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Abstract: Tourism demand forecasting comprises an important task within the overall tourism
demand management process since it enables informed decision making that may increase revenue
for hotels. In recent years, the extensive availability of big data in tourism allowed for the development
of novel approaches based on the use of deep learning techniques. However, most of the proposed
approaches focus on short-term tourism demand forecasting, which is just one part of the tourism
demand forecasting problem. Another important part is that most of the proposed models do not
integrate exogenous data that could potentially achieve better results in terms of forecasting accuracy.
Driven from the aforementioned problems, this paper introduces a deep learning-based approach for
long-term tourism demand forecasting. In particular, the proposed forecasting models are based on
the long short-term memory network (LSTM), which is capable of incorporating data from exogenous
variables. Two different models were implemented, one using only historical hotel booking data and
another one, which combines the previous data in conjunction with weather data. The aim of the
proposed models is to facilitate the management of a hotel unit, by leveraging their ability to both
integrate exogenous data and generate long-term predictions. The proposed models were evaluated
on real data from three hotels in Greece. The evaluation results demonstrate the superior forecasting
performance of the proposed models after comparison with well-known state-of-the-art approaches
for all three hotels. By performing additional benchmarks of forecasting models with and without
weather-related parameters, we conclude that the exogenous variables have a noticeable influence on
the forecasting accuracy of deep learning models.

Keywords: long-term tourism demand forecasting; deep learning; long short-term memory network
(LSTM); weather data

1. Introduction

Accurate tourism demand forecasting is a critical component for effective tourism
demand management. In the competitive and highly volatile tourism industry, the need
for accurate tourism demand forecasting models has been thoroughly emphasized by hote-
liers, managers, tourist product designers and other stakeholders [1]. Therefore, in recent
years, new tourism demand forecasting models have been proposed, which are capable
of capturing the nonlinear and highly volatile characteristics of tourism demand. These
new models are based on techniques and methods derived from the field of deep learning,
which have been proven successful in several problems such as object detection in images,
text classification, handwritten digit recognition, speech recognition and many more.

Most of the deep learning models that have already been proposed for tourism de-
mand forecasting are based on specific neural network architectures, namely, the recurrent
neural networks (RNNs) [2] and their specific variants: the long short-term memory net-
work (LSTM) [3] and the gated recurrent units (GRUs) [4]. In theory, RNNs are capable of
capturing nonlinear long-term dependencies in sequences of data. However, in practice,
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RNNs fail to capture very long-term dependencies due to the vanishing gradient prob-
lem [5]. LSTMs overcome this problem by introducing specific types of core elements (i.e.,
gates) that allow gradients (i.e., error signals) to flow unchanged through the network
during training. Hence, due to their ability to effectively capture nonlinear long-term de-
pendencies in sequences of data, LSTMs have become a promising choice for several time
series forecasting problems (e.g., energy forecasting and traffic forecasting) and recently for
tourism demand forecasting as well. Nevertheless, the amount of work proposing tourism
demand forecasting models based on deep learning techniques is still limited [6].

Another important issue that should be highlighted is that most of the tourism demand
forecasting models proposed in the relevant literature focus on short-term forecasting [7–9].
However, the effective planning and management of businesses in the tourism sector (e.g.,
hotels and resorts) requires long-term predictions. Long-term forecasting is considered
a more difficult task compared to short-term forecasting [10,11] because it can introduce
problems such as error accumulation and increased computational complexity. Such
difficulties have discouraged researchers from attempting to tackle the long-term version of
the tourism demand forecasting problem. Nevertheless, mainly due to its significance for
effective long-term planning and decision-making, we have decided to focus our attention
on the long-term tourism demand forecasting task.

Our work comprises a first step towards fulfilling the aforementioned gaps in the
relevant literature by introducing deep learning models for long-term tourism demand
forecasting. Long-term forecasting in the sector of tourism is a constant need for hotel
managers. The ability to organize supply management, promotional strategies for tourist
attractions and have the ability to alternate policies for any circumstances, etc., are the keys
to successful management and financial planning. The proposed deep learning architectures
are based on LSTMs, which, in addition to tourism-related data (i.e., historical room
reservation records), integrate weather data. At the core of our work lies the hypothesis
that the integration of data from exogenous variables into a fundamental deep learning
architecture, used for long-term tourism demand forecasting, can significantly improve its
performance. The idea of integrating weather data lies in the complexity of the tourism
forecasting domain and the variety of factors that affect it. The main contributions of this
paper are the following:

1. The development of new deep learning models for accurate long-term tourism de-
mand forecasting, with or without exogenous variables (i.e., weather data);

2. An investigation of the impact that the exogenous variables have on the forecasting
accuracy in general, and the performance of deep learning models in particular;

3. A thorough experimental process for the evaluation of the proposed models using
real-world tourism-related and weather data.

The rest of the paper is organized as follows. In Section 2, we present a non-exhaustive
review of state-of-the-art models for tourism demand forecasting. In Section 3, we pro-
vide the details of the proposed models, while in Section 4 we describe the experimental
process through which the proposed model was evaluated and present the corresponding
results. Finally, in Section 6, we conclude the paper by outlining its main contributions and
presenting some potential future research directions.

2. Related Work

The tourism demand forecasting models proposed in the relevant literature can be
roughly classified into two categories, namely, statistical and machine learning (including
deep learning) models.

