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Abstract: Object detection algorithms play a crucial role in other vision tasks. This paper finds that
the action recognition algorithm SlowFast’s detection algorithm FasterRCNN (Region Convolutional
Neural Network) has disadvantages in terms of both detection accuracy and speed and the traditional
IOU (Intersection over Union) localization loss is difficult to make the detection model converge to
the minimum stability point. To solve the above problems, the article uses YOLOv3 (You Only Look
Once), YOLOX, and CascadeRCNN to improve the detection accuracy and speed of the SlowFast.
This paper proposes a new localization loss function that adopts the Lance and Williams distance as a
new penalty term. The new loss function is more sensitive when the distance difference is smaller,
and this property is very suitable for the late convergence of the detection model. The experiments
were conducted on the VOC (Visual Object Classes) dataset and the COCO dataset. In the final
videos test, YOLOv3 improved the detection speed by 10.5 s. CascadeRCNN improved by 3.1%AP
compared to FasterRCNN in the COCO dataset. YOLOX’s performance on the COCO dataset is also
mostly better than that of FasterRCNN. The new LIOU (Lance and Williams Distance Intersection
over Union) localization loss function performs better than other loss functions in the VOC dataset.
It can be seen that improving the detection algorithm of the SlowFast seems to be crucial and the
proposed loss function is indeed effective.

Keywords: SlowFast; YOLOX; YOLOv3; CascadeRCNN; Lance and Williams distance; LIOU

1. Introduction

RGB video action recognition algorithms can be divided into CNN-based algorithms,
RNN-based (Recurrent Neural Network) algorithms, and algorithms based on other struc-
tures. CNN-based algorithms can be divided into four types according to the encoding of
Spatio-temporal information methods. The first one extracts features by a convolutional
neural network and then fuses temporal information. For example, Karpathy [1] proposed
four Spatio-temporal fusion methods that can obtain more global information from the
Spatio-temporal dimension at higher layers. The second method applies convolutional
operations to temporal information extraction as well, resulting in 3D convolution that
can extract features from both Spatio-temporal dimensions, and the superiority of this 3D
convolution for temporal information extraction has been demonstrated in experiments.
Tran’s [2] proposed C3D (Convolutional 3D) network and Hung-Cuong Nguyen’s [3] pro-
posed end-to-end framework for automatic 3D human pose estimation are both based on
this approach. Of course, this method also has a disadvantage, which is that the extraction
of long video sequence features is not ideal. To solve this disadvantage, Varol [4] proposed
Long-term Temporal Convolution (LTC), but LTC again leads to the problem of decreasing
spatial resolution. The third method encodes the videos as a dynamic image containing spa-
tial and temporal information and then applies a CNN-based network for recognition, such
methods proposed by Bilen [5] and Fernando [6] and fine-tuned on ImageNet datasets [7].
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All three methods mentioned above use one network to extract Spatio-temporal informa-
tion, while the fourth method aims to extract temporal and spatial information separately
and design the network with two streams and multi-stream approaches. Simonyan and
Zisserman [8] designed the classical two streams network. In this two streams network,
RGB video frames are used to extract spatial information, optical streams are used as
input information to extract temporal features, and the temporal information and spatial
information are finally fused. Inspired by the residual network, Feichtenhofer [9] created
links during the two streams’ processing, allowing Spatio-temporal information to interact
with each other.

For RNN-based algorithms, Baccouche [10] proposed a combination of LSTM (Long
Short-Term Memory) and 3D convolution method to solve the problem in behavioral
analysis, and trained in both networks separately. In contrast, Donahue [11] proposed
a LRCN (Long-term Recurrent Convolutional Network) with direct end-to-end training.
In 2016, Pigou [12] proposed a neural network combining temporal convolution and
bidirectional LSTM with end-to-end training for gesture recognition. In 2017, Du [13]
proposed a neural RPAN (Recurrent Pose-Attention Network) in videos that adaptively
learns highly discriminative pose-related features predicted by the action of each step of
the LSTM. Recently, Sun [14] proposed a L2STM (Lattice-LSTM) network, this approach
significantly increased the long-time modeling capability without significantly increasing
the complexity of the model, and solved the problem of unstable long-term motion. In
contrast to previous approaches using only feedforward connections, Shi [15] proposed
a deep network based on biological mechanisms in 2017, called ShuttleNet.1. Unlike
traditional RNN, all the processors in ShuttleNet.1 mimic the circular linkages of the
human brain. In this way, the processors share multiple paths in the loop connections. The
best information flow path is then selected using the attention mechanism.

