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Abstract: Environmental sound classification is an important branch of acoustic signal processing.
In this work, a set of sound classification features based on audio signal perception and statistical
analysis are proposed to describe the signal from multiple aspects of the time and frequency domain.
Energy features, spectral entropy features, zero crossing rate (ZCR), and mel-frequency cepstral
coefficient (MFCC) are combined to form joint signal analysis (JSA) features to improve the signal
expression of the features. Then, based on the JSA, a novel region joint signal analysis feature (RJSA)
for environment sound classification is also proposed. It can reduce feature extraction computation
and improve feature stability, robustness, and classification accuracy. Finally, a sound classification
framework based on the boosting ensemble learning method is provided to improve the classification
accuracy and model generalization. The experimental results show that compared with the highest
classification accuracy of the baseline algorithm, the environmental sound classification algorithm
based on our proposed RJSA features and ensemble learning methods improves the classification
accuracy, and the accuracy of the LightGBM-based sound classification algorithm improves by 14.6%.

Keywords: sound classification; joint signal analysis feature; energy prominence regions; boosting
method; ensemble learning

1. Introduction

Sound is one of the most important carriers of information. An audio signal in a real
environment contains a lot of environment-related information. Based on experience and
ability, humans can efficiently recognize the surrounding environment from sounds. The
recognition and classification of an audio signal, i.e., the identification and determination
of the recorded sound’s environmental label, can be used in a range of security monitoring
systems such as audio surveillance, anomaly detection, and risk prevention and control.
With the development of information technology, particularly the advancement of pattern
recognition theory and methods, artificial intelligence systems have become widely used in
a variety of scientific and technical fields. Automatic recognition of environmental sound is
a key direction for environmental sound research for signal and information processing [1].

Generally, environmental sound classification algorithms are composed of both feature
extraction and classification model (two parts). Audio features used for sound classifica-
tion must be able to capture the essential characteristics of various types of audio signals
efficiently. These features must be robust and have complete signal characterization ca-
pabilities for complex audio signals. Feature extraction is an important part of sound
classification algorithms. The mainstream feature extraction methods are basically based on
signal processing and transformation, including waveform structure feature extraction in
the time domain, spectral analysis, and higher-order statistics analysis in the frequency do-
main, short-time Fourier transform and wavelet analysis in the time-frequency domain, and
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nonlinear feature extraction of signals. For decades, the potential of the methods mentioned
above has been fully explored with promising results. Generalized auditory features in-
clude zero crossing rate (ZCR), short-term energy (STE), linear prediction coefficient (LPC),
spectral centroid (SC), mel-frequency cepstral coefficients (MFCC), spectral flux (SF), spec-
tral irregularity (SI), spectral entropy (SE), and spectral contrast (SC). A well-performing
classifier is required for an excellent recognition system in addition to a feature set with
clustering and scattering. The classifier makes some kind of transformation and mapping of
the feature vectors from the feature space to the target type space. By using a set number of
environmental sound signals as training samples, the classifier training module determines
the values of the parameters in the classifier [2–8]. The primary classifiers utilized in the
algorithms include k-nearest neighbor (KNN)-based classifiers [9–13], multilayer percep-
tron (MLP)-based classifiers [14,15], convolutional recurrent neural network (CRNN)-based
classifiers [16–20], convolutional neural network (CNN)-based classifiers [21–27], support
vector machine (SVM)-based classifiers [28–33], and Gaussian mixed model (GMM)-based
classifiers [34–36]. The information that a model can provide generally comes from two
aspects, the information contained in the training data and the prior information that
people supply.

Audio classification research dates back to the 1990s when algorithms based on the
self-organizing neural network and nearest neighbor criterion were first applied to auto-
matic sound retrieval and audio classification systems [37]. In 1997, the concept of sound
classification was first introduced and established by Sawhney and Maes, researchers at the
Multimedia Laboratory at MIT [38]. The development of sound classification algorithms
mainly focuses on two aspects of feature extraction and classification models, and ma-
chine learning-based sound classification algorithms have received considerable attention.
Chachada and Kuo investigated and summarized sound classification algorithms based on
machine learning. Eleven combinations of feature extractors and classifiers were tested on
a sound dataset with 37 sound types. The experimental results reveal that a combination
of MFCC and SVM classifiers produces the best classification results, with a classification
accuracy of 76.74%. The algorithm based on the spectrogram and feedforward neural
network classifier was the poorest, and the classification accuracy did not reach 40%. It was
pointed out that ensemble multiple classifiers to learn complementary feature combina-
tions for sound classification is a future research direction [39]. J. Piczak implemented the
classification of the ESC-10 dataset based on KNN, SVM, and RF classification methods
using MFCC and ZCR features. The accuracy of the classification algorithm based on RF
achieves the best classification result. Through a five-fold cross validation, the accuracy of
the algorithm based on KNN was 66.7%, the accuracy of the algorithm based on SVM was
67.5%, the accuracy of the algorithm based on the RF was 72.7%. Shaukat et al. [40] used
ensemble-learning algorithms to achieve excellent performance in the classification of daily
sound events. In recent years, ensemble-learning algorithms based on boosting method
have advanced and progressed. Some excellent boosting ensemble-learning algorithms
have demonstrated great performance in classification and regression task.

