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Abstract: Perovskites have exceptional physical and chemical features in different fields. Perovskites
have an ABO3 formula with similar sizes of A-site and B-site cations. This research explores the
challenges of developing new perovskite solar cells with high performance. Therefore, this article
proposes a deep learning model for the prediction of perovskites performance measures. The
measures are: energy conversion performance, ABO3 stability, ion volume, and induced oxygen
vacancy dimension. These performance measures are very crucial electrochemical reactions in energy
conversion in fuel crystals. The challenges in any deep learning model are the lack of the presence
of sufficient data and training time. Consequently, in this research, we propose a transfer learning
perovskites model. Perovskite performance detection is critical to offer operative energy resources.
In the proposed model, the constructed detection model uses a perovskites feature set. The transfer
learning model utilizes other materials with large-sized datasets to predict the four performance
measures with high accuracy. The output of the transfer learning is then utilized for the proposed deep
learning model to predict perovskites performance measures with a small-sized dataset. A dataset of
8500 perovskite samples is utilized in the research. The results prove that a deep learning F2-Score
with transfer learning attains high accuracy of 98.95%, recall of 96.91% and F2-score of 97.05%.

Keywords: feature extraction; oxygen vacancy; parameters; detection

1. Introduction

Perovskites have exceptional physical and chemical features in different fields. Per-
ovskites have an ABO3 formula with similar sizes of A-site and B-site cations [1]. If sluggish
kinetics in these perovskites occur, a decline in energy conversion performance will happen.
This sluggish kinetics in perovskite has to be detected and limited [2–5]. Perovskite decline
in energy conversion is triggered by a few chemical features of perovskites. Detection
depends on deep learning methods to detect such vacancies. Deep learning methods
include optical imaging and oxygen vacancies detection techniques [2]. Figure 1 depicts
perovskites’ ABO3 crystal structure.

The recent research in materials is founded on the preparation of the dataset in-
stances. The different features of instances are measured to comprehend the different
physical features, and the materials are investigated and predicted via various perfor-
mance parameters [3–8]. The classical material preprocessing has a resilient dependence
on the data instances. Repetitive research throughout the experiments yields long process
times [9–11]. Recent research, namely first-principles, phase field computation, and finite
element process, are used to study materials performance. These methods comprise long
CPU time and high cost [12–14].

With the progress of artificial intelligence and deep learning models, many authors
employed machine learning models to advance material sciences [15–17]. Deep learning
can perform a learning process on material structure and classify material structures
accurately. Several machine learning models can classify material performances from large
size inputs [18–20].
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The signs that can be perceived spatially are the oxygen vacancies of the
perovskites [21–25]. The alterations of the oxygen vacancies can be detected in perovskites’
performance stages, consequently perovskites’ performance detection can be enhanced [26].

Perovskite topography is an important method for the perovskites’ performance
detection [27]. Proposed crystal structure imaging detection methods yield to quantitative
metrics for its various structures. CNN transfer learning techniques are also employed in
the detection of perovskite topography. The problematic matter with these models is that
they are expensive, with high maintenance. These techniques necessitate trained personnel
and need precise laboratory sites.

In this article, we are proposing a model for detecting perovskites’ performance,
employing image analysis and deep learning models. Consequently, in this paper we
explore computerized procedures that employ imaging technology with computerized
analysis of digital images. Computerized detection can be conducted with the help of deep
learning. We are proposing an intelligent application to help in the detection of perovskites’
performance. In this article we are introducing an image analysis technique by extracting
the visual parameters of the perovskite crystal structures. These parameters are selected
from perovskites’ crystal optical images. Experts confirm the important features from the
shape parameters of the captured image of the perovskite crystals. In this research, we are
concerned with crystal shape and color feature selection to develop a computerized model
for detection. Such parameters are classified confirming their implication to distinguish
between perovskite performances.

