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Abstract: Parkinson’s disease (PD) is a neurodegenerative disease that impacts the neural, physiological,
and behavioral systems of the brain, in which mild variations in the initial phases of the disease make
precise diagnosis difficult. The general symptoms of this disease are slow movements known as
‘bradykinesia’. The symptoms of this disease appear in middle age and the severity increases as one gets
older. One of the earliest signs of PD is a speech disorder. This research proposed the effectiveness of
using supervised classification algorithms, such as support vector machine (SVM), naïve Bayes, k-nearest
neighbor (K-NN), and artificial neural network (ANN) with the subjective disease where the proposed
diagnosis method consists of feature selection based on the filter method, the wrapper method, and
classification processes. Since just a few clinical test features would be required for the diagnosis, a
method such as this might reduce the time and expense associated with PD screening. The suggested
strategy was compared to PD diagnostic techniques previously put forward and well-known classifiers.
The experimental outcomes show that the accuracy of SVM is 87.17%, naïve Bayes is 74.11%, ANN is
96.7%, and KNN is 87.17%, and it is concluded that the ANN is the most accurate one with the highest
accuracy. The obtained results were compared with those of previous studies, and it has been observed
that the proposed work offers comparable and better results.

Keywords: ANN; KNN; machine learning (ML); naïve Bayes classification; Parkinson’s disease; SVM

1. Introduction

Parkinson’s disease, commonly known as Tremor, is affected by a reduction in dopamine
levels in the brain which damages a person’s motion functions, or physical functioning. It
is one of the world’s most common diseases. Intermittent neurological signs and symptoms
result from these lesions, which get worse as the disease progresses [1]. Because aging causes
changes in our brains, such as loss of synaptic connections and changes in neurotransmitters
and neurohormones, this condition is more frequent among the elderly. With the passage of
time, the neurons in a person’s body begin to die and become inimitable. The consequences of
neurological problems and the falling dopamine levels in the patient’s body show gradually,
making them difficult to detect until the patient’s condition requires medical treatment [2].
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However, the symptoms and severity levels are different for individuals. Major symptoms of
this disease are deficiency in speech, short-term memory loss, loss of balance, and unbalanced
posture [1].

Every year, 8.5 million individual cases of this disease are registered worldwide, as
per the World Health Organization (WHO) report in 2019 [3]. The chance of developing
this disease rises with age; currently, there are 4% of sufferers worldwide under 50 years
of age. This disease is the most widespread neurodegenerative disease in the world after
Alzheimer’s disease, impacting millions of people [4,5]. Therapy for this disease is still in
its initial stages, and doctors can only assist patients in alleviating the symptoms of the
disease [6]. However, there are no definite diagnostics for this disease, and the diagnosis
is largely dependent on the medical history of the patient [1]. As invasive procedures are
typically used for diagnosis and therapy, which are both expensive and demanding [7], a
reasonably straightforward and accurate way to diagnose this disease looks very relevant.

1.1. Machine Learning-Based Detection of Parkinson’s Disease

Over the past few decades, researchers have looked at a new way of detecting this disease
through ML techniques, a subset of artificial intelligence (AI). Clinical personnel might better
recognize these disease patients by combining traditional diagnostic indications with ML.

As walking is the most common activity in every person’s day-to-day life, it has
been linked to physical as well as neurological disorders. This disease, for example, has
been identifiable using gait (mobility) data. Gait analysis approaches offer advantages
such as being non-intrusive and having the potential to be extensively used in residential
settings [8]. Few researchers have attempted to combine ML methods to make the procedure
autonomous and possible to do offline [9].

Furthermore, persons with the subject disease in its early stages might experience speech
problems [10]. These include dysphonia (weak vocal fluency), repetitious echoes (a tiny assort-
ment of audio variations), and hypophonia (vocal musculature disharmony) [7,11]. Information
from human aural emissions might be detected and evaluated using a computing unit [12,13].