In addition to the main CNN-based algorithms and RNN-based algorithms, some
network models use other structures. Yan [16] proposed a three-layer autoencoder for
capturing video motion, called Dynencoder. Dynencoder can successfully synthesize
dynamic texture features, which is a concise method to represent video spatial and temporal
information. Similarly, Srivastava [17] proposed the LSTM autoencoder model in 2015. The
state of the encoder LSTM contains the appearance and dynamics of the input sequence,
and the decoder LSTM accepts the output of the encoder LSTM to reconstruct the sequence.
Inspired by GAN (Generative Adversarial Networks), Mathieu [18] trained multiscale
convolutional neural networks with the adversarial mechanism. To balance the impact of
the standard MSE (Mean Square Error) loss function, they proposed three complementary
feature learning strategies, namely multiscale structures, adversarial training methods, and
image gradient difference loss functions.

The time and space dimensions of the video space are not related. The video’s spatial
information (e.g., type, color, texture, etc.) is updated very slowly, and the background
in which the action appears does not change significantly because of the action change.
The subject acting does not change its identity because of the action, and the hand is still
a hand when it is waved. As the part of the executive action changes much faster than
the subject, such as clapping, jumping, talking, etc., this part of the information is called
temporal information, which is updated very quickly. Therefore, for the acquisition of
dynamic information, it is better to handle the temporal dimension and spatial dimension
separately, so that better results can be obtained.

SlowFast [19] is designed on this basis, which is the fourth CNN-based approach
described in the previous section, see Figure 1, with two layers of channels separating
temporal and spatial information. The upper path processes video frames with a low
resolution and low frame rate, called SlowPath, to extract spatial information that changes
slowly over time. The lower path processes the input video with a higher resolution and
higher frame rate to extract the temporal information that changes rapidly over time, called
FastPath. The slow and fast paths are connected by lateral connections, and the operational
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results of this combined two-channel processing information are classified by the fully
connected layer to output the action information in the image.

Figure 1. SlowFast flow chart, the upper layer is the slow channel to process spatial features, and the
lower layer is the fast channel to obtain temporal features.

SlowFast is a class of behavioral analysis algorithms based on object detection, so the
detection algorithm determines the performance of the behavioral analysis algorithm, and
the detection algorithm encapsulated by SlowFast is FasterRCNN [20]. The YOLOv3 [21]
and YOLOX [22] algorithms modified in this paper is a simpler one-stage algorithms
compared with the FasterRCNN algorithm. The two-stage [23] detection algorithm handles
the detection problem in two stages, first generating regional proposals [24], and then
classifying these regional proposals. They are often not sufficient for real-time detection
scenarios due to their slow speed. The one-stage detection algorithm generates the category
probability and location coordinate of the object directly without generating regional
proposals. The final test results can be obtained directly after a single test, so it has a
faster testing speed. CascadeRCNN [25] is a multi-stage algorithm, which is essentially an
extension of FasterRCNN. The core idea is that the output of the detector of the current
stage is used as the input of the detector of the next stage.