Based on the joint analysis of audio signal time-frequency domain perception and
statistics, an environmental sound classification algorithm with novel region joint signal
analysis (RJSA) features and boosting ensemble learning is proposed in this paper. The
main contributions of our research are as follows:

• A signal analysis (SA) feature based on joint analysis of audio signal perception and
statistics is proposed. This feature consists of the continuous frame correlation feature,
the signal positive and negative waveform amplitude similarity feature, the average
amplitude feature of energy fluctuations in the time domain, and the adjacent frame
correlation feature, the sub-band energy fluctuation amplitude feature in the frequency
domain. Combining existing signal statistical analysis features, the joint signal analysis
(JSA) feature is formed to improve the signal description capability of features and the
classification accuracy.
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• A novel region joint signal analysis feature (RJSA) for environment sound classification
is proposed. Determine the audio signal energy threshold first and the signals for the
region where the energy is lower than the threshold are dropped to reduce the influence
of redundant signals on the target audio signal. Performing feature extraction for the
region where the signal energy is greater than the threshold to reduce feature extraction
computation, improve feature stability, robustness, and classification accuracy.

• A sound classification framework based on the RJSA feature and boosting ensemble
learning method is provided. The popular boosting ensemble-learning algorithms
are adopted to classify environmental sound; and the model robustness, algorithm
generalization ability, stability, and classification accuracy are improved.

The rest of the paper is organized as follows. The JSA feature is introduced in Section 2.
Section 3 focuses on the RJSA feature based on signal energy. Section 4 presents the
framework for environment sound classification based on boosting the ensemble-learning
algorithm and RJSA feature. Section 5 presents the experimental results and Section 6 gives
the conclusions and directions for future research in our work.

2. Joint Signal Analysis (JSA) Feature

Audio features include time domain and frequency domain features. Time domain
features are typically processed on the signal’s sampled values and do not require any
change of the original audio signal. This is one of the most basic and traditional ways
for extracting audio features. Typical time domain features include ZCR-based features,
amplitude-based features, energy-based features, etc. The frequency domain features are
generally closely related to timbre, which is based on the Fourier transform. It can be
further divided into spectral envelope and spectral structure correlation features, statistical
features, and coefficient features.

In the process of audio signal analysis, the time domain waveform map and spectro-
gram of the audio signal have definite distinctions after visualization of the sound signal,
in addition to the sound that can be directly distinguished by auditory perception. The
spectrograms of different types of sound signal examples in the ESC-10 dataset are given in
Figure 1. The horizontal axis of the spectrogram is time, the vertical axis of the spectrogram
is frequency, and the amplitude is indicated by color.
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The spectrogram can reflect at the same time the change of frequency and amplitude
of the signal with time. A set of sound classification features based on perception and
statistical analysis are proposed by visualizing and analyzing the time domain waveform
and spectrograms of the audio signal. The proposed new feature is the signal analysis (SA)
feature. This feature consists of the continuous frame correlation feature, the signal positive
and negative waveform amplitude similarity feature, the average amplitude feature of
energy fluctuations in the time domain, and the adjacent frame correlation feature, the
sub-band energy fluctuation amplitude feature in the frequency domain. The features are
extracted from the time domain and frequency spectrum, adjacent frames, and sub-bands.
Then, existing features including sub-band energy distribution ratio, spectral entropy, cross
entropy, and the short-time energy in the time domain, ZCR, and MFCC are combined to
form a JSA feature.

2.1. Signal Analysis (SA) Feature

The proposed features in SA will be described in detail in this section.

2.1.1. Time Domain Feature

Signal time domain features generally do not require a formal transformation of the
original audio signal, processed on the sampled values of the signal itself. Based on the time
domain waveform analysis of audio signals, the continuous frame correlation feature, the
signal positive and negative waveform amplitude similarity feature, and the time domain
signal energy fluctuation rate feature are proposed. Assume that x represents the signal
time domain amplitude, N represents the frame length of each signal frame, k denotes the
index value of the number of frames, and K is the total number of frames.

