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Abstract: Traditional monopulse radar cannot resolve two closely spaced targets present in one
resolution cell (range and Doppler) by means of the monopulse ratio. This study presents a closed-
form solution to resolve the directions of arrival of two unresolved targets using a single snapshot
of four independent channels in phase comparison monopulse radar. If both targets have the same
elevation or same azimuth direction, the proposed scheme cannot estimate their directions. To
estimate the direction of such targets, an extra antenna is required. The impact of input noise power,
the targets’ direction, and phase difference of the targets’ signal on the accuracy of angle estimation are
also explained. The numerical simulation result validates the effectiveness of the presented scheme.

Keywords: closely spaced targets; monopulse radar; direction estimation; angle accuracy

1. Introduction

Monopulse radar systems represent a practical and fast technique to determine the
direction of targets. Monopulse radar can detect the target angle by using multiple antennas
and comparing the phases of the signals in phase comparison monopulse radar (PCM),
as well as comparing the amplitudes of the signals in amplitude comparison monopulse.
They require a single pulse to compare the received signals, and estimate the azimuth and
elevation directions of a target. Nonetheless, the basic monopulse technique is suitable
when there is only one target in each resolution cell (range and Doppler); however, when
there are two or more targets in a resolution cell and when it suffers from multi-path
effect, their complex amplitudes will interfere with each other; thus, the indicated angles
of the targets wander wildly and the estimated angle can have a huge error [1–3]. Radars
are limited in terms of improving the range, beam width, and Doppler resolution [1].
Furthermore, in an electronic counter measure condition, an active jammer’s signal is
present in all the range cells; therefore, range-resolving techniques would not be useful.
To overcome this limitation of monopulse radars, several studies have been conducted;
the methods fall into two categories: statistical and deterministic. Although the statistical
methods can reach more accurate solutions than the deterministic methods, they are not
appropriate for tight-time scenarios, because these methods generally use several pulses
to extract the statistical features and have limitations depending on the target model [4,5].
Deterministic methods use one or two pulses and are not limited by the target model; they
are mostly based on Sherman’s method [6,7], in which he used a complex difference/sum
ratio and two pulses to separate two unresolved targets. However, Sherman’s method and
the other two pulse methods have two drawbacks: first, the amplitude coefficient of the
sum signals from the two targets should be steady between pulses and second, the relative
phase should be different; these are called Sherman’s conditions [8]. To estimate the angle of
ambiguous targets in radar cells, different methods such as beamforming, STAP, subspace
rejection [4,9,10], MIMO radar, and two polarization radar [6,11] have been presented in
the literature. However, these methods require additional equipment and different types
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of signal transmissions for monopulse radars [12]. In [8,13], to solve the drawback of
Sherman’s method, instead of graphical (or numerical) ones, exact algebraic solutions are
proposed; however, this method is applicable for non-fluctuating or slowly fluctuating
targets. Papers [14–16] present a practical method for estimating the angle of two targets in
a radar cell for angle comparison monopulse radar. This solution provides ways to avoid
both drawbacks; however, it fails to estimate the angles of targets when the two targets are
positioned at the same azimuth or same elevation angle. In [17] and [18], two additional
antennas have been used to detect targets located at the same elevation or same azimuth
angle, which are applicable at certain antenna configurations, but not for all configurations.
In this paper, we present the closed-form method for angle estimation of two unresolved
targets whose signals overlap in both frequency and time domains by using only one
pulse in PCM for rapidly fluctuating targets, which enables us to solve the drawbacks of
Sherman’s method. The solution is mathematically similar to that of [17] and [19]; however,
it has less computational complexity and better performance. Furthermore, our method can
estimate the angles of two targets that are positioned at the same azimuth or same elevation
angle by adding an extra antenna; in addition, the impact of SNR, the targets’ direction,
and the phase difference of targets on the accuracy of angle estimation is also described.

In Section 2, the characteristics of two target signals in PCM will be described and the
presented direction estimation method for two targets for PCM is described; in Section 3,
the exact solutions for the same azimuth and same elevation targets angle estimation are
derived; in Section 4, the effect of SNR, phase difference, and angle difference between the
targets on the accuracy of angles’ estimation of the targets will be examined; and eventually,
in Section 5, the simulation results of the proposed methods for the two targets for several
values of the SNR and relative positions of the two targets are shown.

