Analysis of the Surface Electric Field Distribution of a 10 kV Faulty Composite Insulator
Abstract
:1. Introduction
2. Simulation Model Development and Parameter Settings
2.1. Simulation Model
2.2. Electric Field Control Equations
3. Electric Field Distribution Analysis of the Composite Insulators
3.1. Electric Field on the Surface of a Damaged Composite Insulator
3.2. Electric Field Distribution on the Surface of a Composite Insulator with Internal Defects
3.3. Electric Field Distribution on the Surface of a Fouled Composite Insulator
3.4. Electric Field Distribution on the Surfaces of the Composite Insulators with Different Faults
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lu, M.; Li, Y.Y.; Hu, J.L. Influence of Sheds Damage on the AC Pollution Flashover Performance of Different Voltage Class Composite Insulators. IEEE Access 2020, 8, 84713–84719. [Google Scholar]
- Kikuchi, T.; Nishimura, S.; Nagao, M.; Izumi, K.; Kubota, Y.; Sakata, M. Survey on the use of non-ceramic composite insulators. IEEE Trans. Dielectr. Electr. Insul. 1999, 6, 548–556. [Google Scholar] [CrossRef]
- Baker, A.C.; Bernstorf, R.A.; Cherney, E.A.; Christman, R.; Gorur, R.S.; Hill, R.J.; Lodi, Z.; Marra, S.; Powell, D.G.; Schwalm, A.E.; et al. High-Voltage Insulators Mechanical Load Limits—Part II: Standards and Recommendations. IEEE Trans. Power Deliv. 2012, 27, 2342–2349. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Qiao, X.H.; Xiang, Y.Z.; Jiang, X.L. Comparison of Surface Pollution Flashover Characteristics of RTV (Room Temperature Vulcanizing) Coated Insulators Under Different Coating Damage Modes. IEEE Access 2019, 7, 40904–40912. [Google Scholar] [CrossRef]
- Tu, Y.P.; Zhang, H.; Xu, Z.; Chen, J.J.; Chen, C.H. Influences of Electric-Field Distribution Along the String on the Aging of Composite Insulators. IEEE Trans. Power Deliv. 2013, 28, 1865–1871. [Google Scholar]
- Wang, J.F.; Liang, X.D.; Gao, Y.F. Failure Analysis of Decay-like Fracture of Composite Insulator. IEEE Trans. Dielectr. Electr. Insul. 2014, 21, 2503–2511. [Google Scholar] [CrossRef]
- Gao, Y.F.; Liang, X.D.; Lu, Y.; Wang, J.F.; Bao, W.N.; Li, S.H.; Wu, C.; Zuo, Z. Comparative Investigation on Fracture of Suspension High Voltage Composite Insulators: A Review—Part I: Fracture Morphology Characteristics. IEEE Electr. Insul. Mag. 2021, 37, 7–17. [Google Scholar] [CrossRef]
- Kone, G.; Volat, C.; Ezzaidi, H. Numerical investigation of electric field distortion induced by internal defects in composite insulators. High Volt. 2017, 2, 253–260. [Google Scholar] [CrossRef]
- Kumosa, M.; Kumosa, L.; Armentrout, D. Can water cause brittle fracture failures of composite non-ceramic insulators in the absence of electric fields? IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 523–533. [Google Scholar] [CrossRef]
- Xie, C.; Liu, S.; Liu, Q.; Hao, Y.; Li, L.; Zhang, F. Internal Defects Influence Field of 500 kV AC Composite Insulator on the Electric Distribution along the Axis. High Volt. Eng. 2012, 38, 922–928. [Google Scholar]
- Ramesh, M.; Cui, L.; Gorur, R.S. Impact of superficial and internal defects on electric field of composite insulators. Int. J. Electr. Power Energy Syst. 2019, 106, 327–334. [Google Scholar] [CrossRef]
- Nandi, S.; Reddy, B.S. Understanding field failures of composite insulators. Eng. Fail. Anal. 2020, 116, 104758. [Google Scholar] [CrossRef]
- El-Refaie, E.M.; Abd Elrahman, M.K.; Mohamed, M.K. Electric field distribution of optimized composite insulator profiles under different pollution conditions. Ain Shams Eng. J. 2018, 9, 1349–1356. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Qiao, X.H.; Zhang, Y.; Tian, L.; Zhang, D.D.; Jiang, X.L. AC flashover performance of different shed configurations of composite insulators under fan-shaped non-uniform pollution. High Volt. 2018, 3, 199–206. [Google Scholar] [CrossRef]
- Zhang, D.D.; Zhang, Z.J.; Jiang, X.L.; Yang, Z.Y.; Liu, Y.C.; Bi, M.Q. Study on the Flashover Performance of Various Types of Insulators Polluted by Nitrates. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 167–174. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Zhang, D.D.; Jiang, X.L.; Liu, X.H. Effects of Pollution Materials on the AC Flashover Performance of Suspension Insulators. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 1000–1008. [Google Scholar] [CrossRef]
- Wang, C.; Li, T.F.; Tu, Y.P.; Yuan, Z.K.; Li, R.H.; Zhang, F.Z.; Gong, B. Heating phenomenon in unclean composite insulators. Eng. Fail. Anal. 2016, 65, 48–56. [Google Scholar] [CrossRef]