The continuous frame correlation feature is expressed as:

fT_corr =
1
K

K

∑
k=1


N
∑

n=1
x(n, k) · x(n, k + 1)√

N
∑

n=1
x2(n, k)·

N
∑

n=1
x2(n, k + 1)

 (1)

The signal positive and negative waveform amplitude similarity feature computes
the symmetry of the signal waveform about the positive and negative signals of the time
axis, which is directly expressed as the similarity of the normalized audio signal with
positive amplitude to the negative amplitude. The signal positive and negative waveform
amplitude similarity feature is calculated as follows:

fT_sim(l) = −

L−l
∑

i=1
x+(i) · x−(i)√

L−l
∑

i=1
x2
+(i) ·

L−l
∑

i=1
x2
−(i)

0 ≤ l ≤ L− 1 (2)

x+ and x− denotes the positive and negative signals that correspond to the mutually
overlapping parts of the sequence after shifting, as shown in Figure 2. In Figure 2, i is
the index of the signal sampling point and L is the signal length. The signal positive and
negative waveform amplitude similarity feature includes the mean value, maximum value,
and minimum values of waveform amplitude similarity.
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The similarity of waveform amplitudes of the audio signal is expressed as:

fT_ave =
1
L

L

∑
l=1

fT_sim(l) (3)

fT_max = max( fT_sim(0), fT_sim(1) · · · fT_sim(L− 1)) (4)

fT_min = min( fT_sim(0), fT_sim(1) · · · fT_sim(L− 1)) (5)

fT_PNC = [ fT_ave, fT_max, fT_min] (6)

The average amplitude feature of time domain energy fluctuations mainly reflects the
speed of the process of signal energy rise and decline, and the average amplitude of time
domain energy decline is expressed as:

fT_des =

∑
E(k)>E(k+1)

(
N
∑

n=1
|x(n, k + 1)| −

N
∑

n=1
|x(n, k)|

)
∑

E(k)>E(k+1)
sgn(E(k)− E(k + 1))

(7)

E(k) =
N

∑
n=1
|x(n, k)| (8)
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where ∑
E(k)>E(k+1)

sgn(E(k)− E(k + 1)) denotes the number of times the energy of the

signal frame decreases. sgn[·] is the sign function, namely:

sgn[x] =

{
1 x ≥ 0
−1 x < 0

(9)

The average amplitude of time domain energy rise is expressed as:

fT_ins =

∑
E(k)<E(k+1)

(
N
∑

n=1
|x(n, k + 1)| −

N
∑

n=1
|x(n, k)|

)
∑

E(k)<E(k+1)
sgn(E(k + 1)− E(k))

(10)

where ∑
E(k)<E(k+1)

sgn(E(k + 1)− E(k)) denotes the number of times the energy of the

signal frame increase.

2.1.2. Frequency Domain Feature

The time domain analysis method has the advantages of simplicity and clear physical
meaning. However, since some of the more important perceptual features of sound signals
are reflected in the power spectrum, frequency domain analysis is also very important
compared to time domain analysis.

The spectral structure of environmental sound can reflect the differences in the acoustic
properties of environmental sound. The research in [1] provides spectrum analysis of
sound samples in five different types of sound environments, and the results demonstrate
that the spectral energy of environmental sound in vehicles (cabs and buses) is more
concentrated below 1 kHz, where low frequency energy below 200 Hz is more significant.
Environmental sound in public places (restaurants, shopping malls, supermarkets, etc.)
has a wide frequency band, with the majority of spectral energy concentrated below
3000 Hz. Environmental sound energy in quiet indoor areas (study rooms, laboratories)
is small, mainly distributed at a low frequency of about 100 Hz. The distribution band
of outdoor traffic environment sound (lanes, intersections) is wide, with more energy
distributed below 2000 Hz and a slightly prominent spectrum near 3 kHz and 5 kHz,
owing to the presence of mechanical sounds of vehicles running on the road, tire noise, and
horn sound, etc. The energy of pure speech is more concentrated in the low and middle
frequency band of 1.5 kHz and is more evenly distributed. The spectral distribution of
typical environmental sound is different, and the spectral structure reflects the differences
in the acoustic properties of the environmental sound [2].

Since the energy distribution of different signals is concentrated in different frequency
regions, the sub-band adjacent frame correlation feature and the energy fluctuation am-
plitude feature are proposed based on frequency domain signals. The correlation and
fluctuation of the audio signal are described from each frequency band in the signal fre-
quency domain. In the calculation process of the sub-band adjacent frame correlation
feature and energy fluctuation rate feature, the audio signal is divided into frames first,
processed by window function, and then the Fourier transform of the signal is performed,
and the transformed signal is uniformly divided in the frequency band. After the division
of the signal, the adjacent frame correlation feature is expressed as follows:

fS_corr(j) =

M
∑

m=1
Xj(m, k) · Xj(m, k + 1)√

M
∑

m=1
X2

j (m, k)·
M
∑

m=1
X2

j (m, k + 1)

(11)
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where X represents the fast Fourier transform of x, m denotes the frequency point index
within each band, and j denotes the frequency band index.

