DCN

RECOIN: Deformable Convolution Network (DCN) with low power
ReRAM-based PIM architecture by addressing irregular DCN data access. In
addition, the authorsproposed a bilinear interpolation (BLI) processing
engine to avoid high write latency.

11. Conclusions and Future Studies

Memristor or ReRAM technology has great potential to overcome the limitations faced
by current commercial von Neuman architectures using CMOS, including faster access
speed and multi-state storage power. The capabilities of ReRAM have also attracted the
interest of many researchers in using ReRAM for in-memory computing architectures
and building architectures for Neural Networks (NNs). In this paper, we have addressed
different approaches and schemes for ReRAM-based NN accelerators. Different types of
NNs are categorized into RNN, CNN, GAN, sparse NN and DNN.

The proposed schemes and methods of ReRAM-based NN accelerators mostly aim
for higher computation speed, higher energy efficiency and maximum utilization. The
accuracy of the ReRAM-based NN is also a significant factor, especially in sparse NN. This
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is due to sparse NN involving many zero parameters and requiring pruning or compression
to reduce storage and computation pressure. However, the challenge comes when the
degradation of accuracy must be kept at minimum while increasing efficiency.

Other than accuracy issues caused by compression, ReRAM still poses some risks of
resulting in faulty outcomes, as ReRAM has faults such as hard faults and soft faults. These
ReRAM faults will affect the resistance stored in the device, leading it to be inaccurate,
resulting in bigger errors in the NN. Hence, faults in ReRAM must be addressed properly
to minimize their effects on the system.

ReRAM-based NN architectures should be explored more given their powerful ca-
pabilities. With this, a large scale of reliable and precise simulators, modeling tools and
real prototypes will be needed. However, there is a lack of open-source or non-proprietary
modeling tools. This causes many researchers to use existing tools or estimation from other
works to determine ReRAM parameters, running the risk of being inaccurate [78]. Hence,
the development of non-proprietary tools for ReRAM-based NN testing and prototyping
will bring improvements in integrating and adopting ReRAMs in real systems.
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