2. Closed-Form Solutions to Resolve the Direction of Two Targets

A four-channel PCM consists of four antenna feeders located on the corners of a
rectangle. In this section, we formulate an exact two-target solution for a phase comparison
configuration, which is essentially a two-by-two array shown in Figure 1 [14].
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Figure 1. Configuration of a four-channel PCM antenna. 

For a single target, the phase relationships of the four-channel noiseless signal, de-
noted x00, x01, x10, and x11, give the target direction [14]. 

Figure 1. Configuration of a four-channel PCM antenna.

For a single target, the phase relationships of the four-channel noiseless signal, denoted
x00, x01, x10, and x11, give the target direction [14].

x01 = x00e−jα

x10 = x00e−jβ

x11 = x00e−j(α+β)
(1)

where α = (2πd cos θ sin ϕ)/λ, β = (2πw sin θ)/λ, and ϕ and θ are the azimuth and
elevation angles of the target; while ‘d’ and ‘w’ are the X and Y spacing between elements;
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and λ is the received signal wavelength. For the two targets, Equation (1) can be written as
below [14]:

x00 = gae−jγa + gbe−jγb

x01 = gae−j(γa+αa) + gbe−j(γb+αb)

x10 = gae−j(γa+βa) + gbe−j(γb+βb)

x11 = gae−j(γa+αa+βa) + gbe−j(γb+αb+βb)

(2)

where αa, αb, βa, and βb are the corresponding phase angles; and ga, gb, γa, and γb target
amplitude and phase (indices ‘a’ and ‘b’ mean two separate targets). In Equation (2), we
have eight real unknowns for four equations; thus, the unknowns cannot be obtained by
numerical methods. If x00x11 = x10x01, the signal will be received from a single target;
otherwise, the received signal will be from two separate targets with different angles [14].

We can write
∣∣e−jβ

∣∣2 =
∣∣e−jα

∣∣2 = 1; thus, the expressions of the four-antenna receiver
signals from (2) directly as follows:∣∣e−jαa x00 − x01

∣∣2 =
∣∣e−jαa x10 − x11

∣∣2 =
∣∣gb(e−jαa − e−jαb)

∣∣2∣∣e−jαb x00 − x01
∣∣2 =

∣∣e−jαb x10 − x11
∣∣2 =

∣∣ga(e−jαb − e−jαa)
∣∣2 (3)

Therefore, we can obtain e−jαa & e−jαb from the same equation:∣∣∣e−jαx00 − x01

∣∣∣2 =
∣∣∣e−jαx10 − x11

∣∣∣2 (4)

Define e−jα = H, so Equation (4) can be expressed as:

|x00|2 + |x01|2 − |x10|2 − |x11|2
−
[
x00x∗01 − x10x∗11

]
H −

[
x01x∗00 − x11x∗10

]
H∗ = 0

(5)

By multiplying (5) through with H, the Equation (5) converts to (6):

AH2 + BH + C = 0
A = x10x∗11 − x00x∗01
B = |x00|2 + |x01|2 − |x10|2 − |x11|2
C = A∗

(6)

Therefore, the two solutions for the desired H (Ha and Hb) are:

Hx =
−B±

√
B2 − 4|A|2
2A

(7)

If |H|2 = 1, the solutions are valid. Assuming that the square root provides a real
solution, we can deduce:

|H|2 =

[
−B±

√
B2 − 4|A|2

]2

4|A|2 = 1 (8)

For the real solution, both A and B must be real; then, the only possible solution is in
the limit as A→0. If B2 < 4|A|2; then, the magnitude of (8) is [19]:

|H|2 =

[
−B± j

√
4|A|2 − B2

][
−B∓ j

√
4|A|2 − B2

]
4|A|2 (9)
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So, |H|2 = 1; whether B2 < 4|A|2, the existence of the solutions is verified. =(B) = 0 (=(.)
mean the imaginary part); then, we can extract the values of αa and αb as follows:

αx = f
(
±arccos

[
−B
2|A|

]
+ arcsin

[
=(A)

|A|

])
(10)

The function ‘f ’ is determined as:

f (k) =


π − k i f k > π/2
−π − k i f k < −π/2
k otherwise

(11)