Statistical models have been used for many years in order to deal with tourism de-
mand forecasting because of their simplicity and effectiveness, and mostly include autore-
gressive models (e.g., autoregressive moving average—ARMA; autoregressive integrated
moving average—ARIMA; etc.); exponential smoothing models (e.g., simple exponential
smoothing—SES; Holt-Winters exponential smoothing ([12], etc.); regression models (e.g.,
linear regression—LR); error correction models (ECMs); time varying parameter (TVP)
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models and dynamic factor models (DFM). For example, Gunter and Önder [13] used
several statistical models (e.g., vector autoregression—VAR; Bayesian VAR; ARMA; etc.)
for forecasting international tourism demand for Paris, while Pan and Yang [14] proposed
an ARMAX model (i.e., ARMA with exogenous inputs) that integrates data from several
external sources (e.g., search engine queries, hotel website traffic data, weather information,
etc.) for accurate tourism demand forecasting. In addition, Li et al. [15] combined an ECM
with a TVP model to generate a new single-equation model for tourism demand forecast-
ing, namely, the time-varying parameter error correction model (TVP-ECM). Moreover,
Önder [16] investigated the effect of Google Trends web and image indices on autore-
gressive models. The experimental results of this work indicated that the integration of
such data into typical autoregressive models could significantly increase their forecasting
performance. Similarly, Li et al. [17] integrated search engine query data into a generalized
DFM model to forecast tourism demand for Beijing. Finally, Chen et al. [18] proposed a
multi-series structural model to capture the dependencies within the time series of demand
data, while Baldigara and Gregorić [19] utilized a seasonal ARIMA (SARIMA) model to
forecast German tourism demand in Croatia. Despite their simplicity, the statistical models
yield reduced forecasting accuracy compared to the more advanced machine learning and
deep learning approaches, since they are mostly linear models and hence they cannot
capture the nonlinear dependencies within the tourism demand data.

To overcome this issue, several studies have started to leverage techniques from
the machine learning field, such as shallow artificial neural networks (ANNs), support
vector regression (SVR [20]) and k-nearest neighbors (kNNs). For example, Saayman and
Botha [21] compared machine learning models with statistical models and showed that,
in most cases, the machine learning models outperformed the statistical ones. In addition,
Hu and Song [22] proposed an ANN model that integrated causal variables in order to
produce more accurate predictions, while Bi et al. [23] investigated the effect of different
numbers of lagged values utilized as features from machine learning models and showed
that the utilization of several different numbers can lead to better forecasting results.
Moreover, Claveria and Torra [24] compared a multilayer perceptron (MLP) with two
statistical models and reported that there is a trade-off between the degree of preprocessing
and the accuracy of the forecasts obtained from the MLP. Furthermore, Claveria, Monte
and Torra [25] compared the performance of three different ANN techniques for tourism
demand forecasting, namely, an MLP, a radial basis function network (RBFN), and an Elman
network. Their results showed that the MLP and the RBFN outperform the Elman network,
and that the forecasting performance of all three models for long horizons improves
with the memories dimension. In the same direction, several other works have been
proposed [18,26–30].

By utilizing the SVR algorithm, Lijuan and Guohua [31] proposed a model consist-
ing of an SVR module responsible for making predictions, and a combination of the fly
optimization algorithm (FOA) with a seasonal index, to both appropriately select the hy-
perparameters of the SVR model and measure the influence of seasonal tendency. Similarly,
Zhang and Pu [32] proposed an ABA-SVR model for forecasting tourist flow in Sanya,
China, which consists of an SVR module for forecasting and an implementation of the
adaptive bat algorithm (ABA) for optimizing the free parameters of the SVR. Finally, several
researchers combined [33–35] different machine learning models in order to increase the
final forecasting performance.

Recently, tourism demand forecasting models based on methods and techniques from
the field of deep learning have been developed. For example, Zhang et al. [6] proposed a
deep learning approach based on the attention mechanism, while Polyzos et al. [36] utilized
LSTMs to estimate the COVID-19 outbreak’s impact on tourism flows of Chinese residents
in the USA and Australia. In addition, Kulshrestha et al. [37] proposed a variant of the
typical LSTM model, namely, the Bayesian bidirectional long short-term memory (BBiL-
STM) network, where Bayesian optimization is utilized to optimize the hyperparameters
of the LSTM model. In the same direction (although in another domain, namely energy),
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a new approach for fine tuning the values of the weights of an ANN-based architecture
for load forecasting was proposed [38]. This work has a lot of similarities with our work,
since both propose deep learning architectures for time series forecasting problems and
both integrate data from exogenous variables into the proposed models. Characteristics
of this work (e.g., the optimization of the network’s weights through a statistical process
during learning) will be investigated as future work. Moreover, another work that uses
variants of the LSTM model is the work of Hsieh [4]. An LSTM model was also utilised as a
deep learning method in the study of Law et al. [39]. An ensemble deep learning approach,
concretely the B-SAKE approach, was proposed by Sun et al. [40] as an effective method for
increased forecasting accuracy. There are cases in which a combined method may provide
more useful and accurate results. Such an example is the work of He et al. [2] that proposed
a SARIMA–CNN–LSTM based model in order to forecast daily tourism demand. They
tried to leverage different aspects of each individual model and as a consequence, they
created an efficient hybrid one.

Most of the studies in the relevant literature carry out short-term tourism demand
forecasting [7]. However, in recent years there is an ever-increasing need for more accurate
long-term tourism demand forecasting models [3]. Towards this direction, Andrawis, Atiya
and El-Shishiny [10] combined different models using several combination schemes to
perform 24-months ahead forecasting on monthly tourism demand time series. Addi-
tionally, Wang and Duggasani [41] proposed two LSTM models for forecasting tourism
demand 31 steps ahead in time. Their models were compared with six machine learning
models, and the results showed that the forecasting accuracy of the LSTM models was
approximately 3% higher than that of the best-performing machine learning model. In the
same way, Law et al. [39] utilized an LSTM architecture to forecast monthly Macau tourist
arrival volumes for an overall forecasting horizon of 12 months.

3. Deep Learning Models for Long-Term Tourism Demand Forecasting

In this section, we describe in detail the proposed deep learning architectures based
on the LSTM network for long-term tourism demand forecasting.