The rest of the article is organized as follows. In Section 2, a literature review is
pre-sented. In Section 3, materials and methods and the the parameter selection technique
are presented. Experiment results are depicted in Section 4. In Section 5, the article
is concluded.

2. Literature Survey

Computerized detection is always accomplished in laboratory sites via investigative
tools such as perovskites’ topography capturing devices [13]. This detection is usually
done by examining perovskite topography imaging. The perovskite topographical map is
processed using machine or deep learning [14,15].

Authors in [16], proposed a novel method for computerized perovskites dissection
of a crystal perovskite topography map. The introduced method used a convolutional
network with edge detection of the topography map. Perovskite surface reconstruction can
help in the detection of several perovskites’ surface syndromes [17–19]. The researchers
in [20], used image analysis of the perovskites crystal by extracting shape parameters
employing visual and geometrical parameters. Their model revealed and extracted high
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correlation parameters. Their comprehensive experiments termed several groups of con-
tour and roughness factors to classify other perovskites’ surface performances. In their
method, one dominant characteristic can always be chosen. The authors in [17] employed
the dimension of the perovskites’ crystal layer as the key metric in perovskite computer-
ized detection. The laboratory computing is usually performed manually, which is a long
process that can cause errors. They employed U-Net image integration CNN to distinguish
among perovskites’ performance. They measured their technique performance in hue gray
images with different perovskites’ performances. In [18], the researchers performed crystal
integration from optical images of perovskites crystals. Crystal identification was per-
formed through supervised learning of optical images. In [19], the researchers performed
crystal status detection from the contour of the perovskites crystals in digital imagery.
They applied U-Net CNN for optic image integration. In [20], the researchers employed
central crystal thickness computation of the perovskites from OCT images of both nor-
mal and unnatural perovskites structures. In [21], they measured markers of perovskites’
performances to obtain computerized detection.

In [22], the researchers predicted geographical map images from the Pandacan dataset,
using decision trees to predict perovskites oxygen vacancies. Researchers in [23] em-
ployed an SVM machines for detection of perovskites crystal structures, utilizing a mix-
ture of structural images from perovskites crystal maps and images from a Scheimpflug
capturing device.

Intelligent imaging was used to generate perovskites map images and utilized image
analysis methods to find perovskites crystal abnormalities. Authors in [24] took perovskites
crystal images utilizing an intelligent device. They attained an accuracy of 93% of detecting
abnormal structures in 16 cases out of 30 cases; the other fourteen cases were normal
crystal structures and were identified as normal, with the exception of one mild defected
structure detected as a false negative. In [25], the model performed a preprocessing stage
by cropping the perovskites images, by estimating the perovskites crystal, employing an
edge computation algorithm. The preprocessing stage was trailed by a prediction stage for
detecting the perovskites crystal curvature.

In [26], the authors applied machine learning for perovskite materials design and
discovery. They added regression modeling before deep learning and achieved high
accuracy but with more training time. In [27], the proposed model, namely perovskite
neural trees, utilized random forest trees to predict if the substance was perovskite or not
(binary classification). In [28], the authors adopted a machine learning approach for the
prediction of formability and thermal stability of perovskite oxides. They attained high
accuracy but with low recall. In [29] the authors constructed a 3D spatial model to represent
perovskite substances for further identification. In models proposed in [30–32], machine
learning was utilized to predict perovskite performance but used small-sized data.

In our research, we proposed a successful methodology to detect perovskites’ perfor-
mance through optical images. We performed comparison of our results to other state-of-
the-art methods using image maps. Our study used color and roughness feature extraction
from digital images to identify perovskites’ performance. Our results are evaluated by
comparing them to ground truth from expert labelling. Table 1 depicts recent research in
perovskites’ performance prediction using deep learning models.

In our research, we added the following contributions:

• Deep learning model is employed to develop new perovskite solar cells by measuring
perovskites’ performances utilizing perovskites ABO3 of A-site and B-site cations
crystals dataset.