To determine the elevation angle, we can write the expressions of the four-antenna
receive signals directly as follows:∣∣e−jβa x00 − x10

∣∣2 =
∣∣e−jβa x01 − x11

∣∣2∣∣e−jβb x00 − x10
∣∣2 =

∣∣e−jβb x01 − x11
∣∣2 (12)

Therefore, we can obtain e−jβa & e−jβb from the same equation:∣∣∣e−jβx00 − x10

∣∣∣2 =
∣∣∣e−jβx01 − x11

∣∣∣2 (13)

Define e−jβ = ρ; so, the same as (4) and (5), which can be expressed as:

AEρ2 + BEρ + CE = 0
AE = −x00x∗10 + x01x∗11
BE = |x00|2 + |x10|2 − |x01|2 − |x11|2
CE = A∗E

(14)

Therefore, the two solutions for the desired ρ are:

ρx =
−BE ±

√
BE2 − 4|AE|2

2AE
(15)

We can extract the values of βa and βb from (10) and (11) as follows:

βx = f
(
±arccos

[
−BE
2|AE|

]
+ arcsin

[
ImAE

|AE|

])
(16)

The function ‘f ’ is determined as (11). From (7), the amplitude of the targets are:

|ga|2 =
∣∣∣ x01−x00 Hb

Ha−Hb

∣∣∣2
|gb|2 =

∣∣∣ x01−x00 Ha
Hb−Ha

∣∣∣2 (17)

From (1), we can calculate θx and ϕx from βa and βb, and αa and αb. Generally, the
decoy (deception target) signal power is greater than the real target signal power. So, based
on the signal amplitude after separation, it is possible to distinguish the real target from
the decoy.

3. Estimate the Direction of Two Targets Located at Same Azimuth or Same Elevation
Angle Due to Angular Ambiguity

Whenever two targets are at the same azimuth or same elevation angle (if αa = αb,
then AE = 0; and if βa = βb, then A = 0), the derived algorithm fails to estimate the angular
location of the targets. To overcome this limitation, the paper [17] has used two extra
antennas to detect such targets; it is applicable to certain antenna configurations where
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d =
√

3w, and not applicable to other antenna configurations. The paper [20] proposes
a subarray-based four-channel monopulse method to achieve an efficient, unambiguous,
and fast two-target resolution to estimate the angle of same direction targets. We used an
extra antenna (xz antenna) to overcome the limitation of the above derived algorithm and
improve its angle estimation performance; it is applicable for all the antenna configurations.
The xz antenna (extra antenna) is located in the center of antennas; the location of the xz
antenna shown in Figure 2.
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For the two targets case, the xz antenna’s received signal can be written as below:

xz = gae−j(γa+αa/2+βa/2) + gbe−j(γb+αb/2+βb/2) (18)

If the two targets are located at the same elevation angle (βa = βb), then e−jβa =
e−jβb = x10/x00; and if the two targets are located at the same azimuth angle (αa = αb), then
e−jαa = e−jαb = x01/x00. So, we can calculate e−jα/2 and e−jβ/2. During target tracking
mode in monopulse radars, the angle error tends to zero; so, at the same elevation angle
targets, the elevation angle tends to zero (β = 0); and at the same azimuth angle targets, the
azimuth angle tends to zero (α = 0). From (3) and (4), if β = 0 (if β 6= 0, then xz = xz/e−jβ/2),
we can write: ∣∣∣e−jαa/2x00 − xz

∣∣∣2 =
∣∣∣e−jαa/2xz − x01

∣∣∣2∣∣∣e−jαb/2x00 − xz

∣∣∣2 =
∣∣∣e−jαb/2xz − x01

∣∣∣2 (19)

Therefore, we can obtain e−jαa/2 & e−jαb/2 from the same equation:∣∣∣e−jα/2x00 − xz

∣∣∣2 =
∣∣∣e−jα/2xz − x01

∣∣∣2 (20)

Define H′ = e−jα/2; so, from (6) we can write:

A′H′2 + B′H′ + C′ = 0
A′ = x00xz

∗ − xzx∗01
B′ = |x00|2 − |x01|2
C′ = A′∗

(21)

We can calculate αa/2 and αb/2 the same as (10). From (12) and (13), we can write:∣∣∣e−jβ/2x00 − xz

∣∣∣2 =
∣∣∣e−jβ/2xz − x10

∣∣∣2 (22)

Define ρ′ = e−jβ/2; so, from (6) we can write:

A′Eρ′2 + B′Eρ′ + C′E = 0
A′E = x00x∗z − xzx∗10
B′E = |x00|2 − |x10|2
C′E = A′E

∗

(23)
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We can calculate βa/2 and βb/2 the same as (16). By calculating the value of βa/2 and
βb/2, it is possible to calculate the value of αx, βx, θx, and ϕx.