1.2. Research Problem and Motivation

Early PD detection in PD patients is a crucial challenge. Even if their health deteriorates,
people can enhance their quality of life if they receive an early diagnosis. Another issue is that
the diagnosis of PD requires a number of steps, including gathering a thorough neurological
history from the patient and examining their motor abilities in various environments.

The majority of recent studies deal with the homo dataset (text, speech, video, or image).
Problems with dataset modification and multi-data handling procedures have been high-
lighted in the suggested study. The effectiveness of disease prediction is regulated as a result
of the examination of a particular dataset. More real-time solutions are made possible by the
use of machine learning-based techniques for multivariate data processing. The multi-variate
vocal data analysis (MVDA) is driven to provide multiple dataset attribute-based Parkinson’s
disease identification utilizing machine learning approaches. This study examines the po-
tential for improving multi-variate and multimodal data processing, which aids in raising
the disease detection rate. The existing research simultaneously concentrates on various
ML-based techniques such as support vector machines, naïve Bayes, K-NN, and artificial
neural network evaluations of Parkinson’s data based on voice features. The MVDA employs
extensive datasets and machine learning approaches to improve disease identification based
on these works. The incorporation of numerous patients’ multivariate acoustic characteristics
in the proposed MVDA is encouraged. The subjective disease has been diagnosed with the
help of proposed machine learning techniques under the MVDA system.

1.3. Contribution

This research article covers the techniques of machine learning which are implemented
in the auditory analysis of speech to diagnose this disease. The benefits and shortcom-
ings of these algorithms in detecting the disease are thoroughly contrasted, and existing
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comparative studies’ potential drawbacks are explored. The accuracy of ANN in speech
analysis for diagnosis is the finest among different classifiers; however, the assumption
is to enhance and adapt to the difficulties that may come from the data. Using the naïve
Bayes classifier with suitable pre-processing might result in greater average accuracy. The
main contribution of this paper is as follows:

a. To identify which machine learning algorithms, such as SVM, KNN, naive Bayes, and
ANN, offer the most accurate classifications and diagnosis of Parkinson’s disease.

b. To develop statistical evaluations for the diagnosis of Parkinson’s disease in order to
identify the frequency at which the best training and test results will be acquired, and
consequently to assist in upcoming literature-based research.

c. The proposed system has used an ANN classifier to attain the maximum classification
accuracy when compared to the approaches used in earlier research.

d. In order to improve the prediction of PD, a comprehensive methodology was employed
to explore the effectiveness and efficiency of various feature selection approaches.

e. The proposed model is examined with four machine learning methods, including
SVM, naive Bayes, k-NN, and ANN, as well as with earlier and more current studies
on PD detection.

1.4. Structure of Proposed Work

The structure of the study is as follows: Section 2 describes the related research survey.
Section 3 discusses the methodology used to achieve the proposed objective. Section 4 defines
the materials and methods. Section 5 examines the experiment and results. Section 6 discusses
the comparative study and discussion. Finally, Section 7 concludes the proposed work.

2. Related Works

In order to distinguish PD cases from healthy controls, a variety of modern machine
learning algorithms, including support vector machines, artificial neural networks, logistic
regression, naïve Bayes, etc., have been successfully used. In this study, numerous databases,
including Web of Science, Elsevier, MDPI, Scopus, Science Direct, IEEE Xplore, Springer, and
Google Scholar, were utilized to survey relevant papers on Parkinson’s disease.

In a survey by [14], the authors used KNN, SVM, and discrimination-function-based
(DBF) classifiers for the diagnosis of PD. In their study, they used several parameters such
as jitter, fundamental frequency, pitch, shimmer, and other statistical measures. The best
accuracy among these classifiers was obtained from KNN with a 93.83% accuracy rate and
it also provided good performance in other parameters, such as sensitivity, specificity, and
error rate.