- He, J.H.; He, K.; Gao, B.T. Modeling of Dry Band Formation and Arcing Processes on the Polluted Composite Insulator Surface. Energies 2019, 12, 3905. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Yuze, L.; Bo, Z. Electric Fields Distribution of EHV AC Transmission Line Composite Insulators with Internal Conductive Defects. In Proceedings of the 2019 Asia Power and Energy Engineering Conference, APEEC, Macao, China, 1–4 December 2019; pp. 115–120. [Google Scholar]
- Zhao, X.L.; Yang, X.; Hu, J.; Wang, H.; Yang, H.Y.; Li, Q.; He, J.L.; Xu, Z.L.; Li, X.X. Grading of Electric Field Distribution of AC Polymeric Outdoor Insulators Using Field Grading Material. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1253–1260. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.; Chen, L.; Fu, X.; Geng, J.; Liu, Y.; Huang, Q.; Zhong, Z. A Study on the Influence of End-Sheath Aging and Moisture Absorption on Abnormal Heating of Composite Insulators. Coatings 2022, 12, 898. [Google Scholar] [CrossRef]
- Phillips, A.J.; Kuffel, J.; Baker, A.; Burnham, J.; Carreira, A.; Cherney, E.; Chisholm, W.; Farzaneh, M.; Gemignani, R.; Gillespie, A.; et al. Electric fields on AC composite transmission line insulators. IEEE Trans. Power Deliv. 2008, 23, 823–830. [Google Scholar] [CrossRef]
- Liu, Y.P.; Yang, X.H.; Liang, Y.; Zhang, R.F. Aging effect analysis of long period operating composite insulators in different electric field position. J. Ceram. Process. Res. 2012, 13, S422–S427. [Google Scholar]
Parameter | Value |
---|---|
Rated voltage (kV) | 10 |
Rated mechanical load (kN) | 70 |
Structural height (mm) | 365 |
Distance of sheds (mm) | 40 |
Diameter of big shed (mm) | 142 |
Diameter of small shed (mm) | 116 |
Core rod diameter (mm) | 12 |
Name | Material | Relative Permittivity | Conductivity, (S/m) |
---|---|---|---|
- | Air | 1.006 | |
Sheath | Silicone rubber | 3 | |
Mandrel | Epoxy glass fiber | 4.6 | |
Metal fittings | Steel | ||
Dry soil layer | NaCl | 6.2 | 1.28 |
Internal defect | Water | 80 | 0.003 |
Damage Locations | Electric FieldDirection | Emax at HV End (kV/m) | Emax at the Damage Area (kV/m) | Emax of Insulators (kV/m) | Emax at the LV End (kV/m) |
---|---|---|---|---|---|
a | Axial | 334.327 | 96.310 | 87.323 | 328.908 |
Radial | 194.329 | 50.063 | 47.138 | 151.437 | |
b | Axial | 336.542 | 23.512 | 21.626 | 333.347 |
Radial | 235.936 | 4.3771 | 2.3567 | 184.974 | |
c | Axial | 336.840 | 17.213 | 15.828 | 334.831 |
Radial | 234.650 | 1.8166 | 0.085 | 183.868 | |
d | Axial | 339.089 | 21.020 | 19.153 | 333.466 |
Radial | 232.658 | 3.2196 | 1.4448 | 185.500 | |
e | Axial | 339.067 | 62.424 | 55.672 | 328.160 |
Radial | 232.681 | 25.370 | 21.269 | 170.861 |
Location of Internal Defects | Electric Field Direction | Emax at the HV End (kV/m) | Emax at the Defective Zone (kV/m) | Emax of Normal Insulators (kV/m) | Emax at the LV End (kV/m) |
---|---|---|---|---|---|
a − b | Axial | 357.462 | 180.064 | 92.136 | 332.584 |
Radial | 224.113 | 92.612 | 39.763 | 200.239 | |
d − e | Axial | 338.670 | 114.394 | 59.523 | 331.593 |
Radial | 206.118 | 71.187 | 19.569 | 224.029 |
Location | Direction | ΔEmax at the HV End (%) | ΔEmax at the Fault Location (%) | ΔEmax at the LV End (%) |
---|---|---|---|---|
Damage | ||||
a | Axial | 0.88 | 10.29 | 1.40 |
Radial | 8.62 | 6.21 | 30.19 | |
b | Axial | 0.23 | 8.72 | 0.07 |
Radial | 10.52 | 85.73 | 14.74 | |
c | Axial | 0.14 | 8.75 | 0.37 |
Radial | 10.34 | 2029.88 | 15.25 | |
d | Axial | 0.53 | 9.75 | 0.04 |
Radial | 9.40 | 122.84 | 14.49 | |
e | Axial | 0.52 | 12.13 | 1.63 |
Radial | 9.41 | 19.28 | 21.24 | |
Internal defects | ||||
a − b | Axial | 5.98 | 95.43 | 0.30 |
Radial | 5.39 | 132.91 | 7.70 | |
d − e | Axial | 0.40 | 92.28 | 0.60 |
Radial | 3.08 | 263.77 | 3.27 | |
Fouling | ||||
— | Axial | 44.60 | — | 45.98 |
Radial | 26.83 | — | 23.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Shi, J.; Zhang, J. Analysis of the Surface Electric Field Distribution of a 10 kV Faulty Composite Insulator. Electronics 2022, 11, 3740. https://doi.org/10.3390/electronics11223740
Zhang J, Shi J, Zhang J. Analysis of the Surface Electric Field Distribution of a 10 kV Faulty Composite Insulator. Electronics. 2022; 11(22):3740. https://doi.org/10.3390/electronics11223740
Chicago/Turabian StyleZhang, Jiahong, Jiali Shi, and Jing Zhang. 2022. "Analysis of the Surface Electric Field Distribution of a 10 kV Faulty Composite Insulator" Electronics 11, no. 22: 3740. https://doi.org/10.3390/electronics11223740
APA StyleZhang, J., Shi, J., & Zhang, J. (2022). Analysis of the Surface Electric Field Distribution of a 10 kV Faulty Composite Insulator. Electronics, 11(22), 3740. https://doi.org/10.3390/electronics11223740