4. Accuracy Analysis of Direction Estimation

From (14), (6) we can write:

C = A∗ = gagb

[
+e−j[−γa−βa+γb+βb+αb ] + e+j[−γa−βa+γb+βb−αa ] −

(
e−j[−γa+γb+αb ] + e+j[−γa+γb−αa ]

)]
= 2gagbe−j[ αa+αb

2 ][cos(γb − γa + βb − βa + αb/2− αa/2)− cos(γb − γa + αb/2− αa/2)]
(24)

We can deduce:

C = −4gagbe−j[ αa+αb
2 ] sin

(
βb − βa

2

)
sin(ψ) (25)

where ψ = γb − γa +
βb−βa

2 + αb−αa
2 is the phase differences between the two targets; so:

A = −4gagbe+j[ αa+αb
2 ] sin

(
βb − βa

2

)
sin(ψ) (26)

We can write B as follows:

B = 2gagb

[
cos(αb − αa + γb − γa) + cos(γb − γa)− cos(γb − γa + βb − βa)

− cos(γb − γa + βb − βa + αb − αa)

]
= 4gagb cos

(
αb−αa

2

)[
cos
(

αb−αa
2 + γb − γa

)
− cos

(
γb − γa + βb − βa +

αb−αa
2

)] (27)

We can deduce:

B = 8gagb cos
(

αb − αa

2

)
sin
(

βb − βa

2

)
sin(ψ) (28)

If sin
(

βb−βa
2

)
sin(ψ) = z, we can write (6) as follows:

4gagbz
[

e+j[ αa+αb
2 ]H2 −

(
e

αb−αa
2 + e

αb−αa
2

)
H + e−j[ αa+αb

2 ]

]
= 0 (29)

So, we have:

4gagbz

e−j[ αa+αb
2 ]

[
H2 −

(
e−jαa + e−jαb

)
H + e−j[αa+αb ]

]
= 0 (30)

To investigate the effect of phase difference and azimuth angle on the accuracy of
elevation angle estimation:

AE = −4gagbe+j[ βb+βa
2 ] sin

(
αb−αa

2

)
sin(ψ)

CE = −4gagbe−j[ βb+βa
2 ] sin

(
αb−αa

2

)
sin(ψ)

BE = 8gagb cos
(

βb−βa
2

)
sin
(

αb−αa
2

)
sin(ψ)

(31)

From (30), if sin
(

αb−αa
2

)
sin(ψ) = M, we can write (14) as follows:

4gagb M

e−j[ βb+βa
2 ]

[
ρ2 −

(
e−jβa + e−jβb

)
ρ + e−j[βa+βb ]

]
= 0 (32)

From (24)–(28) and (29), A, B, and C are a function of sin(βb − βa), sinψ, ga, and gb
(SNR); and from (30) and (31), AE, BE, and CE are a function of sin(αb − αa), sinψ, ga, and
gb (SNR). The angle estimation error is inversely proportional to the targets’ SNR and
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sin(ψ) sin[(βb − βa)/2] for the azimuth angle, and inversely proportional to the targets’
SNR and sin(ψ) sin[(αb − αa)/2] for the elevation angle. If the phase difference between
the two targets’ echoes zero or 180 degrees, the noise is infinite; and if two targets have
the same elevation angle or same azimuth angle, the noise is infinite and the proposed
method will not work; so, we cannot obtain the expected solutions from (7) and (15). If
sin(ψ) = ±1, SNR increased, and sin[(αb − αa)/2] = MAX at the elevation angle estimation
and sin[(βb − βa)/2] = MAX at the azimuth angle estimation are satisfied; the proposed
algorithm will have smallest error and best accuracy.