The authors in [15] used a convolution neural network classifier applied to speech
classification datasets. The accuracy reached throughout the training phase, which was
over 77%, makes the results optimistic. In accordance with the works mentioned above, [16]
examined a variety of classifiers to identify individuals who were likely to have Parkinson’s
disease. They used 40 participants for their investigation, including 20 PD patients and
20 healthy controls. According to the experimental findings, the naive Bayes classifier
has a detection accuracy of 65%, with a sensitivity rate of 63.6% and a specificity rate of
66.6%, respectively. In [17], the authors used three types of classifiers based on KNN, SVM,
and multilayer perceptron (MLP) to diagnose Parkinson’s disease. Among all these ML
classifiers, SVM using an RBF kernel outperformed with an overall classification accuracy
rate of 85.294%.

A summary of the most recent deep learning methods for audio signal processing
is given in another work by [18]. The works that have been examined include convolu-
tion neural networks as well as other long short-term memory architecture models and
audio-specific neural network models. Similar to the previous studies, [19] detected PD
using naive Bayes and other machine learning approaches. In their method, relevant
features were extracted from the voice signal of PD patients and healthy control subjects
using signal processing techniques. The naive Bayes algorithm shows a 69.24% detection
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accuracy and 96.02% precision rate for the 22 voice characteristics. In [20], the authors
suggested a technique for detecting Parkinson’s disease using SVM on shifted delta cepstral
(SDC) and single frequency filtering cepstral coefficients (SFFCC) features extracted from
speech signals of PD patients and healthy controls. Comparing the standard MFCC + SDC
features to the SDC + SFFCC features, performance increases of 9% were observed. The
73.33% detection accuracy with a 73.32% F1-score was displayed by the conventional SVM
on SDC + SFCC features. In addition to the naive Bayes classifier, several additional super-
vised methods, including but not restricted to well-known deep learning methods, have
been suggested to identify PD patients among healthy controls.

In a survey conducted by [21], the authors examined two recognizing decision forests
i.e., SysFor and ForestPA, along with the most widely used random forest classifier, which
has been utilized as a Parkinson’s detector. In their study, as compared to SysFor and
ForestPA, random forest’s average detection accuracy on incremental trees showed 93.58%.
For the purpose of classifying Parkinson’s disease through sets of acoustic vocal (voice)
characteristics, the authors [22] suggested two frameworks based on CNN. Both frame-
works are used for the mixing of different feature sets, although they combine feature sets
in different ways. While the second framework provides feature sets to the parallel input
levels that are directly connected to convolution layers, the first framework first combines
several feature sets before passing them as inputs to the nine-layered CNN.

AI is assisting physicians in better diagnosing and treating diseases such as postoper-
ative hypotension, and more advanced future models may have even more widespread
medical uses. The evolutionary step in the creation of therapeutic pathways and adherence
is machine learning. The real benefit of machine learning, however, is that it enables
provider organizations to use information about the patient population from their own sys-
tems of record to create therapeutic pathways that are unique to their procedures, clientele,
and physicians [23].

The vocal biomarkers and the description of the Aachen aphasia database, which contains
recordings and transcriptions of therapy sessions, were covered in [24]. The authors also
discussed how the biomarkers and the database could be used to build a recognition system
that automatically maps pathological speech to aphasia type and severity.

In [25], the authors examined the suggested technique using a dataset of 288 audio
files from 96 patients, including 48 healthy controls and 48 participants with cognitive im-
pairment. The suggested method outperformed techniques based on manual transcription
and speech annotation, with classification results that were comparable to those of the most
advanced neuropsychological screening tests and an accuracy rate of 90.57%.

In [26], the authors intended to enlighten on the early indicators of major depressive
relapse, which were discreetly measured using remote measurement technologies (RMT).

RMT has the potential to alter how depression and other long-term disorders are evalu-
ated and handled if it is found to be acceptable to patients and other important stakeholders
and capable of providing clinically meaningful information predicting future deterioration.

It can be seen from the reviews above that all the research that has been carried out is
only restricted to a small number of datasets. The above previous works inspired us to try
a new methodology. In this study, we experimented with several feature selection methods
before comparing the results with various machine learning classifiers. Table 1 illustrates
the review of ML techniques used to diagnose major symptoms of PD i.e., speech recording,
handwriting pattern, and gait features, where data were collected from the UCI machine
learning repository, the University of Oxford (UO), and other resources for 20 studies.
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Table 1. Comparative Studies of Machine Learning Approaches to diagnose Parkinson’s Disease.