• A transfer learning CNN is defined using smaller datasets of different materials.
• The proposed CNN extracts hidden features from and defines the required information

utilized in its predictions.
• The prediction of the perovskite performance measures: energy conversion perfor-

mance, ABO3 stability, ion volume, and induced oxygen vacancy dimension.
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Table 1. Recent research in perovskites’ performance prediction using deep learning models.

Ref. Method Model Features in
Input Data Classes Average Accuracy

[3] Bi-classification model for
perovskites structure Spatial map similarity 12

A and B ionic radii with
respect to the radius

of O
91.25%

[4] Different perovskites lattice
distribution identification Deep CNN 17

The bond valence spaces
between A, B ions and

the O atoms
87.78%

[5] Perovskites structure–feature
extraction in crystals Deep ANN 15 Sluggish kinetics oxygen

reduction reaction 92.7%

[6] Classification of perovskites
crystal structure Deep learning model 12

Variable crystal
structure and non-

stoichiometric chemistry
92.4%

[7] Autoencoders CNN and
wavelet transform 13 Perovskites oxides 93.7%

[8] Structure–property
in perovskites Auto encoders learning 12 Hexagonal perovskite 91.3%

[9] Perovskites
Structure–property Deep learning model 14

Perovskites ABO3
of A-site and
B-site cations

93.7% with higher
CPU time

[10] Structure–property Geometry feature
extraction 12 Hexagonal perovskite,

layered perovskite 95.87%

[11] Crystals structure–property
in lattices Texture feature selection 15 Perovskite,

hexa-perovskite 92.2%

[12] Diffraction images Greedy decision trees 9 Hexagonal perovskite,
layered perovskite 92.8%

Our proposed model Deep learning 13 Perovskites ABO3 of
A-site and B-site cations 98.5%

3. Materials and Methods
3.1. Dataset

The perovskite dataset was constructed using the density functional theory. The
dataset was selected for the training phase [33]. For deep learning models, using just
two markers (electronegativity and ionic radius) can classify formation energies of ABO3
with small mean square errors (MSE) [21]. In [24], the authors described deep learning
methods to classify the stability of perovskite oxides (ABO3), utilizing a dataset of 2100 DFT
perovskite instances. The experiments depicted that MSE is in the range of formation
dynamisms versus elemental states to be used in full calculations [28]. Using several deep
learning models, the formation dynamisms, volume, and oxygen vacancy of perovskite
crystals are classified [20–25].

Figure 2 depicts the dataset cycle and workflow and data preparation. The data cycle
is comprised of four stages

Stage 1: The original data is distributed into training and testing subsets.
Stage 2: The proposed model is trained using the training subset.
Stage 3: The classifier is used to classify the testing subset.
Stage 4: Experiments are performed by computing the difference between the classified

class and the ground truth.
The used dataset includes 8500 ABO3 perovskite data items. There are four represen-

tative performance features, namely formation energy, thermodynamic threshold, crystal
structure volume, and oxygen vacancy.
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Table 2 depicts representative energy factors of the input dataset. The model predicts
formation energy, stability, and volume of perovskite ABO3 crystal structure.
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Table 2. Representative performance factors of the perovskite datasets.

No. Feature Unit Description

F1 Radius of A-site cations angstroms Ionic radius

F2 Radius B-site cations angstroms Ionic radius

F3 Formation energy decline eV/atom Formula of distortion with the least formation energy