3.1. The LSTM Network

Recurrent neural networks are a class of ANNs in which connections between nodes
form a directed graph along a temporal sequence. A node in an RNN takes as input, apart
from the typical signal at the current moment, its state from the previous moment. In its
most simplified version, the state of an RNN node coincides with its output. In particular,
the output bh

t of a hidden node h at the time moment t is given by the following equation:

bh
t = σh(

I−1

∑
i=0

whixi
t +

H−1

∑
j=0

uhjbj
t−1 + ch), (1)

where:

• xi
t ∈ R is the input i at the node h at the time moment t:

• whi ∈ R is the weight of the connection between the input i and the node h;
• bh

t−1 ∈ R is the output of the node h at the time moment t− 1;
• uhj ∈ R is the weight of the connection between the node h and the node j of the

same layer;
• σh is the nonlinear activation function of the node h;
• ch ∈ R is the bias of the node h;
• I ∈ N is the number of inputs at node h;
• H ∈ N is the number of nodes in the layer of node h.

As shown in Equation (1), an RNN node can store past information bh
t−1, along with

its current input xt ∈ RI , to estimate its current output bh
t . Based on their ability to store
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past information, RNNs are used for recognizing patterns in sequences (or series) of data,
such as texts, genomes, sound signals, numerical time series, etc.

RNNs are usually trained using the backpropagation through a time algorithm (BBTT—
Williams and Zipser [42]), which is a generalization of the standard backpropagation
algorithm used for training feed-forward neural networks. This technique incorporates
the iterative optimization method called stochastic gradient descent (SGD). In particular,
the BBTT algorithm initially unfolds the RNN in time as if it had k layers, where k is
the length of the input sequence, and all layers share the same set of parameters. Then,
the algorithm proceeds as the typical backpropagation on the very deep (unfolded in time)
network. As in the typical backpropagation algorithm, the updates of the weights of the
network are calculated as the first derivatives of the network’s loss function with respect to
the weights. The problem is that, in RNNs, these derivatives tend to become very small as
the number of folds in time (k), i.e., the length of the input sequence, increases. This is the
vanishing gradient problem.

The LSTM network [43] is an RNN architecture that overcomes the vanishing gradient
problem by allowing gradients to backpropagate unchanged through the network. A com-
mon LSTM architecture consists of a cell, which is the memory of the LSTM, and three gates
that control the information flow inside the LSTM. In particular, the input gate controls the
extent to which new values flow into the cell, the forget gate controls the extent to which a
value remains to the cell, and the output gate controls the extent to which the values in the
cell are used to compute the output of the LSTM. An overview of a typical LSTM network
is presented in Figure 1. A forward pass of information (i.e., of a vector xt ∈ Rd) through
an LSTM network is described by the following equations:

ft = σg(W f xt + U f ht−1 + b f ), (2)

it = σg(Wixt + Uiht−1 + bi), (3)

ot = σg(Woxt + Uoht−1 + bo), (4)

ct = ft � ct−1 + it � σc(Wcxt + Ucht−1 + bc), (5)

ht = ot � σh(ct), (6)

where:

• xt ∈ Rd is the input vector of the LSTM network;
• ft ∈ Rh is the activation vector of the forget gate of the LSTM network;
• it ∈ Rh is the activation vector of the input gate of the LSTM network;
• ot ∈ Rh is the activation vector of the output gate of the LSTM network;
• ct ∈ Rh is the state vector of the cell of the LSTM network;
• ht ∈ Rh is the hidden state vector (or activation vector) of the LSTM network;
• Wq ∈ Rh×d is the matrix of weights of the input connections between the input vector

xt and an LSTM element q, where q can either be the input gate i, the forget gate f ,
the output gate o, or the cell c;

• Uq ∈ Rh×h is the matrix of weights of the recurrent connections between the hidden
state vector ht (or, more accurately, ht−1) and an LSTM element q, where q can either
be the input gate i, the forget gate f , the output gate o, or the cell c;

• bq ∈ Rh is the bias vector of an LSTM element q, where q can either be the input gate i,
the forget gate f , the output gate o, or the cell c;

• σg(x) = 1
1+e−x is the sigmoid activation function of the input, the forget, and the

output gates;
• σc(x) = ex−e−x

ex+e−x is the hyperbolic tangent activation function of the cell;

• σh(x) = ex−e−x

ex+e−x is the hyperbolic tangent activation function of the LSTM network;
• � is the Hadamard product (or element-wise product).
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Figure 1. An LSTM network.

The initial state vectors c0 and h0 are usually set equal to the zero vector 0 = [0, . . . , 0]T ∈
Rh. The training process of an LSTM network lies in the estimation of the values of the
Wq and Uq matrices and the bq vectors for all the h units of the network, and it is usually
performed using the BPTT process. Unlike typical RNNs, the training process of an LSTM
network does not suffer from the vanishing gradient problem, because while the error
values are backpropagated through the network they remain unchanged inside the cells
and they do not exponentially degrade. In addition, as understood from the previous
description, the cell of an LSTM network decides what to store and what to leave us-
ing element-wise operations on sigmoids, which are differentiable and therefore suitable
for backpropagation.

3.2. Correlation between Target and External Variables

In this work, in addition to a deep learning model of a long-term tourism demand
forecasting model that will use only tourism-related data, we built an a model which, in
addition to tourism-related data, also integrates weather data. In particular, as will be
presented in Section 4, the tourism-related data are historical room reservations while the
weather data come from a set of weather variables, namely, temperature, atmospheric
pressure, humidity, wind speed and visibility. In order to identify which weather variables
would be more useful for our forecasting objective, we estimated the correlations between
the tourism variable (i.e., number of room reservations) and the weather variables. To this
end, we utilized the Pearson product-moment correlation coefficient (PPMCC). In particular,
given two time series xt, yt ∈ Rn, the PPMCC is calculated using the following equation:

rxy =
∑n

t=1(xt − x̄)(yt − ȳ)√
∑n

t=1(xt − x̄)2
√

∑n
t=1(yt − ȳ)2

, (7)

where x̄ and ȳ are the average values of the time series xt and yt, respectively. It should be
noted that the PPMCC is a measure of the linear correlation between two variables. In our
case, we calculated the PPMCC between each room reservation time series xt and each
weather time series yt. Given the PPMCC results (presented in Section 5.1), we utilized
temperature as the external weather variable for our second deep learning model.