The sub-band energy fluctuation amplitude feature is calculated as follows:

fS_des(j) =

∑
E(k)>E(k+1)

(
M
∑

m=1

∣∣Xj(m, k + 1)
∣∣2 − M

∑
m=1

∣∣Xj(m, k)
∣∣2)

∑
E(k)>E(k+1)

sgn(E(k)− E(k + 1))
(12)

E(k) =
M

∑
m=1

∣∣Xj(m, k)
∣∣2

where ∑
E(k)>E(k+1)

sgn(E(k)− E(k + 1)) denotes the number of times the energy of the

signal frame declines. The rising rate of the time domain energy is expressed as:

fS_ins =

∑
E(k)<E(k+1)

(
M
∑

m=1

∣∣Xj(m, k + 1)
∣∣2 − M

∑
m=1

∣∣Xj(m, k)
∣∣2)

∑
E(k)<E(k+1)

sgn(E(k + 1)− E(k))
(13)

where ∑
E(k)<E(k+1)

sgn(E(k + 1)− E(k)) indicates the number of times the energy of the

signal frame rises.
Based on the analysis of the time domain waveform and spectrogram of environmental

sound signal, the continuous frame correlation feature, the signal positive and negative
waveform amplitude similarity feature, and the time domain signal energy fluctuation
rate feature are proposed to describe the correlation degree of adjacent frame signals,
the signal positive and negative amplitude similarity degree in the time domain, and
the signal energy fluctuation during the signal change over time. The sub-band adjacent
frame correlation feature and the energy fluctuation amplitude feature are proposed to
describe the correlation and energy fluctuation levels between adjacent frames in the
frequency domain of the band signal. The audio signal is represented in the time domain,
frequency domain, single frequency band, adjacent frame relationships, energy variations,
and statistical properties.

2.2. Joint Feature

In addition to the SA feature, existing features are adopted to complete signal analysis
and description. The signal sub-band entropy and cross entropy features can effectively
represent the random characteristics of a single band as well as the correlation characteristics
between adjacent bands, while the sub-band energy and energy distribution ratio features
can reflect the energy distribution. Therefore, these four sub-band features are used to
characterize the band energy distribution, the random properties, and the correlation
properties between adjacent bands of the signal. The perceptual and statistical analysis
features, the sub-band energy distribution ratio, spectral entropy, cross entropy, and the
short-time energy in the time domain, ZCR, and MFCC are combined to form a JSA feature.

A comprehensive description of the audio signal is given in terms of time domain sig-
nal energy, similarity between adjacent frames, positive and negative amplitude symmetry,
amplitude fluctuation rate, number of transitions of zero, frequency domain band energy
distribution, signal stochastic properties, correlation between adjacent bands, adjacent
frame correlation, spectral sub-band fluctuation rate, and cepstrum domain characteristics.
The JSA feature is expressed as:

fCo−A = [ fS_sed, fT_E, fS_BE, fS_BCE, fS_corr, fS_E, fS_des,
fS_ins, fT_corr, fT_PNC, fT_des, fT_ins, fT_zcr, fMFCC]

(14)
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3. Region Joint Signal Analysis (RJSA) Feature

In the process of environmental sound recognition, there are some interfering signals
or redundant signals, which can affect the accuracy of sound recognition. In the perception
of environmental sound, the surrounding environment can often be identified by some of
the significantly representative sound signals, for example, the surrounding environment
can be generally identified as a traffic environment by the sound of car sirens and motor
vehicle driving noise.

To reduce the influence of the interfering signals and redundant signal, the RJSA
feature is proposed to improve the stability and effectiveness of the JSA feature. RJSA is
based on the Pareto principle. Pareto proposed the famous Pareto principle in 1906, also
known as the 80/20 rule [41,42]. Since its introduction, the Pareto principle has been widely
applied in different fields and has been proven to be correct in the majority of cases after
numerous experimental tests. In any case, the main outcome of things depends on only a
small number of factors. In any factor that produces some common effect, a relatively small
number of factors contribute most of the effect. The majority of measurable improvements
are the product of a limited number of quality improvement projects, those critical few
factors. The majority of programs belong to the useful majorities, which are typically
several orders of magnitude less effective than the critical few factors.

The Pareto principle provides a relatively clear proportional relationship, but since
it is based on a large amount of statistical data, it may not always reflect a strict 80/20
proportional relationship. This proportional relationship might be biased for two reasons.
First of all, it is possible to find the 80/20 rule based on the classification of the data. If the
classification of the data is not precise and complete, the analysis’s results may be biased.
In addition, if the number of sub-samples obtained is insufficient, the analytical results
may be biased. However, as long as the corresponding statistics are sufficient and the data
classification analysis is generally reasonable, it can be discovered that there is a tendency for
a small number of causes to lead to a large number of failures, or for a small number of efforts
to achieve the majority of the results. When applying Pareto principle, it is not possible to
demand that the data completely satisfy the numbers of 80% and 20%; any situation where a
few factors determine the main outcome is consistent with Pareto principle. The main idea of
the RJSA feature is using some of the sound signal to replace the complete signal.
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Background audio signal is always present in the real world, but not all background
sounds contain valid identification information for environmental sounds. As shown in
Figure 1, the sound of baby crying, clock ticking, and dog barking with distinct signal
characteristics mainly concentrate on the high energy signal segment. Based on the Pareto
principle, the RJSA feature is proposed to extract features only for the signals in the energy
prominence regions. Using some of the signal features for sound classification, combined
with RSA features, the RJSA feature extraction process is shown in Figure 3.