5. Simulation Results and Discussion

We simulated the ability of the proposed method to estimate two target angles due
to angular ambiguity in the phase comparison monopulse radar. The 3 dB width of
the sum beam is 6 deg and the two targets have different amplitudes (ga = 2gb), with
uniformly distributed random phases. Using these conditions, simulations were performed
for various SNRs and the relative positions of the two targets. For the simulations, the
deception target positioned at [+1◦, +1◦] (the towed decoy ‘a’ amplitude is bigger than the
real target ‘b’) and the real target positioned at [−1.6◦,−1.6◦] (azimuth angles and elevation
angles, respectively). The simulations were performed for 20 pulses with SNR = 20 dB and
SNR = 30 dB. Without the proposed method for unresolved targets’ angle estimation, the
estimated angle by typical monopulse radar is shown in Figure 3.
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We simulated the ability of proposed method to estimate the angles of two targets
that are positioned at the same azimuth or elevation angle (Figure 5); in this case, the same
elevation targets are positioned at [−1.8, 0] degree for the real target (‘b’) and [1.2, 0] degree
for the decoy (azimuth and elevation angles). The same azimuth targets are positioned at
[0, 1.6] degree for the real target (‘b’) and [0,−1] degree for the decoy (azimuth and elevation
angles). The two targets have different amplitudes (ga = 2gb) and uniformly distributed
random phases. The simulations were performed for 20 pulses, with SNR = 22 dB. We
showed the simulation results of the estimated angle of two unresolved targets by typical
phase comparison monopulse radar in Figure 5.
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Figure 5. The estimated angle of two unresolved targets by typical phase comparison monopulse
radar; ground truth locations of decoy (O) and real target (x), and estimated angle (*). (a) same
elevation; (b) same azimuth.

The accuracy of the proposed angle estimation method (20 times) for the targets
located at same azimuth angle or at the same elevation angle is shown in Figure 6.
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Figure 6. Scatter plot of angle estimates of real target and decoy (decoy (∆) and real target (*); ground
truth locations of decoy (O) and real target (x)). (a) same elevation; (b) same azimuth.

In our simulations, we use two targets with random phases and place them randomly
inside the 3 dB beam. We then add white Gaussian noises that correspond to various levels
of SNR. Simulation results demonstrate that the angle estimation is approximately accurate
when the SNR is 30 dB and that the two targets are distinguishable when the SNR is 20 dB.
Figure 7 shows the root mean square errors (RMSEs) of αa. In this case, the ψ varies from
15◦ to 165◦ (when ψ gets closer to zero, the performance will become worse). We can see
that the algorithm has the best performance when ψ is close to 90◦.
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Figure 7. RMSE of αa versus ψ for SNR = 30 dB and SNR = 20 dB (∆ϕ = 0.7◦).

Figure 8 represents the RMSE of αa; in this case, ∆ϕ = ϕa − ϕb varies from 0.2◦ to
6◦ (when ϕa gets closer to ϕb, the performance will become worse). We can see that the
algorithm has a better performance when ∆ϕ increases (∆ϕ is proportional to ∆β = βb − βa).
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Figure 8. RMSE of αa versus ∆ϕ = ϕa − ϕb for SNR = 30 dB, SNR = 20 dB, and ψ = 45◦.

Figure 9 represents the RMSE of αa; in this case, SNR varies from 20 dB to 30 dB.
The shape of the plot in Figure 9 is obvious; thus, the algorithm has the best perfor-

mance when SNR increased.
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6. Conclusions

In this study, a practical method for the angle estimating of two targets that are located
in the same radar resolution cell was presented. By solving the equation group of four
antennas, it is possible to use only one pulse to perform angle discrimination of the target
and the decoy in the main beam. The same amplitude of the targets will not affect the
proposed method for the angle estimating of two targets, and it enjoys high simplicity and
high efficiency. If both targets have the same elevation or azimuth angle, the proposed
scheme cannot resolve them; thus, we used an extra antenna to detect such targets in the
phase comparison monopulse. It is demonstrated that the RMSE of the direction estimation
is inversely proportional to the SNR, and the angle difference and phase difference between
the two targets. If three or more targets are located in one resolution cell, the estimated
angles by the proposed method will be close to the angles of the targets with a larger
amplitude. More antennas and more complex algorithms will be needed to detect the
angle of three ambiguous targets and the proposed scheme cannot resolve them. The
performance of the proposed algorithm was verified by numerical simulation.
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