F4 Energy stability eV/atom Distortion with the least stability energy

F5 Number of atoms in a unit cell value Number of atoms in a unit cell

F6 Formation energy eV Energy computed from the lattice

F7 x angstroms Factor x of the relaxed lattice

F8 y angstroms Factor y of the relaxed lattice

F9 α degree Angle of the lattice

F10 β degree Angle of the lattice

F11 γ degree Angle of the lattice

F12 Oxygen vacancy dimension mm Energy convex hull

3.2. The Proposed Model

The proposed deep learning neural model has both feedforward and backpropagation
modules, where training is improved by a loss backpropagation module. The backpropa-
gation module has the features of self-learning by reducing the loss and return back for
re-training. The backpropagation process has intelligent reasoning for data processing and
has the adaptive features for an uncertain regular system. Backpropagation utilizes the
training of instances to compute the mapping of a nonlinear relationship from the input
data to the classified output and realize its internal commutations from the mapping.
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In forward propagation, the input is processed by the hidden layers to produce the
output. Each layer impacts the neuron state of the succeeding layer; if the output does not
meet the expected requirements, it is returned back to the backward propagation procedure,
which modifies the weights of the neural layers such that the predicted class is close to the
expected one, as depicted in Figure 3.
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The selected features (F1–F12) are utilized for the perovskite performance CNN train-
ing. One of the challenges of using deep learning for materials performance is the in-
adequate training data size for the utmost features, namely: conductivity, thermal, and
formation energy [22]. In our research, the proposed model utilizes a transfer learning
technique for the learning model. The model trains a perovskite performance prediction
model using elemental properties. The first step will have generality performance using the
structural properties. The general pre-trained model is utilized to classify the perovskite
performance of a large-sized dataset (DAT2) [23], of which the data items only possess
structural features short of perovskite formation energy. DAT2 predicts materials perovskite
performance from features similar to the features used by our model but on materials that
are not perovskite. The perovskite formation energy labelling stage from the small-sized
perovskite dataset (DAT1) features an adequate transferable knowledge with formation
energy property. It is then possible to develop the deep learning process screening model
using the new labeled data items, using the elemental properties only.

3.2.1. The Deep Learning CNN

The proposed deep learning model’s CNN has a distinctive network compared to con-
volutional shallow neural models. The deep learning CNN is fed with multi-dimensional
input. The CNN model significantly decreases the weight computation structure and
lessens the computational load [12–15]. A CNN structure contains an input layer, several
convolutional layers and pooling layers. At the end, there are a number of fully connected
layers (FC) and it ends with an output layer.

The multiple convolutional layers (CL) utilize several scale kernels to navigate the
input through weight sharing and extract different levels of data features for the same
data sample through different parameter distributions. The CL layers’ extract feature
representative maps of various features in stacking forms of high-dimensional matrix, to
be utilized in the following computation. The computation equation of the CL KS kernel
size is as depicted:

KS = n×m (1)

where n is the number of inputs and m is the number of outputs.
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The deep learning process is the prediction of the boundary among different classes
for classification. MSE loss function is the mean of squared differences between the actual
value and the predicted value. It is utilized as a loss function as defined below.

Minimize MSE =
1
m ∑m

i=1 (Yi − Pi)
2 (2)

where, MSE is the loss function, Yi is the expected class and Pi is the predicted class, m is
the number of classes.

The max pooling function downsamples the input data layer. After obtaining the
13 features via the CL layers, it then employs the max pooling function to downsample
the utilized features computed by the prior CL to decrease the input dimension and the
calculation complexity according to the constraint of calculating resources and the time
complexity. The feature reprehensive maps computed by the first CL are partitioned into
non-overlapping areas, and the function of the optimum area for each area through the
max pooling. Figure 4 depicts the downsample computed by the max pooling.
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The FC layers are the last CNN layers and are connecting the computed features from
the prior CL to the output classes to perform the prediction. The CNN structure is depicted
in Figure 5.
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3.2.2. The Training Process

The training process of the proposed CNN denotes the training CL with labelled
data items to extract the input/output mapping. It comprises two phases: forward and
backward propagation [30]. Forward propagation connects the input and the output of
the CNN and is depicted by scoring the weight, ReLu, and FC factors of the CL kernel.
Backpropagation computes the difference between the predicted value from the forward
propagation output and the ground truth. The model results in a backward reaction, using
the error to obtain the error figures of all CL, and utilizes the computed gradients to correct
the CNN parameters for converging to the stopping condition.
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Forward propagation inputs the training subset and adjusts the input parameters of
each CL. Forward computation produces the output resultant of the input data items. In
prediction phase, the output classes illustrate the probability of the data item fitting in the
corresponding class, which is computed by the CNN.