The localization loss in object detection is often used to describe the loss between the
predicted bounding box and the ground truth. IOU loss [26] is one of the most representa-
tive localization loss functions, and the expression is as follows:

IoUloss = 1− A ∩ B
A ∪ B

(1)

where A and B represent the area of the predicted bounding box and the ground truth, re-
spectively. IOU loss reduces the loss value by increasing the overlap between the predicted
bounding box and the ground truth during the iteration. In the later stage of training, the
IOU loss loss value reaches a stable value, the overlap between the predicted bounding
box and the ground truth is the highest, and the model has the best prediction effect.
IOU loss subsequently developed GIOU loss (Generalized IOU) [27], DIOU loss (Distance
IOU), CIOU loss (Complete IOU) [28] and EIOU loss (Efficient IOU) [29], but all these loss
functions are defined based on Euclidean distance, which is not sensitive enough when the
distance difference is small, and the model is difficult to converge to higher accuracy in
the later stage of training. Therefore, this paper proposes to use the Lance and Williams
Distance as a new penalty term of the loss function to increase the sensitivity of the model
in the late training period, so that the model can converge to a higher accuracy.

2. Related Works and Methods

The FasterRCNN algorithm process can be divided into three steps, see Figure 2. First,
the backbone network processes the input image to obtain the corresponding feature maps.
Second uses the RPN (Region Proposal Network) structure to get the region proposals,
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and then maps the region proposals generated by the RPN structure to the feature maps
to obtain the corresponding feature matrixes. Finally, each feature matrix is expanded
into a 7 × 7 feature map by the ROI (Region Of Interest) pooling layer [30], and the
generated feature maps are classified and output by the fully connected layer to obtain
the prediction results. The RPN structure is illustrated in Figure 3. RPN replaces the
original Selective Search algorithm by using a sliding window in the feature map generated
by the backbone network, generating a one-dimensional vector at each position. The
dimension of the one-dimensional vector elements matches the depth of the feature matrix
output by the backbone. It then generates the object probabilities and the bounding box
regression parameters through two fully connected layers. The 2k scores in the figure are
the foreground and background probabilities generated for the k anchors. Each anchor
generates 4 bounding box regression parameters, so there are 4k coordinates here.

Figure 2. SlowFast behavior analysis structure diagram. The detection results obtained by Faster-
RCNN, YOLOv3, YOLOX, or CascadeRCNN are fed to SlowFast to capture the action information.

The core idea of YOLO is to turn object detection into a regression problem, using
the whole picture as the input to the network and just passing through a neural network
to get the location and the category of the bounding box [31–33]. In Figure 2, the feature
extraction network of YOLOv3 is Darknet-53. The multilayer Conv with Concat and Up
(upsampling) in the figure constitutes the FPN (Feature Pyramid Network) structure [21]
of YOLOv3. YOLOv3 uses the FPN structure to implement multi-scale prediction, which is
then post-processed to obtain three scales of output Y1, Y2, and Y3. YOLOX is an improved
version of YOLOv3, but they have similar modules and the same processing flow.

CascadeRCNN, as an extension of FasterRCNN, has a workflow similar to that of
FasterRCNN. In Figure 2, B0 represents the proposal generated by the RPN structure. B
and C represent the bounding box and classification score of each pooling layer output
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respectively, and the number represents the serial number of the pooling layer, e.g., B1
represents the bounding box of the first pooling layer output. Firstly, feature maps are
generated through the backbone. The first pooling layer uses feature maps and B0 to extract
the feature of each Box and then performs classification regression to get B1 and category
C1. The next pooling layer uses feature maps and the B1 generated by the previous stage
and then performs classification regression to obtain B2 and category C2, and so on.

Figure 3. Schematic diagram of the RPN structure.

The detection results output by these four types of detectors are extracted into two sets
of input data according to different frame rates. The low-frame-rate and low-resolution data
are processed by SlowPath, and the high-resolution and high-frame-rate data are processed
by FastPath. The features are fused by lateral connections between the two channels. The
processed Spatio-temporal information features are then subjected to the global average
pool, concate, and FC operations to output the corresponding action information.

The localization loss function proposed in the article is constructed based on EIOU,
and the expression of EIOU is as follows.