Reference Feature Machine Learning
Algorithms Used Objective Tools Used Source of Data No. of Subjects Outcomes

Sakar et al., 2019 [27] Speech

Naïve Bayes, Logistic
Regression, SVM (RBF

and Linear), KNN,
Random Forest, MLP

Classification of PD
from HC

JupyterLab with python
programming language

Collected from
participants 252, 188 PD + 64 HC

Highest accuracy
obtained from SVM

(RBF)—86%

Yasar A. et al., 2019 [28] Speech Artificial Neural
Network

Classification of PD
from HC MATLAB Collected from

participants 80, 40 PD + 40 HC Accuracy of
ANN—94.93%

Avuçlu, E., Elen, A, 2020 [29] Speech KNN, Random Forest,
Naïve Bayes, SVM

Classification of PD
from HC

JupyterLab with python
programming language

UCI machine learning
repository 31, 23 PD + 8 HC Accuracy from Naïve

Bayes—70.26%

Marar et al., 2018 [30] Speech

Naïve Bayes, ANN,
KNN, Random Forest,

SVM, Logistic
Regression, Decision

Tree (DT)

Classification of PD
from HC R programming Collected from

participants 31, 23 PD + 8 HC
Highest accuracy

obtained from
ANN—94.87%

Sheibani R et al., 2019 [31] Speech Ensemble Based
Method

Classification of PD
from HC

JupyterLab with python
programming language

UCI machine learning
repository 31, 23 PD + 8 HC

Accuracy obtained from
ensemble

learning—90.6%,

John M. Tracy et al., 2020 [32] Speech

Logistic Regression
(L2-Regularized),
Random Forest,

Gradient Boosted Trees

Classification of PD
from HC Python mPower database 2289, 246 PD + 2023 HC

Highest accuracy
obtained from gradient

boosted trees
Recall—79.7%,

Precision—90.1%,
F1-score—83.6%

Cibulka et al., 2019 [33] Handwriting
Patterns Random Forest Classification of PD

from HC Not mentioned Collected from
participants 270, 150 PD + 120 HC

Classification error for
rs11240569, rs708727,

rs823156 is 49.6%,
44.8%, 49.3%
respectively.

Hsu S-Y et al., 2019 [34] Handwriting
Patterns

SVM with RBF Kernel,
Logistic Regression

Classification of PD
from HC Weka PACS 202, 94 Severe PD + 102

mild PD + 6 HC

Highest accuracy
obtained from

SVM-RBF 83.2% having
sensitivity 82.8%,
specificity 100%

Drotár, P et al., 2016 [35] Handwriting
Patterns

K-NN, Ensemble
AdaBoostClassifier,

Support Vector Machine

Classification of PD
from HC

Python [scikit-learn
library] PaHaW database 37 PD and 38 HC Accuracy—81.3%
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Table 1. Cont.

Reference Feature Machine Learning
Algorithms Used Objective Tools Used Source of Data No. of Subjects Outcomes

Fabian Maass et al., 2020 [36] Handwriting
Patterns SVM Classification of PD

from HC Weka UCI machine learning
repository

157, 82 PD + 68 HC +7
Normal Pressure

Hydrocephalus (NPH)

sensitivity-80%, and
specificity—83%

J. Mucha et al., 2018 [37] Handwriting
Patterns

Random Forest
Classifier

Classification of PD
from HC Python Programming PaHaW database 69, 33 PD + 36 HC

Obtained classification
accuracy-90% with
sensitivity 89%, and

specificity 91%

Wenzel et al., 2019 [38] Handwriting
Patterns CNN Classification of PD

from HC MATLAB PPMI database 645, 438 PD + 207 HC Accuracy-97.2%

Segovia, F. et al., 2019 [39] Handwriting
Patterns

SVM with 10 Cross
Validation

Classification of PD
from HC Python programming Virgen De La Victoria

Hospital, Malaga, Spain 189, 95 PD + 94 HC Accuracy-94.25%

Ye, Q. et al., 2018 [40] Gait

Least Square
(LS)—SVM, Particle
Swarm Optimization

(PSO)