3.3. Transforming Time Series for Supervised Learning

As already mentioned, the proposed deep learning models are trained using the BPTT
algorithm in a supervised-learning fashion. This means that in order to train our models,
we needed to have a set of training samples of the form {(z1, y1), . . . , (zN , yN)}, where
zj ∈ Rd and yj ∈ R, and then apply the zj vectors to the input and the yj values to the output
of the model. However, what we had was a set of time series xt of size n each. In order to
transform a time series of data into a set of training samples appropriate for training our
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models in a supervised way, we selected a past window of size p and a forecasting horizon
h, and passed the window over the time series one step at a time. In particular, in the
first step, we selected the values [x0, . . . , xp−1] as the first training vector z1 and the value
xp−1+h as the first training output y1, in the next step, we selected the values [x1, . . . , xp] as
the second training vector z2 and the value xp+h as the second training output y2, and so on.
In this way, a set of n− p− h + 1 training samples was generated. In this work we focus on
long-term tourism demand forecasting, and hence we set both the size of the past window
p and the forecasting horizon h to L, where L is the length of the tourist season. Therefore,
the number of training samples generated by one time series of size n was n − 2L + 1.
Given the fact that for each hotel a set of m time series was available, the final number of
training samples generated using the above approach was m · (n− 2L + 1). The training
samples generated using this process were used for training both the proposed and the
benchmark models.

3.4. LSTM Models Architecture

Since there is no formal process reported in literature for configuring the hyperparam-
eters of a deep learning architecture (e.g., number of LSTM layers, number of LSTM units
per layer, batch size, etc.), we estimated their optimal values using the heuristic technique
of trial-and-error, which worked as follows. Initially, a specific configuration of the hyper-
parameters was chosen, and a model was built using this configuration. Then, the model
was trained on the training data and evaluated on the validation data. The forecasting
performance of the model on the validation data was measured using appropriate error
metrics (see Section 5.1). The process was repeated for several different configurations,
and the one that minimized the forecasting error on the validation data was finally chosen.
This hyperparameter optimization process is also called the grid search hold-out validation
method, or simply the grid search method.

We utilized the above process to estimate the hyperparameters of different architec-
tures built for each tourism-demand data source (i.e., hotel). Consequently, for Hotel A,
the derived architecture contained two LSTM layers with 64 units each, with batch sizes of
3 and 10 training epochs. For Hotel B, the optimal architecture included two LSTM layers
with 16 and 8 LSTM units; the batch size was 3, and the number of training epochs was 30.
As for Hotel C, the optimal architecture consisted of two LSTM layers with 64 and 47 units,
respectively; the batch size in this case was 2, and the number of training epochs was 100.
In all three cases, the activation function of all LSTM layers was the hyperbolic tangent
function. Additionally, each LSTM network had an input layer with L nodes and an output
layer with one node and linear activation function. All models were trained using a variant
of the SGD algorithm called RMSProp [44].

All the above architectures have the same input-output data configuration. In par-
ticular, we utilized the rolling window technique described in the previous section to
transform the room reservation time series into a set of training samples, by setting both the
past window and the forecasting horizon to the tourist season length L. In this way, a set
of training samples of the form {(z1, y1), . . . , (zN , yN)}, in which zj = [xj−1, . . . , xj+L−2]
and yj = xj+2L−2, was generated from the room reservation time series of an arrival day.
For m different time series, the corresponding partial training sets were concatenated in
order to generate the overall training set. The final deep learning models combining the
aforementioned architectures with the supervised learning data configuration process are
referred to hereafter as LSTMB models.

As already mentioned, apart from the deep learning models that use only tourism-
related data, we built additional ones which, in addition to tourism-related data, also
integrate weather data. By using the grid search method described above, we set up new
architectures for all three hotels that integrate, apart from the room reservation values,
temperature values from the location of each hotel. Specifically, for Hotel A, the new
network architecture contained one LSTM layer with 30 units, with batch sizes of 3 and
18 training epochs. For Hotel B, the new architecture contained one LSTM layer with
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38 units and batch sizes of 3 and 10 training epochs, while for Hotel C, the new configuration
consisted of two LSTM layers with 32 and 16 units and batch sizes of 2 and 100 epochs.
As in the case of the LSTMB models, all LSTM layers had as an activation function the
hyperbolic tangent function and were trained using the RMSProp algorithm. Finally, each
new LSTM architecture had one input layer with 2L nodes and an output layer with one
node and a linear activation function.

Regarding the data configuration, in this case, we applied the time series transforma-
tion process on both the room reservation and the temperature time series with p = h = L.
The result of the application of the data transformation process on the weather time se-
ries was a set of training samples of the form zT

j , yT
j , where zT

j = [wj−1, . . . , wj+L−2] and

yT
j = wj+2L−2. We kept only the zT

j part of these samples and concatenated it with the
zj vectors of the LSTMB models, which produced the final training samples of the form
zX

j , yX
j , where zX

j = [xj−1, . . . , xj+L−2, wj−1, . . . , wj+L−2] and yX
j = yj = xj+2L−2. Again,

the partial training sets that corresponded to the m room reservation time series were
concatenated in order to generate the overall training set. Each of the new deep learning
architectures combined with the above data configuration process composes the second
type of deep learning models we have built, referred to hereafter as LSTMX. The proposed
deep learning models for long-term tourism demand forecasting are schematically depicted
in Figure 2.

Figure 2. Schematic representation of the proposed deep learning models for long-term tourism
demand forecasting.

4. Data

In this section, we describe the real-world data used for building and evaluating both
the proposed and the benchmark tourism demand forecasting models.