EIOUloss = 1− IoU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)

C2
w

+
ρ2(h, hgt)

C2
h

(2)

where ρ represents the Euclidean distance, w, h, and b represent the width, height, and
centroid coordinates of the predicted bounding box, wgt, hgt, and bgt represent the width,
height and centroid coordinates of ground truth, and Cw, Ch, and C represent the width,
height, and diagonal length of the minimum outer rectangular frame, respectively. EIOU
sufficiently considers the center point distance, overlap area, and edge length of the pre-
dicted bounding box and ground truth. However, EIOU still cannot avoid the drawbacks
of Euclidean distance. The Euclidean distance does not provide the larger gradient when
the distance difference between the predicted bounding box and ground truth is small,
resulting in the model not converging to a lower stability point later in the training. There-
fore, this paper proposes to use the Lance and Williams distance as a new penalty term
for the localization loss to provide a larger gradient for the loss function at a later stage of
training. The simplified Euclidean distance and Lance and Williams distance expressions
are as follows.

ρ = (b− bgt)2, L =
1
2
|b− bgt|
|b + bgt| (3)
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where L represents the Lance and Williams distance, ρ represents the Euclidean distance,
and b and bgt represent the center point coordinates of the predicted bounding box and
ground truth, respectively. The expressions for the derivatives of ρ and L are as follows.

dρ

b
= 2(b− bgt),

dL
b

=


bgt

(b+bgt)2 b > bgt

−bgt

(b+bgt)2 b < bgt (4)

It can be seen that b converges to bgt in the process, which is the later stage of model
training. The gradient of the Euclidean distance converges to 0, while the gradient of
the Lance and Williams distance converges to 1

4bgt , and it can be seen that the Lance and
Williams distance has a greater sensitivity of the loss function when the distance difference
between the centroids is small.

From Equation (4), the gradient of the Euclidean distance becomes larger as the
distance difference becomes larger, which is ideal for the optimization of the model. dL

b is a
monotonically decreasing function when b > bgt and a monotonically increasing function
when b < bgt. The gradient of the Lance and Williams distance becomes smaller as the
distance difference becomes bigger, which is not following the basic properties of the loss
function. At the early stage of the model training (where the distance difference between
the centroids is assumed to be infinite means b = +∞ or bgt = +∞), the gradient dL

b is equal
to 0, and the optimization of the model is limited to stagnation. The Euclidean distance
can be quickly regressed early in the training because of the huge gradient, but this is also
prone to gradient explosion.

In order to neutralize the shortcomings of Euclidean distance and Lance and Williams
distance, this paper adds a penalty term of Lance and Williams distance based on EIOU
loss. The new localization loss function is called LIOU loss, and the specific expression is
as follows.

LIOUloss = 1− IoU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)

C2
w

+
ρ2(h, hgt)

C2
h

+
1
2
|x− xgt|
|x + xgt| +

1
2
|y− ygt|

|y + ygt| (5)

where x and y represent the horizontal and vertical coordinates of the center point of the
predicted bounding box, xgt and ygt represent the horizontal and vertical coordinates of
the center point of the ground truth, respectively. LIOU loss is able to regress steadily
and quickly in the early stage of model training, and does not have gradient explosion.
In the later stage of model training, it still has certain optimization ability, and can avoid
the loss from falling to a local minimum value and thus the phenomenon of optimization
stagnation.

3. Experiments

The previous section discusses the related networks and the proposed new localization
loss. This section will describe the relevant setup of the experiment, show the performance
data of the new detector and the new loss function, compare them with other methods, and
analyze and synthesizes the results.

3.1. Datasets

The experiments in this paper were built on the PASCAL VOC and COCO [34] datasets.
The VOC dataset used in the experiments integrates VOC2007 [35] and VOC2012 [36] and
contains 17,125 images. The division ratio of the training set and validation set is about
8:2, which are 13,870 and 3255 images respectively, and the metrics for the experiments are
derived from the AP values of the validation set. The COCO dataset is a large, rich dataset of
object detection, segmentation, and captioning. The training set in the COCO dataset used
for the experiments contains 118,287 images, and the validation set includes 5000 images.
The AP values of the experiments on the COCO dataset are from the validation set. Since
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the framework of the study in this paper addresses human movement, in addition to the
experiments to validate the performance of the LIOU loss function using the VOC dataset
with 20 common categories, the other experiments were conducted using the class “person”.