The input signal is first framed and processed with windows, after which the validity
of the framed signal is evaluated, and the amplitude of the signal frame with a sum of zero
is filtered out to avoid interfering with the calculation of subsequent features. The energy
of each signal frame is calculated and the average energy of the signal frame is derived.
Based on the defined gain factor and the average energy of the signal, the energy threshold
of the signal corresponding to the energy prominence region is calculated. The energy of
the signal frames is compared with the energy threshold. The signal frames with energy
greater than the threshold value are remained, and the signal frames with energy less than
the threshold value are dropped, then the JSA feature is extracted from energy prominence
regions. The extracted features are RJSA features, which can be used for environmental
sound classification.

The frame average energy calculation during the energy prominence regions compu-
tation is expressed as:

AE =
1
K

K

∑
k=1

(
N

∑
n=1

x2(n)

)
(15)

The energy threshold is expressed as:

ET = α · AE (16)

The value of the energy threshold can be changed by adjusting the gain factor α. For a
fixed frame signal, the range of energy prominence regions is reduced by a higher energy
threshold, and the energy of the signal used for feature extraction is more prominent. By
comparing frame energy to the energy threshold, the signal frames with higher energy and
the signal frames with lower energy are classified into two groups. The high-energy frame
signals constitute the energy prominence regions.

ESR =
{

xk
∣∣Exk > ET

}
(17)

The RJSA feature is obtained through feature extraction from the energy promi-
nence regions.

4. Ensemble-Learning Algorithm Based on Boosting Method

Tree-based classifiers were first applied to the background noise classification task in
2014, and the algorithms showed great advantages in terms of running time and classifi-
cation accuracy. Although neural networks have revived and become popular in recent
years, boosting-based ensemble-learning algorithms still have a distinct advantage in cir-
cumstances where the training sample size is restricted, the needed training time is short,
and the knowledge of tuning parameters is weak. Boosting-based algorithms have been
developed in recent years, but they have received less attention in sound signal process-
ing. Therefore, we introduce boosting algorithms into sound classification to explore the
effectiveness of the algorithms.

Boosting is a method of boosting weak learners into strong learners. In the classifica-
tion problem, it learns multiple classifiers by changing the weights of the training samples
and combining these classifiers into linear combinations to improve the performance of
classification. The schematic diagram of the gradient boosting algorithm is shown in
Figure 4. Boosting methods train the base model after transforming the training set each
time, and then combine all of the base model prediction results.
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Chen proposed the eXtreme Gradient Boosting (XGBoost) method [43,44] in March
2014. In January 2017, Microsoft published the first stable version of the Light Gradient
Boosting Machine (LightGBM) [45], and in April 2017, Yandex open-sourced the Categorical
Features Gradient Boosting (CatBoost) method [46,47]. In fact, XGBoost, LightGBM, and
CatBoost are different implementations of the gradient boosting decision tree (GBDT)
method, with different optimizations for the same purpose. XGBoost, LightGBM, and
CatBoost the current state of the art (SOTA) boosting algorithms, all of which can be
classified into the class of gradient-boosting decision-tree algorithms.

4.1. Gradient Boosting Decision Tree Method

The GBDT algorithm combines a decision tree with gradient boosting [48,49], The
value of the negative gradient of the loss function is used in the current model as the
residual approximation in the algorithm. The idea of the algorithm is to keep fitting the
residuals so that the residuals continually decrease. The negative gradient value of the loss
function for the i-th sample of the m-th iteration is:

rm,i = −η

[
∂L(yi, f (xi))

∂ f (xi)

]
f (xi)= fm−1(xi)

(18)

Fit the regression tree to rm,i to obtain the m-th tree, whose corresponding leaf node
region is Rj,m. Calculate the optimal output value γj,m for each leaf node region sample.

γjm = arg min
γ

∑
xi∈Rjm

L(yi, fm−1(xi) + γ) (19)

Then, the tree fitting function for this iteration is:

hm(x) = η
J

∑
j=1

γjm I(x ∈ Rjm) (20)
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Thus, obtaining the final strong learner:

F(x) = fM(x) = f0(x) + η
M

∑
m=1

J

∑
j=1

γjm I(x ∈ Rjm) (21)

4.2. XGBoost, LightGBM and CatBoost

XGBoost is an improvement of the original version of the GBDT algorithm, while
LightGBM and CatBoost are further optimizations based on the XGBoost, which have their
own advantages in terms of accuracy and speed. All three methods are ensemble learning
frameworks supported by decision trees. The main characteristics and important parame-
ters of the three methods are shown in Table 1. The table lists the common characteristics
of the three boosting methods, as well as their respective advantages, drawbacks, and
important model parameters.