Electronics 2022, 11, 3681 9 of 20

4.1. Hotel Data

In order to evaluate both the proposed and the benchmark tourism demand forecasting
models, real-world tourism demand data from three hotels in Greece we used. In particular,
the dataset used contains room reservation records for each day of past tourist seasons
from three different hotels in Greece. We received these data in the form of sets of yield
reports from a large tourism management company in Greece. Due to data privacy, we
hereafter refer to the three hotels using the terms Hotel A, Hotel B and Hotel C instead of
their real names.

Hotel A is a 5-star resort located in a Greek island. Its room reservation data spanned
in four seasons, namely from 2013 to 2016, and was delivered as sets of yield reports.
Each set corresponded to a season and contained 37 individual reports, where each report
was about a specific booking date and contained room reservation records for all arrival
days. The number of arrival days in this part of the dataset was 187 from 26 April to
31 October. Hotel B is a 5-star hotel in southern Greece. The room reservation data for this
hotel covered four tourist seasons, namely from 2014 to 2017. As in the case of Hotel A,
the data from Hotel B were delivered in the form of four sets of yield reports (one for each
of the examined seasons), where each set contained 34 reports. Each report was about a
specific booking day and contained room reservation records for all 189 arrival days from
24 April to 31 October. Finally, Hotel C is a 5-star hotel in northern Greece. The data from
this hotel contained room reservation records from four seasons, namely from 2014 to 2017.
The total number of yield reports for each season was 61 and the arrival days were 148
from 12 May to 28 October. It should be noted that the season in this context follows the
tourism industry definition and not the calendar definition. This means that when we refer
to season we mean the period from April to October of each year. However, we believe that
the investigation of our models’ behavior in different calendar seasons will reveal several
important characteristics of our approach. Thus, we intend to carry out this investigation
as future work.

In all three cases, the room reservation records were organized into time series. In par-
ticular, for each arrival day di

ar a time series xi
t ∈ Rn of room reservation values was

constructed, where n is the total number of room reservation values for the whole period
covered. For n, the following equation holds:

n = ns × L, (8)

where ns is the number of seasons covered by the dataset, and L is the number of yield
reports per season, i.e., the length of the season. All seasons were the same length for all
three hotels. The number of arrival days (i.e., the number of time series for each hotel) is
denoted by m. For example, the data from Hotel A covered four seasons (i.e., from 2013 to
2016), and they were delivered in sets of 37 yield reports per season, referring to 187 arrival
days. Hence, for Hotel A, a set of m = 187 time series with size n = 4× 37 = 148 each was
constructed. The characteristics of the time series constructed for each hotel are presented
in Table 1. Additionally, the room reservation time series for all arrival days of the last
seasons of all three hotels (i.e., season 2016 for Hotel A, 2017 for Hotel B and 2017 for Hotel
C) are schematically depicted in Figure 3, respectively.

Table 1. Characteristics of the room reservation time series for all hotels.

Hotel A Hotel B Hotel C

Number of time series (m) 187 189 148
Number of seasons (ns) 4 4 4
Length of season (L) 37 34 61
Time series size (n) 148 136 244
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Figure 3. Room reservation time series for all arrival days of the last season of each hotel.

4.2. Weather Data

Apart from the hotel data described above, weather data were also used in the training
and the evaluation process of one of the proposed tourism demand forecasting models.
In particular, for each of the hotel locations, we gathered values from the five weather
variables below:

• Temperature (◦C)
• Atmospheric pressure (Pa)
• Humidity (%)
• Wind speed (km/h)
• Visibility (m)

The values of these variables were in different time intervals, but we aggregated
them, using averages, in to daily intervals. In addition, the total period covered by the
weather data was the same as seasons covered by the data for each hotel. These data were
gathered from the online weather data repository Weather Underground [45]. As in the
case of the hotel data, the weather data were also organized into time series. In particular,
for each hotel, a set of five weather time series wk

t ∈ Rn was constructed, where k ∈
{T, AP, H, WS, V}, and the symbols correspond to temperature, atmospheric pressure,
humidity, wind speed and visibility, respectively.

5. Experimental Evaluation

In this section, we describe in detail the overall experimental evaluation framework of
the proposed work, along with the corresponding experimental results.

5.1. Experimental Setup

For the evaluation of the proposed tourism demand forecasting models, a set of
experiments was designed and performed. Each experiment corresponded to one of
the three hotels in the dataset, and its main objective was to measure the forecasting
performance of the proposed models and compare it with the performance of benchmark
models in the context of a long-term forecasting scenario. This scenario is defined as follows.
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Given a room reservation time series xi
t for an arrival day di

ar containing a total of n values
from ns seasons with a season length L each, forecast the room reservations value at the
end of next season ns + 1, or equivalently estimate the value x̂i

n+L. Repeat this process for
all arrival days.

As already mentioned, for each hotel there are four seasons of data. In order to perform
the aforementioned experiments, the data were divided into three parts. In particular,
the first part (i.e., 50%) was the training set, the second (i.e., 25%) the validation set and the
third (i.e., 25%) the test set. The hyperparameter tuning process on the validation data was
performed using the grid search method. Moreover, it should be clarified that one single
instance of each model was implemented for each hotel, and not a different instance for
each arrival day. In addition, given the fact that we are interested in a multi-step-ahead
forecasting scenario, we utilized the direct [46,47] multi-step forecasting strategy, instead
of the iterative [46,47] or the DirRec [48] strategy. This choice was made because the
direct strategy usually gives better results in the long-term forecasting due to the lack of
cumulative error [49]. Furthermore, the PPMCC values for all three hotels are presented
in Table 2. As shown in the table, the PPMCC values closer to 1 (i.e., perfect positive
linear correlation) for all three hotels correspond to the temperature variable, which means
that it is the most well correlated weather variable with the tourism variable. Finally, the
hyperparameter values of the LSTMB and LSTMX deep learning architectures for the three
hotels are summarized in Table 3 and Table 4, respectively.