3.2. Experiment Settings

This paper has completed A total of four sets of experiments. The first three groups of
experiments were conducted on two Quadro RTX 8000 GPUs and VOC dataset. YOLOv3
and FasterRCNN used DarkNet53 and ResNet50 [25] backbone networks, respectively.
To ensure the objectivity of the experiments, both YOLOv3 and FasterRCNN used pre-
trained models and trained them for 100 epochs. The training strategy was set to freeze
the backbone network for the first 50 epochs and unfreeze the backbone network for the
next 50 epochs. The feature extraction network does not change when the backbone of the
model is frozen, and only fine−tunes the network. The second group of experiments used
the strategy of training 15 epochs in the frozen backbone network and 15 epochs in the
thawing phase. To demonstrate that the actual performance of LIOU loss is better than other
localization loss functions. The third group of experiments was built on the YOLOX−S
algorithm framework, and three classical IOU loss functions were selected to compare with
LIOU loss. The experiments without using pre-trained models trained 300 epochs, and sgd
was chosen as the optimizer, momentum was set to 0.937, and weight_decay was set to
5× 10−4. All other training parameters were kept consistent within the group for each set
of experiments.

The fourth experiment tested YOLOv3, YOLOX, FasterRCNN, and CascadeRCNN on
the COCO dataset, where YOLOv3 and YOLOX used DarkNet53 and CSPDarkNet53 as
the backbone network respectively and FasterRCNN and CascadeRCNN used ResNet50 as
the feature extraction network. The backbone networks all used pre-trained weights in the
experiment. The experiment was trained for 5 epochs on one RTX2080Ti GPU and kept the
other training parameters consistent.

3.3. Evaluation Metrics

The evaluation indicators these experiments use are AP (Average Precision), F1-score,
Precision, Recall, and LAMR (Log-Average Miss Rate). The following are the formulae for
Precision and Recall,

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(6)

where TP (True Positive) represents the predicted result and ground truth are positive
samples. FP (False Positive) represents the predicted positive sample and ground truth is
a negative sample, and FN (False Negative) represents the predicted negative sample is
a positive sample. The curve consisting of Recall and Precision as horizontal and vertical
coordinates is called the PR (Precision-Recall) curve, and the area of this curve is the
AP value.

The experiments use six AP metrics. AP50 and AP75 are the AP values when the IOU
threshold sets to 0.5 and 0.75, respectively, and AP0.50–0.95 is the average AP value at
different IOU thresholds (from 0.50 to 0.95 with a step size of 0.05). These experiments
calculate three types of AP values based on the area of different objects, APS, APM, and
APL represent the AP values of small objects (area < 32²), medium objects (32² < area >96²),
and large objects (area > 96²), respectively.

The F1-score is used to weigh the two quantities Precision and Recall to measure the
goodness of the model. The larger the F1-score value, the better the model performance.

F1-score =
2PR

P + R
(7)

The LAMR value contains two concepts, FPPI (False Positive Per Image) and Miss
Rate. The N in Equation (8) represents the amount of data in the dataset. The curve is
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plotted according to FPPI and Miss Rate, and the Miss Rate values are obtained at 9 FPPI
values (within −2nd power of 10 to 0th power of 10 at uniform intervals in logarithmic
space) and averaged to obtain the LAMR values. The smaller the LAMR indicator, the
better the performance of the detector.