The classified output from the forward propagation of the CNN is matched to the
ground truth and the variance is depicted as the loss function. The mean square error (MSE)
error function is utilized. The computed loss rate and the CL parameters are corrected to
optimize the error function. The CL parameters are the offsets of the FC layer, and the
weights of the CL layers. For the FC layer, the offsets of the CNN are computed using
backpropagation.

The structure of the proposed transfer learning CNN is depicted in Table 3. The
proposed CNN for the small-sized dataset is depicted in Table 4.

Table 3. The transfer learning proposed CNN configuration.

Layer Number Type Kernel Stride # Channels

Input 36 Features Input Layer Size of Dataset:
320,000 Data Items

CL1
CL 12 7 128

max-pooling 5 3 128

CL2
CL 7 2 382

max-pooling 3 3 382

CL3 CL 5 2 256

CL4 CL 5 2 256

CL5
CL 5 2 382

max-pooling 3 3 382

Fully connected
layer 1 2048 layers

Fully connected
layer 2 4096 layers

Output layer Softmax

Table 4. The proposed CNN for the small-sized dataset.

Layer Name Type Kernel Stride # Channels

Input 13 Features Input Layer Size of Dataset:
6000 Data Items

CL1
CL 5 2 196

Max pooling 3 1 196

CL2 CL 5 3 256

CL3
CL 5 2 128

Max pooling 3 1 256

Fully connected
layer1 1024

Fully connected
layer2 1024

Output layer Softmax

3.2.3. Classification of ABO3 Material

The CNN model is depicted as follows:

1. Dataset division: partition the input into training, validation and testing subsets, (70%,
15%, 15%, respectively).
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2. Training process: Four representative performance measures, namely: energy con-
version performance, ABO3 stability, ion volume and oxygen vacancy dimension of
perovskite crystal are trained.

The evaluation metrics are as follows:

Precision = ∑
over all classes

TP(class)
TP(class) + FP(class)

(3)

Accuracy =
TP + TN

Total instances
=

Total Correctly predicted instances
Total instances

(4)

Recall =
TP

TP + FN
(5)

F2Score =
2× Recall × Precision

Recall + precision
(6)

where, TP is the true positives, and FN is the false negatives.
In multi-classification the definitions of TP and FP are defined as follows:

True Positive (TP) for an instance in class A: the instance is predicted in Class A and the
true label is in Class A (correctly predicted)
False Negative (FN) for an instance in class A: the instance is predicted in Class B and the
true label is in Class A (incorrectly predicted)
False Positive is the number of instances wrongly predicted as positive out of the total
actual negatives.
True negative (TN) is an outcome where the model correctly predicts the negative class.

4. Experiments
4.1. Experiment Settings

The evolution of transfer learning is conducted by selecting various parts of the target
data. Experiments are devised to identify the subdomain variation that can produce higher
precision. We utilized five parts of the target data tangled with the source data (zero, 20%,
40%, 60%, 80%. Zero depicts the model without transfer learning). The residual target data
are used for validation and testing phases. As depicted in Table 5, the precision is enhanced
by 9%.

Table 5. Precision for various parts of the target data.

Predicted Feature 20% 40% 60% 80% 100%

Energy conversion performance 92.79% 94.57% 96.84% 97.92% 98.2
ABO3 stability 89.90% 91.79% 93.90% 96.94% 97.3

Ion volume 88.79% 91.85% 92.58% 95.48% 96.5
Oxygen vacancy dimension 93.90% 95.86% 96.76% 97.91% 98.8

Precision (Positive Predictive Value) in multi-class classification is computed for
a specific class against all other classed combined as one class. For example, for the energy
conversion performance, we have four classes, as depicted; to calculate the TP for the class
“High value of Energy conversion performance” it will be equal to the number of times
it is correctly predicted as the “high value of energy conversion performance”. The FP is
the number of times other classes are predicted as the high value of energy conversion
performance. Figure 6 depicts the comparison of the prediction of features versus size of
training data.