In order to measure the forecasting performance of both the proposed and the bench-
mark models, two forecasting error metrics that are widely used in the tourism demand
forecasting literature [50] were utilized, namely, the root mean squared error (RMSE) and
the mean absolute percentage error (MAPE). RMSE is defined as the square root of the
average of the squared differences between the actual and the predicted values, and it is
expressed in the measurement unit of the forecasted variable. Hence, in this case, RMSE
was expressed in the number of room reservations (in short rr). RMSE is defined by the
following equation:

RMSE =

√√√√ 1
n

n

∑
j=1

(xj − x̂j)2, (9)

where xj is the actual value and x̂j is the predicted tourism demand value. On the other
hand, MAPE is defined as the average of the absolute values of the relative differences
between the actual and the predicted values, and it is expressed as a percentage (%). MAPE
is defined by the following equation:

MAPE =
100
n

n

∑
j=1
|
xj − x̂j

xj
|, (10)

where xj is the actual and x̂j is the predicted tourism demand value, respectively.

Table 2. PPMCC values between the tourism and weather variables for all hotels. The bold values
indicate the highest positive correlations identified.

Hotel A Hotel B Hotel C

Temperature 0.65 0.78 0.60
Atm. Pressure 0.23 −0.29 −0.30
Humidity −0.24 0.14 −0.10
Wind Speed −0.02 −0.02 −0.03
Visibility 0.07 0.21 0.23
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Table 3. Hyperparameter values of the LSTMB architectures for all hotels.

Hotel A Hotel B Hotel C

Number of LSTM layers 2 2 2
Number of LSTM units per layer 64, 64 16, 8 64, 47
Batch size 3 3 2
Epochs 100 30 100

Table 4. Hyperparameter values of the LSTMX architectures for all hotels.

Hotel A Hotel B Hotel C

Number of LSTM layers 1 1 2
Number of LSTM units per layer 30 38 32, 16
Batch size 3 3 2
Epochs 18 10 100

5.2. Benchmark Models

We compared the forecasting performance of the proposed deep learning models
with six benchmark models widely used for tourism demand forecasting, namely, a naive
forecasting model, ARIMA, SVR, Holt-Winters exponential smoothing, MLP, and Bayesian
Ridge Regression (BRR). In what follows, we provide a brief description for each of these
benchmark models.

• Naive forecasting model
In every time series forecasting task, it is useful to compare the forecasting perfor-
mance of a new proposed model with that of a simplistic model, e.g., the model
whose predicted value for a dependent variable is equal to the current value of the
variable, regardless of the forecasting horizon. This naive forecasting model makes its
predictions using the following equation:

x̂t+h = xt, (11)

where h is the forecasting horizon. If the forecasting accuracy of a new model is not
higher than the accuracy of the naive forecasting model, then the proposed model
cannot be considered as useful.

• Autoregressive Integrated Moving Average
The ARIMA model is one of the most widely used statistical models for time se-
ries forecasting in general, as well as for tourism demand forecasting, in particular.
The method was popularized by the work of Box and Jenkins [51] in the 1970s. In short,
an ARIMA(p, d, q) model is described by the following equation:

(1−
p

∑
j=1

φjLj)(1− B)dxt = (1 +
q

∑
j=1

θjLj)εt, (12)

where p is the autoregressive order, q is the moving average order, d is the order of
differencing (i.e., how many times the method of first differences needs to be applied
on a time series to make it stationary), φj are the autoregressive parameters of the
model, θj are the moving average parameters of the model, Bj is the lag operator (i.e.,
Bjxt = xt−j) and εt is white noise with zero mean and constant variance. The param-
eters of the ARIMA model are generally estimated using either the nonlinear least
squares method or the maximum likelihood method. When the ARIMA model does
not include the moving average component, its autoregressive parameters can be
estimated using the ordinary least squares method.

• Support Vector Regression
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Support vector regression (SVR) is the version of the support vector machine (SVM)
model for regression problems. Considering zj ∈ Rd as the input vector of the SVR
model, its prediction is given by the following equation:

yj = 〈w, zj〉+ b, (13)

where yj is the prediction for the input vector zj, w is the parameter vector of the SVR
model, b is the bias of the SVR model, and 〈·〉 denotes the dot product. Given a set of
training samples {(z1, y1), . . . , (zn, yn)}, the training process of the SVR model can be
expressed by the following optimization problem: min 1

2 ||w||2
yi − 〈w, zi〉 − b ≤ ε
〈w, zi〉+ b− yi ≤ ε

, (14)

where ε is a hyperparameter of the SVR model that serves as a threshold, and in par-
ticular, all predictions have to be within an ε range of the true predictions. In addition,
slack variables may be introduced to the problem in order to allow prediction errors to
flow out of the ε range boundaries. The above optimization problem is usually solved
using quadratic programming methods such as the method of Lagrange multipliers.

• Holt-Winters Exponential Smoothing
The Holt-Winters exponential smoothing (or triple exponential smoothing) model is a
statistical forecasting model. It is a variant of the simple exponential smoothing model,
and it takes into account the possibility of trends and seasonality in the time series
data. The seasonality in the data can be either additive or multiplicative. We utilized
the Holt-Winters exponential smoothing model with multiplicative seasonality, which
is described by the following equations:

s0 = x0, (15)

st = α
xt

ct−L
+ (1− α)(st−1 + bt−1), (16)

bt = β(st − st−1) + (1− β)bt−1, (17)

ct = γ
xt

st
+ (1− γ)ct−L, (18)

Ft+h = (st + hbt)ct−L+1+(h−1)modL, (19)

where:

– xt is the value of the time series at time t;
– st is the smoothed value of the constant part of the time series at time t;
– bt is the estimate of the linear trend part of the time series at time t;
– ct is the estimate of the seasonal part of the time series at time t;
– Ft+h is the output of the model at time t + h, where h > 0;
– α is the data smoothing factor for which 0 < α < 1 holds;
– β is the trend smoothing factor for which 0 < β < 1 holds;
– γ is the seasonal change smoothing factor for which 0 < γ < 1 holds;
– L is the length of the season.