FPPI =
FP
N

, Miss Rate = 1− Recall (8)

3.4. Results and Analysis

In Table 1, the experiment uses the COCO tool to calculate performance metrics. In
Evaluation Time, YOLOv3 (Ours) takes only 1.92 s, and FasterRCNN takes 2.51 s, so
YOLOv3 has gained a clear advantage in speed. For different IOU settings and sizes of
targets’ impact for accuracy AP, from Table 1, it can be seen that FasterRCNN is only slightly
behind in the detection accuracy of small objects (APS), but in the remaining five indexes
there is a considerable improvement compared to YOLOv3. The main reason for this
phenomenon may be that YOLOv3 is more tolerant of large object errors and more sensitive
to deviations from small object regressions when making regression predictions. YOLOv3
does not filter the objects in the search phase unlike two-stage detection algorithms such as
FasterRCNN, which results in poor accuracy in most cases. In Table 2, under the condition
that the score threshold is equal to 0.5, although the F1-score and Precision values are
lower than YOLOv3, FasterRCNN has higher AP50 and Recall than YOLOv3 (Ours), and
better LAMR performance values than YOLOv3. It can be seen that the difference between
YOLOv3 and FasterRCNN two types of detection algorithms is only that the former is
faster and the latter is more accurate.

Table 1. Under VOC Dataset. Comparison of backbone networks, detection time delay, three IOU
precision APs, and three object size precision APs.

Method Backbone Evaluation Time AP0.50–0.95 AP50 AP75 APS APM APL

FasterRCNN ResNet50 2.51 s 0.514 0.810 0.564 0.102 0.312 0.601
YOLOv3 (Ours) DarkNet53 1.92 s 0.486 0.790 0.537 0.123 0.282 0.586

Table 2. Under VOC Dataset. Comparison of AP50, Score-threshold, F1-score, Precision, Recall,
and LAMR.

Method AP50 Score-Threshold Precision Recall LAMR F1-Score

FasterRCNN 0.8114 0.5 0.4702 0.9172 0.41 0.62
YOLOv3 (Ours) 0.7789 0.5 0.7614 0.7050 0.46 0.73

IOU, CIOU and EIOU are all localization loss functions constructed based on Euclidean
distance, and most of their AP values are lower than LIOU as can be seen in Table 3.
Particularly, LIOU is constructed based on EIOU with just the addition of the Lance and
Williams distance as new penalty items. Therefore, it can be proved that the sensitivity of the
Lance and Williams distance when the distance difference is small indeed help to optimize
the model. LIOU loss combines the advantages of Euclidean distance and Lance and
Williams distance, which can regress quickly in the early stage of model training without
gradient explosion and can break the limit of local minima in the late stage of training,
making the model converge at a lower stable point and achieve higher performance.

From Table 4, it can be seen that CascadeRCNN (ours) is higher than FasterRCNN for
different kinds of AP values, except for the equal values of APS. This indicates that the
cascade structure seems to facilitate the classification of the model. Meanwhile, YOLOv3
(ours) performs the worst in terms of detection accuracy, which proves the description
in the previous paragraph of the article. That is, although YOLOv3 satisfies the real-time
performance of detection, it is still inferior to FasterRCNN and CascadeRCNN in terms
of accuracy. In addition, YOLOX also showed very good performance, with AP50 and
APS having the best results compared to the other three. In general, SlowFast’s detection
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algorithm FasterRCNN fails to meet the requirements in terms of speed and accuracy, and
improvements to the FasterRCNN framework seem to become necessary.

Table 3. Based on YOLOX-S and VOC Dataset. Comparison chart of the accuracy of IOU, CIOU,
EIOU and LIOU.

Method AP0.50–0.95 AP50 AP75 APS APM APL

IOU 0.449 0.694 0.493 0.145 0.287 0.510
CIOU 0.435 0.694 0.471 0.127 0.269 0.500
EIOU 0.454 0.709 0.495 0.176 0.297 0.515

LIOU(ours) 0.459 0.717 0.510 0.174 0.315 0.517

Table 4. Under COCO Dataset. Comparison of three IOU precision APs, and three object size
precision APs.