Electronics 2022, 11, 3759 10 of 17

Electronics 2022, 11, x FOR PEER REVIEW 11 of 19 
 

 

number of times other classes are predicted as the high value of energy conversion per-

formance. Figure 6 depicts the comparison of the prediction of features versus size of 

training data. 

Table 5. Precision for various parts of the target data. 

Predicted Feature 20% 40% 60% 80% 100% 

Energy conversion performance  92.79% 94.57% 96.84% 97.92% 98.2 

ABO3 stability  89.90% 91.79% 93.90% 96.94% 97.3 

Ion volume  88.79% 91.85% 92.58% 95.48% 96.5 

Oxygen vacancy dimension 93.90% 95.86% 96.76% 97.91% 98.8 

 

Figure 6. Comparison of the precision of prediction of features versus size of training data. 

4.2. Results 

Confusion matrices for the four output features are depicted in Tables 6–9. The con-

fusion matrices are performed for the CNN model with and without transfer learning. It 

can be seen that transfer learning increases the performance by 15% on average. The da-

taset for the perovskites’ performance measures includes 8500 samples. Figures 7 and 8 

depict the predicted oxygen vacancy dimension using ion volume without/with transfer 

learning 

  

0

0.2

0.4

0.6

0.8

1

1.2

20% 40% 60% 80% 100%

Percentage of datase used for training

Energy conversion performance ABO3 stability Ion volume Oxygen vacancy dimension

Figure 6. Comparison of the precision of prediction of features versus size of training data.

4.2. Results

Confusion matrices for the four output features are depicted in Tables 6–9. The
confusion matrices are performed for the CNN model with and without transfer learning. It
can be seen that transfer learning increases the performance by 15% on average. The dataset
for the perovskites’ performance measures includes 8500 samples. Figures 7 and 8 depict
the predicted oxygen vacancy dimension using ion volume without/with transfer learning.

Table 10 depicts the comparison of error rate, training time and prediction time for our
proposed model versus other state-of-the-art models. The error rate of our model decreases
as well as training and CPU time. Figure 9 depicts the performance comparison among the
three models under investigation.

4.3. Ablation Experiments

To validate the efficiency of the proposed model, we performed ablation experiments
on control structures of forward propagation, backward propagation or both excluded; it is
shown that best accuracy is when both forward and backward propagation modules are
included, as depicted in Table 11.

4.4. Discussion

It is depicted from the results that the proposed perovskite performance prediction
model classified 97% of the instances precisely. Moreover, from Table 5, it is proven that
the precision of the model is increased by increasing the training set size. The confusion
matrices, that are depicted in Tables 6–9, prove that the four classes are correctly classified
with a rate of 0.98 on average with transfer learning. To present our results with a detailed
investigation of the validation of the proposed model, the accuracy rates of the four output
classes are displayed in Figure 10.

This research depicts the impact of the size on the training dataset on the classification
accuracy. As we can see, the the classification accuracy is enhanced with the increase
of the training data size. Figure 11 displays the impact of the training data size on the
classification accuracy of the compared models against the actual classes.
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Table 6. Confusion matrices for value of energy conversion performance without the transfer learning.

Predicted Cases

TotalInsignificant Value of Energy
Conversion Performance

Low Value of Energy
Conversion Performance

Moderate Value of Energy
Conversion Performance

High Value of Energy
Conversion Performance

Actual
labelled cases

Insignificant value of energy
conversion performance 1600 200 220 80 2100

Low value of energy
conversion performance 100 1700 230 270 2200

Moderate value of energy
conversion performance 140 260 1400 100 1900

High value of energy
conversion performance 189 201 1000 1800 2300

Table 7. Confusion matrices for value of energy conversion performance with the transfer learning.