The free parameters of the model, namely, the factors α, β and γ, are set explicitly
by the analyst of estimated by the data using nonlinear optimization methods (e.g.,
the Nelder-Mead method [52]). Finally, the initial values b0 and c0 can be estimated in
various ways. For example, a formula for the initial trend estimate b0 is the following:

b0 =
1
L

L

∑
i=1

xL+i − xi
L

. (20)
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• Multilayer Perceptron
A multilayer perceptron (MLP) is a class of feedforward ANNs which consist of at
least three layers of nodes, namely, the input layer, the output layer and at least one
hidden layer. Except for the input layer, all other layers contain neurons with arbitrary
activation functions. These activation functions may either be linear or nonlinear,
but in the majority of cases, they are nonlinear (e.g., hyperbolic tangent function,
logistic function, rectifier linear unit—ReLU, etc.). The input layer of the MLP receives
the input vectors, while the hidden and output layers perform computations on these
vectors in order to derive new vector representations that will lead to the final pre-
dictions. The MLPs are trained using the backpropagation technique in a supervised
learning way. Finally, MLPs are considered as universal function approximators [53],
and therefore they can be used for regression tasks. Moreover, as classification can be
considered as a special case of regression in which the target variable is categorical,
the MLPs can also be used for classification tasks. An example architecture of an MLP
is shown in Figure 4.

Input #1

Input #2

Input #3

Output

Input
Layer

Hidden Layer 1 Output
Layer

Hidden
Layer 2

Figure 4. An example MLP architecture.

• Bayesian Ridge Regression
Bayesian ridge regression (BRR) is a probabilistic, regularized model used for re-
gression tasks. The term probabilistic means that instead of trying to find the “best”
values of the model parameters in the sense that they minimize the error over training
data (or in-sample error), we try to determine the posterior distribution of the model
parameters based on the assumption of Gaussian prior distribution and the Bayes the-
orem. Additionally, the term regularized means that the model integrates parameters
that constrain the size of the model parameters. In the BRR, the prior for the model
parameters vector w is given by a spherical Gaussian:

p(w | λ) = N(w | 0, λ−1 Ip). (21)

The priors for α and λ are considered gamma distributions. The estimation of the
model is performed by iteratively maximizing the marginal log-likelihood of the
data values.

As in the case of the proposed models, the hyperparameter values of the benchmark
models were estimated using the grid search method. In particular, regarding the ARIMA
model, an ARIMA(3, 1, 0) model instance was built for each hotel, in which the parameters
were estimated using the maximum likelihood estimation method. For the SVR benchmark
model, a linear kernel was used for all hotels, and the optimal value of ε was 0.5 for Hotel
A and Hotel B and 0.1 for Hotel C. In the case of the Holt-Winters exponential smoothing
model, a different instance of the model was built for each arrival day and hotel. Therefore,
a different set of optimal values for the parameters α, β, and γ was estimated. However,
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the optimal values of α and β were constant across all arrival days and hotels and were equal
to 0.99 and 0 respectively. The optimal value of γ ranged between 0 and 0.1. Regarding the
MLP, the MLP architecture for Hotel A contained one hidden layer with 128 neurons and
was trained using the RMSProp method with batch sizes of 32 and 200 epochs. For Hotel B,
the MLP architecture contained one hidden layer with 64 neurons, which was trained using
RMSProp with batch sizes of 32 and 200 epochs. Finally, for Hotel C, the MLP architecture
contained one hidden layer with 30 neurons and was trained using the RMSProp method
with batch sizes of 32 and 100 epochs. In all three cases, the activation function of the
hidden neurons was the ReLU; the networks had one input layer with L nodes and one
output layer with one neuron and linear activation function. The hyperparameter values of
these MLP architectures for the three hotels are summarized in Table 5. Finally, regarding
the BRR model, the optimal values of the hyperparameters α1, α2, λ1 and λ2 was 10−6 for
all hotels.

Table 5. Hyperparameter values of the MLP architectures for all hotels.

Hotel A Hotel B Hotel C

Number of hidden layers 1 1 1
Number of neurons per hidden layer 128 64 30
Batch size 32 32 32
Epochs 200 50 100

5.3. Experimental Results

The forecasting performance results of both the proposed and the benchmark models
for all hotels are presented in Table 6 and schematically in Figure 5. As shown in the
table, in most cases the proposed deep learning models outperform the benchmark models.
Additionally, the LSTMX model that integrates weather data outperforms the LSTMB
model in two out of three cases. This result validates the correctness of our assumption
that the integration of values from exogenous variables (e.g., temperature) can increase the
forecasting accuracy of an LSTM-based tourism demand forecasting model, provided that
these variables are well-correlated to the demand variable.

Table 6. Forecasting performance results of all models for all hotels.

Hotel A Hotel B Hotel C

RMSE (rr) MAPE (%) RMSE (rr) MAPE (%) RMSE (rr) MAPE (%)

Naive 24.479 15.77 20.994 31.988 29.292 11.741
ARIMA(3, 1, 0) 74.928 20.469 51.469 40.529 94.396 38.087
SVR 46.889 6.28 15.005 21.241 47.919 8.875
Holt-Winters 24.492 5.182 21.088 13.644 29.312 8.998
MLP 21.013 5.288 19.792 17.611 30.072 9.742
BRR 31.122 17.694 28.664 35.102 38.994 13.681
LSTMB 17.896 4.533 19.015 16.986 26.667 8.336
LSTMX 19.148 4.638 18.523 11.222 24.050 7.671

Specifically, regarding Hotel A, the proposed deep learning models outperform all
benchmark models. In addition, the forecasting performance of the LSTMX model is slightly
worse than the performance of the LSTMB model. In the case of Hotel B, the LSTMX model
outperforms all benchmark models, while the LSTMB model outperforms all models ex-
cept the Holt-Winters model. In both cases, LSTMX presents higher forecasting accuracy
compared to LSTMB. Finally, in the case of Hotel C, the deep learning models are the best
performing models, and the LSTMX model presents again higher forecasting accuracy
compared to the LSTMB model. Finally, regarding the benchmark models, the best per-
forming model for Hotel A and Hotel B was the Holt-Winters model and for Hotel C the
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SVR, while the Holt-Winters had very similar forecasting performance. All aforementioned
comparisons between models were made based on the values of the MAPE metric.
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Figure 5. Schematic depiction of the forecasting performance results (MAPE and RMSE) of all models
for all hotels.