Method AP0.50–0.95 AP50 AP75 APS APM APL

FasterRCNN 0.348 0.627 0.348 0.182 0.428 0.518
YOLOv3 (Ours) 0.233 0.512 0.182 0.079 0.260 0.429
YOLOX (Ours) 0.353 0.654 0.340 0.203 0.435 0.493

CascadeRCNN (Ours) 0.379 0.628 0.388 0.182 0.468 0.577

3.5. Action Recognition Effect

This section measures the performance data of SlowFast by applying four different
detectors as shown in Table 5. The experiment evaluates the speed of the four detection
algorithms by setting the bounding box obtained with an IOU of 0.9. In Table 5, this section
takes 10 videos as the experiment and gets the average consumption time as the index.
Nine of the videos are from the AVA dataset [37], each cut to 30s in length, and one video is
from a shooting video, 31s in length. The intercepted image frames from the video are first
detected and then analyzed for Spatio-temporal behavior. Combining Human Detection
time and Spatio-temporal Action Detection time in Table 5, YOLOv3+SlowFast and YOLOX
+ SlowFast have similar processing speed, and CascadeRCNN+SlowFast and FasterRCNN
+ SlowFast consume similar processing time. YOLOv3+SlowFast significantly improves the
processing time of the algorithm compared to FasterRCNN+SlowFast, which matches the
advantage of the one-stage detection algorithm, which is to have a faster processing speed.

Table 5. Comparison of different algorithms for video frame detection latency and Spatio-temporal
Action Detection time.

Method Human Detection Time Spatio-Temporal Action Detection Time

FasterRCNN + SlowFast 17 s 12.5 s
YOLOv3 + SlowFast 6.5 s 5.7 s
YOLOX + SlowFast 6.6 s 7.9 s

CascadeRCNN + SlowFast 16.6 s 12.4 s

Figures 4 and 5 show the same frame comparison of a 31 s shooting video behavior
analysis test (The blue information in the upper box represents the corresponding behavior
information and the confidence score). From Figure 4, it can be found that the detection
accuracy of YOLOv3+SlowFast is lower than that of FasterRCNN+SlowFast, because the
former detects only one person in the two frames in the figure, and the latter detects two per-
sons. The same situation is can be found in Figure 5, where both CascadeRCNN+SlowFast
and YOLOX+SlowFast show no missed detections, while FasterRCNN+SlowFast misses
a person. In behavioral analysis, if the object is not detected, the corresponding action
information cannot be obtained. From Figure 5, it can be concluded that YOLOX and
CascadeRCNN meet the accuracy requirements of SlowFast better than FasterRCNN.
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Figure 4. Comparison of YOLOv3+SlowFast and FasterRCNN+SlowFast in the same frame image
detection effect.

Figure 5. Comparison of YOLOX+SlowFast, CascadeRCNN+SlowFast, and FasterRCNN+SlowFast
in the same frame image detection effect

4. Conclusions

This study improves the accuracy or speed of action recognition by starting with object
detection. Therefore, starting from the advantages and disadvantages of one-stage algo-
rithms, two-stage algorithms, and multi-stage algorithms, this paper identifies four detec-
tion algorithms, YOLOv3, YOLOX, FasterRCNN, and CascadeRCNN, and combines them
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with the SlowFast action algorithm. The paper also proposes a new localization loss func-
tion LIOU to solve the problem that the traditional IOU loss function lacks sensitivity in the
late training period, failing to converge to a lower stability point. According to the results on
the VOC and COCO datasets, it can be demonstrated that SlowFast’s detection algorithm, in
terms of detection speed and accuracy, can be improved. In general, YOLOv3+SlowFast can
significantly increase detection speed with a small reduction in detection accuracy and can
meet the requirements of industrial implementations. Similarly, CascadeRCNN+SlowFast
can significantly improve detection accuracy and YOLOX+SlowFast outperforms the orig-
inal SlowFast in terms of speed and accuracy. In addition, the paper demonstrates that
the proposed LIOU loss function significantly outperforms other IOU loss functions in the
framework of the YOLOX-based algorithm. In future work, our research directions will
improve the detection performance of the detection algorithm in other aspects to improve
the recognition accuracy or speed of the behavioral analysis algorithms.
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