Table 1. The main characteristics and important parameters of XGBoost, LightGBM, and CatBoost.

XGBoost LightGBM CatBoost

Common
Characteristics

1. Gradient-boosting decision-tree algorithm
2. based on decision trees
3. greedy thoughts

Improvements
&

Benefits

1. parallel computing
2. second-order derivative
of the loss function
3. linear model support;
4. regular term adding
5. shrinkage factor
6. column sampling
7. handling missing values

1. histogram algorithm
2. gradient-based one-side
sampling (GOSS)
3. exclusive feature bundling (EFB)
4. leaf-wise algorithm
5. data parallel acceleration
6. cache optimizing

1. reducing hyper parameters tuning
2. interface for integration with
scikit, as well as R and
command-line interface
3. supporting categorical variables
4. self-defining loss functions
5. scalable GPU version
6. efficient deployment

Drawbacks

1. still need to traverse the
dataset during the node
splitting process
2. high space complexity of
the pre-sorting process

1. may grow deeper decision trees
in leaf-wise and produce
over-fitting
2. sensitivity to noise

1. the processing of categorical
features requires a lot of memory
and time
2. random number settings influence
the model prediction results

Hyper
parameter

OC learning_rate, max_depth,
min_child_weight

learning_rate, max_depth,
min_data_in_leaf learning_rate, depth, l2_reg_leaf

CV / categorical_feature cat_features, one_hot_max_size

SC colsample_bytree,
subsample, n_estimators

feature_fraction, bagging_fraction,
num_iterations rsm, iterations

Where OC represents the hyperarameter used for overfitting, CV represents the hyperparameter used for categori-
cal values, and SC represents the hyperparameter used for speed control.

All three boosting ensemble learning methods can control overfitting by adjusting the
learning rate and tree depth. XGBoost is a high-speed computational algorithm with good
model performance that can be used in classification and regression problems. LightGBM
is faster and more efficient in training, uses less memory, has higher accuracy, and supports
parallelized learning and processing of large-scale data. CatBoost uses a strategy that
reduces overfitting while ensuring that all datasets are available for learning. It provides
excellent performance, better robustness and generality, ease of use, and increased practi-
cality. There is no definitive conclusion on which of these three algorithms is the best [50].
Therefore, we use three boosting ensemble learning methods for classification separately
and analyze the applicability of the model by the classification results.
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4.3. Algorithmic Framework for Sound Classification Based on Boosting Method

The framework of the RJSA feature and boosting ensemble learning (RJSABE) algo-
rithm is described in detail in this paragraph. The feature extraction and classification
process are shown in Figure 5.
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In the training process, the signal is firstly framed and windowed, then the energy
prominence signal region is extracted by the signal energy threshold. Features are extracted
from the time domain, frequency domain and cepstrum domain of the energy prominence
signal to obtain the RJSA features, which are composed into a dataset, and the boosting
ensemble learning model is trained using the feature dataset. In the prediction process, the
corresponding RJSA features are first extracted from the input audio signal, and then the
features are fed into the trained model to obtain the output classification results.

5. Experimental Results

In this section, we present the experimental results of the environmental sound classi-
fication algorithm based on the RJSA features and boosting ensemble learning methods.
First, the environmental sound classification dataset ESC-10 used for the experiments
is introduced. The experimental setup for background noise classification algorithm is
sequentially presented. After that, we give a comparison of the experimental results of
the RJSA feature-based sound classification and the baseline algorithm. In addition, the
effect of energy prominence region features on sound classification accuracy was analyzed.
Finally, experimental results of the sound classification algorithm framework based on the
boosting ensemble learning are given.

5.1. ESC-10 Dataset

The ESC-10 dataset is a labeled environmental sound dataset that can be used to
test environmental sound classification algorithms. This dataset contains 10 classes of
sound signals. Each class has 40 samples. A total of 400 samples are included. The signal
sampling rate is 44.1 kHz. The length of each sample is 5 s, and the total length is about
33 min. There are three common classes of sound, namely: transient sound signals such as
clock ticking, dog barking, and sneezing; sound signals with strong harmonic components
such as a crowing rooster and crying baby; structured noise such as chainsaw, helicopter,
fire crackling, sea waves, and rain. The dataset is arranged into 5 uniformly sized cross
validation folds to ensure that signal clips from the same source file are always contained
in a single fold. ZCR and MFCC features were used for baseline sound classification
algorithms, and experiments were conducted based on three types of classifiers, KNN,
SVM, and RF. The five-fold cross validation method was used for the experiments.
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5.2. Experimental Setup