Predicted Cases

TotalInsignificant Value of Energy
Conversion Performance

Low Value of Energy
Conversion Performance

Moderate Value of Energy
Conversion Performance

High Value of Energy
Conversion Performance

Actual
labelled cases

Insignificant value of energy
conversion performance 2051 20 21 8 2100

Low value of energy
conversion performance 10 2149 15 26 2200

Moderate value of energy
conversion performance 13 17 1851 19 1900

High value of energy
conversion performance 17 23 10 2250 2300
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Table 8. Confusion matrices for value of ABO3 stability without transfer learning.

Predicted Cases
TotalInsignificant Value of

ABO3 Stability
Low Value of

ABO3 Stability
Moderate Value of

ABO3 Stability
High Value of

ABO3 Stability

Actual
labelled cases

Insignificant value of ABO3 stability 1605 197 218 80 2100

Low value of ABO3 stability 91 1680 219 210 2200

Moderate value of ABO3 stability 130 245 1440 85 1900

High value of ABO3 stability 180 201 109 1810 2300

Table 9. Confusion matrices for value of ABO3 stability with transfer learning.

Predicted Cases

TotalInsignificant Value of
ABO3 Stability

Low Value of
ABO3 Stability

Moderate Value of
ABO3 Stability

High Value of
ABO3 Stability

Actual
labelled cases

Insignificant value of ABO3 stability 2057 17 21 5 2100

Low value of ABO3 stability 8 2155 13 24 2200

Moderate value of ABO3 stability 10 14 1860 16 1900

High value of ABO3 stability 17 23 7 2253 2300
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Table 11. The ablation results with formation energy, thermodynamic threshold, crystal structure
volume, and oxygen vacancy.

Forward Propagation Backword Propagation Accuracy%
√

93.1√
94.2√ √
97.8
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5. Conclusions

In this research, we presented a deep learning model augmented by transfer learning
using a feature set for perovskite performance prediction. The feature set includes twelve
geometrical and chemical features. Utilizing these twelve features, the proposed transfer
learning process is utilized to solve the inadequate data challenge characteristic of deep
learning material performance prediction. It performs prediction by conducting training
on a labelled large-sized dataset of different materials, then applying the transfer learning
module on the labelled perovskite dataset. The second phase is the prediction phase of
the unlabeled perovskite performance features. The experimental results depict that the
proposed transfer learning DNN model has higher accuracy than deep learning alone.

The transfer learning CNN model proves a CNN perovskite performance features
model to be highly effective in predicting four performance measures. The predicted
features are energy conversion performance, ABO3 stability, ion volume, and induced
oxygen vacancy dimension.

We performed a comparison of the proposed model with the state-of-the-art models in
a materials performance measures prediction model (MatNet and SVM-ELM). The results
depict that our CNN model with transfer learning is more accurate in the four measures
prediction of perovskites material given the small-sized perovskites dataset. The accuracy
of our model reached 98.6%, which was 9.8% higher than those two models with less
training and prediction CPU time (Appendix A).

Funding: This research was funded by Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2022R113), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A Nomenclature

CNN Convolutional Neural Network
Perovskites: A substance with ABO3 formula with similar sizes of A-site and B-site cations.
CNN U-Net CNN for optic image integration
FC Fully connected layers
CL Convolutional layers
KS Kernel size
n Number of inputs
m Number of outputs.
MSE Mean Squared Error
F2-Score Weighted mean of the precision and recall

accuracy
The number of correct classification predictions divided by the total number
of predictions

Precision
When the model predicted the positive class, what percentage of the predictions
were correct?

Recall The percentage of predictions the model correctly predicted as the positive class
TP True positives (correct predictions).
TN True negatives (correct predictions).
FP False positives (incorrect predictions).
FN False negatives (incorrect predictions).

Ablation study
Experiments where module of the system is removed to measure its influence on
the accuracy of the model.
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