The proposed deep learning models exhibit their best forecasting accuracy for Hotel
A, which has the most stable room reservation time series for all arrival days in the test
period. On the other hand, they exhibit their worst forecasting accuracy for Hotel B, which
has the most volatile time series (i.e., time series with the highest variance). To depict
this behavior schematically, the time series of long-term forecasts x̂i

n+L for all arrival days
di

ar generated by the proposed deep learning models are presented in Figure 6 for Hotel
A, Hotel B and Hotel C. As shown in the figures, the models fit very well on the room
reservation time series of Hotel A, while presenting differences in some points in the time
series of Hotel B and Hotel C. This behavior is a piece of evidence that the forecasting
performance of the LSTM-based models deteriorates with the volatility of the time series
trying to predict.

Furthermore, in order to verify that the difference between the forecasting performance
of the proposed deep learning models and that of the best performing benchmark model
for each hotel is statistically significant, we utilized the Wilcoxon signed-rank test [54]. This
test assesses the null hypothesis that two samples of values were drawn from populations
having the same distribution, and it can be used in cases where the samples are small and
their values cannot be assumed to be normally distributed. In our case, we compared the
residuals (i.e., the differences between the actual and predicted demand values) produced
by the proposed models and those of the best performing models for each hotel. Due to the
disagreement regarding the best performing benchmark model according to the two error
metrics, for each hotel we evaluated the best performing model according to both metrics
(e.g., for Hotel A, we evaluated both the MLP and the Holt-Winters models). In all cases,
the null hypothesis of the test was rejected, and therefore, the difference in forecasting
accuracy between the proposed models and the best performing benchmark models can
be considered as statistically significant. It should be noted that the sizes of the residual
samples can be considered small (i.e., 187, 189, and 148 for Hotel A, Hotel B, and Hotel
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C, respectively), and their probability distributions also cannot be considered normal, as
verified by the application of the Shapiro-Wilk [55] statistical test. Hence, the Wilcoxon
signed-rank test is applicable.
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Figure 6. Time series of the actual and the (long-term) forecasted room reservations generated by the
proposed deep learning models for all arrival days of each hotel.

As presented in Section 3.4, the LSTMX model integrates data from the temperature
weather variable. However, in order to extract more evidence about the impact of the
weather data on the forecasting performance of the proposed deep learning architectures,
we trained and tested a set of LSTMX(k) models, where k ∈ {AP, H, WS, V} and the sym-
bols correspond to atmospheric pressure, humidity, wind speed and visibility, respectively.
Each LSTMX(k) model is similar in terms of architecture with the base LSTMX model, but it
integrates data from the k weather variable instead of the temperature. The experimental
setup for these additional models was exactly the same with the one described in Section 5.1.
The forecasting performance results of these models are presented in Table 7. As shown
in the table, the base LSTMX model (i.e., temperature) outperforms all LSTM(k) variants
for Hotel A and Hotel B, while in the case of Hotel C the LSTMX(WS) and LSTMX(V)
present the best performance. While in Hotel A and Hotel B, the new variants of the
LSTMX model that integrate data from other exogenous variables do not achieve better
results compared to the LSTMB model and the initial LSTMX model, in the case of Hotel C,
the two variants outperform both LSTMB and the initial LSTMX. This finding indicates
that other models probably exist that might yield even better forecasting performance.
Our initial assumption is that these models should either integrate data from multiple
exogenous variables (e.g., LSTMX(T + WS + V)) or might be ensembles of the existing
models. However, more experiments are required to better support this claim, which will
be performed as future work.
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Table 7. Forecasting performance results of the LSTMX(k) variants for all hotels.

Hotel A Hotel B Hotel C

RMSE (rr) MAPE (%) RMSE (rr) MAPE (%) RMSE (rr) MAPE (%)

LSTMX(T) 19.148 4.638 18.523 11.222 24.050 7.671
LSTMX(AP) 27.929 6.138 21.939 21.5 29.206 9.604
LSTMX(H) 27.164 7.07 21.804 21.217 24.693 8.355
LSTMX(WS) 36.24 10.481 27.44 26.173 22.255 7.369
LSTMX(V) 36.534 8.91 31.366 26.504 21.639 7.231

6. Conclusions

In this paper, we proposed new deep learning architectures for long-term tourism
demand forecasting. In particular, the proposed architectures are based on the LSTM
network, which is capable of incorporating data from exogenous variables. Two different
architectures were implemented, namely one using only historical tourism-related data
and another one which, in addition to tourism-related data, also integrates weather data.
The proposed models were evaluated on real-world tourism demand data from three hotels
in Greece. Based on the experimental results, it was concluded that the proposed models
achieve better forecasting performance in all cases compared to six different benchmark
models widely used for tourism demand forecasting. In addition, we validated our assump-
tion that the integration of data from exogenous variables (e.g., weather data) in a base deep
learning architecture, used for long-term tourism demand forecasting, can significantly
improve its performance. Through this work, we experimentally verified our intuition that
the integration of data from exogenous variables into a model used for long-term tourism
demand forecasting improves its accuracy. We believe that this is an important outcome for
the respective scientific community that should be further investigated. Future research
directions of this work include the experimentation with different types of exogenous vari-
ables (e.g., combinations of variables, demographics, etc.), season-wise experimentation,
and model optimization along the lines of the work presented in [38]. Furthermore, we
intend to apply the proposed models in similar tourism-related datasets from hotels in
other regions of the Mediterranean, such as Italy.
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