The audio signal is divided into frames according to a frame length of 25 ms, with
a frame overlap of 50% of the frame length, and pre-processed with the hamming win-
dow. The gain factors (α) are taken as (0.2, 0.4, 0.6, 0.8, 1.0, 1.2) by calculating the en-
ergy thresholds of the energy prominence regions from the time domain signals. The
sampling frequency of the signal is not changed during the signal processing process,
and the signal spectrum is divided into 40 sub-band signals in the frequency domain,
each with a bandwidth of 551 Hz. The 1-dimensional continuous frame correlation fea-
ture, 3-dimensional positive and negative waveform amplitude similarity feature, and
2-dimensional energy fluctuation average amplitude feature are extracted from the sig-
nal time domain. The 40-dimensional sub-band spectral continuous frame correlation
feature and 80-dimensional sub-band spectral energy fluctuation average amplitude fea-
tures are extracted from the 40 sub-bands of the signal frequency domain. In addition, the
1-dimensional short time energy feature and1-dimensional ZCR feature are extracted from
the time domain, 40-dimensional sub-band energy distribution feature, 40-dimensional sub-
band energy, 40-dimensional sub-band spectral entropy feature, 39-dimensional sub-band
cross entropy feature are extracted from the signal frequency domain, and 7-dimensional
MFCC feature is extracted from the cepstrum domain. A 294-dimensional joint SA feature
is formed by all of the features. The RF model is first adopted to validate the effectiveness
of the features. The RF model employs 200 sub-estimators.

In the framework of the RJSA feature and boosting ensemble learning (RJSABE)
algorithm, the XGBoost model is set to have 200 sub-estimators, the LightGBM model is
set to have 200 sub-estimators, and the CatBoost model is set to have 1000 iterations after
repeated experiments. Random state is set to 28 for all the classifiers. The metric_period
in catboost is set to 100. This parameter controls the frequency of iterations to calculate
the values of objectives and metrics. All other parameters are default values to show the
advantages of the algorithm in hyperparameter optimization.

The experimental process is implemented by MATLAB on a ThinkServer TS80X for fea-
ture extraction and dataset construction, and by PYTHON on an Intel core i7 8th gen laptop
for model training and testing process. Machine learning library scikit-learn, xgboost, light-
gbm, and catboost are used. The feature dataset contains a total of 400 × 293-dimensional
features and the corresponding labels. Experiments were performed using the five-fold
cross validation given by the dataset, and the final classification accuracy was obtained by
averaging these five classification accuracies.

5.3. Experimental Results

The sounds were classified using the JSA features and RF model first, and the classifi-
cation results are shown in Table 2. The left three columns in the table show the baseline
classification results, the highest of which is the RF-based sound classification algorithm.
The last column shows the sound-classification algorithm based on JSA features and RF
model. The environmental sound classification algorithm based on JSA features and RF
model improves the classification accuracy by about 9% over the highest baseline. Based
on ZCR and MFCC, the signal energy, similarity between adjacent frames, positive and
negative amplitude symmetry, amplitude fluctuation amplitude in time domain and sub-
band energy distribution, signal stochasticity, adjacent sub-band correlation, adjacent frame
correlation, and spectral fluctuation amplitude in the frequency domain are jointed for a
comprehensive description of the environmental sound signal. Therefore, the JSA features
can effectively improve the classification accuracy of sound classification.

Table 2. Sound classification result based on the SA features and RF model.

Baseline-KNN Baseline-SVM Baseline-RF JSA-RF

66.7% 67.5% 72.7% 81.5%
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The accuracy results of sound classification based on the RJSA features and RF model
are given in Table 3. This table shows that utilizing the RF classifier for sound classification
with RJSA features yields higher accuracy than using JSA features. A is the gain factor, and
using different gain factors will result in different energy thresholds and thus, different
energy prominence regions. The results show that the acoustic signal can be well repre-
sented using some of the features of the signal, and the representation is even better than
using all the data for feature extraction. Table 4 gives the percentage of frames preserved
after extraction of different energy prominence regions for the audio signals in the dataset.
For classification algorithms with limitations on computational resources, the use of RJSA
features can reduce the computational effort of feature extraction while maintaining or even
improving classification accuracy. With a gain factor of 0.8, a classification accuracy of 86.0%
can be achieved using only 39.3% of the frame signal for feature extraction, which is about
a 13% improvement in classification accuracy over the highest classification accuracy of the
baseline algorithm. It revealed that the classification accuracy of the sound depends on a
small number of signal features. These signals with higher energy play a more important
role in sound recognition.

Table 3. Sound classification based on the RJSA features and RF model.

JSA-RF
(α = 0.0)

RJSA-RF
(α = 0.2)

RJSA-RF
(α = 0.4)

RJSA-RF
(α = 0.6)

RJSA-RF
(α = 0.8)

RJSA-RF
(α = 1.0)

RJSA-RF
(α = 1.2)

81.5% 85.8% 84.8% 85.0% 86.0% 84.0% 83.3%

Table 4. The percentage of frames preserved after extraction of different energy prominence regions.

JSA-RF
(α = 0.0)

RJSA-RF
(α = 0.2)

RJSA-RF
(α = 0.4)

RJSA-RF
(α = 0.6)

RJSA-RF
(α = 0.8)

RJSA-RF
(α = 1.0)

RJSA-RF
(α = 1.2)

100% 63.2% 54.3% 47.0% 39.3% 31.6% 25.4%

The RJSABE sound classification algorithm adopts a boosting-based ensemble learn-
ing method for sound classification. Popular boosting ensemble-learning algorithms
are used for sound classification. The sound classification algorithms based on XG-
Boost/LightGBM/CatBoost and RJSA features are presented in Table 5. The XGB, LGB,
and CAT in the table denote algorithms based on XGBoost, LightGBM, and CatBoost,
respectively. We also present the classification results for sound classification using all
frame data features directly compared to the algorithm using energy prominence region
features. JSA denotes feature extraction using all frame data; RJSA denotes features based
on energy prominence region; and α is the gain factor.

Table 5. The sound classification algorithms based on XGB/LGB/CAT and RJSA features.

JSA
(α = 0.0)

RJSA
(α = 0.2)

RJSA
(α = 0.4)

RJSA
(α = 0.6)

RJSA
(α = 0.8)

RJSA
(α = 1.0)

RJSA
(α = 1.2)

XGB 82.75% 84.75% 84.5% 83.25% 85.25% 84.5% 82.25%
LGB 85.0% 87.3% 84.3% 84.8% 85.3% 85.0% 84.8%
CAT 85.5% 86.5% 86.5% 85.8% 86.5% 84.5% 85.3%

As can be seen from Table 5, the XGB-based sound classification algorithm achieves
the best classification accuracy of 85.25% with a gain factor of 0.8. The LGB-based sound
classification algorithm achieves the best classification accuracy of 87.3% with a gain
factor of 0.2. The CAT-based sound classification algorithm achieves the best classification
accuracy of 86.5% with gain factors of 0.2, 0.4, and 0.8. Therefore, the LGB-based sound
classification algorithm achieves the best classification accuracy by using 63.2% of the
frame features, which is about a 15% improvement in classification accuracy over the
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highest classification accuracy of the baseline algorithm. The CAT and XGB-based sound
classification algorithms achieve the best classification accuracy by using 39.3% of the frame
features, which is about 14% and 13% better than the highest classification accuracy of the
baseline algorithm, respectively.

Figure 6 indicates a comparison histogram of classification accuracy based on different
ensemble-learning algorithms with variable gain factors. The AVE in the figure represents
the average of the classification accuracy obtained using seven different gain factors. It can
be seen from the figure that the CAT-based sound classification algorithm achieves the best
classification accuracy in the same group except for the cases of the gain factor of 0.2 and 1.
The average classification accuracy is the highest and its stability is the best. The LGB-based
sound classification algorithm takes the highest classification accuracy at a gain factor of
0.2, and the classification accuracy is superior to the RF and XGB-based sound classification
algorithms in most cases. The average classification accuracy is higher than that of RF
and XGB. The average classification accuracy was ranked as: CAT > LGB > RF > XGB.
The XGB-based sound classification algorithm shows poor classification results in most
cases. However, it is still significantly better than the highest classification accuracy of
the baseline algorithm. In most cases, the classification algorithm based on the boosting
method demonstrated better accuracy because of its attention on samples that are prone
to misclassification.
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6. Conclusions

In this paper, an environmental sound classification algorithm based on a novel RJSA
feature and boosting ensemble learning is proposed to improve the environmental sound
classification accuracy. In the boosting-based sound classification framework, LightGBM
and CatBoost perform very well in classification accuracy and stability. The classification
results based on the RJSA features and LightGBM model with a gain factor of 0.2 and using
63.2% of the signal frames for feature extraction improved about 14.6% over the highest
classification accuracy of the baseline algorithm. The classification results based on the
RJSA features and XGBoost model performed slightly worse. Experimental results demon-
strated that the proposed JSA feature performed well in signal representation for sound
classification. In the classification process, not all signals provide information conducive
to sound classification. Some of the signals demonstrated stronger feature representation
ability. Therefore, the RJSA feature indicates a better classification performance. In addi-
tion, the boosting method LGB and CAT-based framework demonstrated higher accuracy



Electronics 2022, 11, 3743 16 of 18

because of its attention on samples that are prone to misclassification. The boosting-based
sound-classification algorithm has a lot of space for development.

Although the RJSA features can improve the classification accuracy while reducing
the number of feature extraction frames, a suitable gain factor needs to be selected to adjust
the energy threshold. A gain factor that can be varied over time/frame may be a better
choice to improve the algorithm performance. In future work, we will further explore the
work related to the determination of the gain factor through experiments. In addition, all
the work performed in software will be converted to hardware implementation.
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