Classification of PD,
ALS, HD from HC Not mentioned

Neurology Outpatient
Clinic at Massachusetts

General Hospital,
Boston, MA, USA

64, 15 PD + 16 HC + 13
(Amyotrophic

lateralsclerosis disease
(ALS)) + 20

(Huntington’s disease
(HD))

Accuracy to diagnose
PD from HC- 90.32%,
Accuracy to diagnose
HD from HC-94.44%,
Accuracy to diagnose
ALS from HC- 93.10%

Klomsae, A et al., 2018 [41] Gait Fuzzy KNN Classification of PD,
ALS, HD from HC Not mentioned

Neurology Outpatient
Clinic at Massachusetts

General Hospital,
Boston, MA, USA

64, 15 PD + 20 HD + 13
ALS + 16 HC

Accuracy to diagnose
PD from HC- 96.43%,
Accuracy to diagnose
HD from HC-97.22%,
Accuracy to diagnose
ALS from HC-96.88%

J. P. Félix et al., 2019 [42] Gait
SVM, KNN, Naïve

Bayes, LDA, Decision
Tree

Classification of PD
from HC MATLAB R2017a

Neurology Outpatient
Clinic at Massachusetts

General Hospital,
Boston, MA, USA

31, 15 PD + 16 HC

Highest accuracy
obtained from SVM,
KNN, and decision

tree- 96.8%

Andrei et al., 2019 [43] Gait SVM Classification of PD
from HC Not mentioned Laboratory for Gait and

Neurodynamics 166, 93 PD + 73 HC Accuracy-100%

Priya SJ et al., 2021 [44] Gait ANN Classification of PD
from HC MATLAB R2018b Laboratory for Gait and

Neurodynamics 166, 93 PD + 73 HC Accuracy-96.28%

Oğul, et al., 2020 [45] Gait ANN Classification of PD
from HC MATLAB Laboratory for Gait and

Neurodynamics 166, 93 PD + 73 HC Classification
accuracy-98.3%

Li B et al., 2020 [46] Gait Deep CNN Classification of PD
from HC Not mentioned Collected from

participants 20, 10 PD + 10 HC Accuracy-91.9%
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3. Proposed Work

The proposed ML model uses an SVM, naïve Bayes, KNN, and ANN algorithm in
the core. These algorithms are widely used in the literature since they are easy to use
and only need a small number of parameters to be tuned. There are several processes
involved in developing a model to detect PD from voice recordings. In the first phase,
relevant features are extracted from the dataset for better understanding. In the second
phase, machine learning techniques are applied to classify healthy as well as PD patients,
which are dependent on acoustic features to predict the outputs in the form of visual
representation of graphs and percentage of accuracy score tables. Finally, in the third phase,
there is a difference between the entire machine learning classifier models to predict the
best accuracy score. The complete technical process of the proposed work is represented in
Figure 1. The proposed methodology is shown to be better than the other methodologies
with respect to computational cost since few voice features were used instead of heavy
feature extraction processes such as MRI, motion sensors, or handwriting assessments.
Additionally, the performances of different popular classifiers were evaluated, and the best
classifier was found to be ANN for PD diagnosis problems.
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Feature Selection

Due to many available features, feature selection is a frequent approach used to mini-
mize the dimension of data in machine learning based on voice analysis. As demonstrated
in Figure 2, all feature selection algorithms have the same aim of reducing redundancy
and increasing relevance, which improves the accuracy of the disease’s diagnosis. Prior
to supplying the data to the classifier, a variety of feature selection strategies were used.
The filter-based strategies take into account the importance of the characteristics. As a
result, they are stable and scalable and have a low level of complexity [47,48]. The major
drawback of this method is that, especially when the data are flowing in a stream, it may
overlook certain useful aspects [49]. Both univariate and multivariate techniques based on
filters are possible [50]. According to statistically based criteria such as information gain
(IG) [51–53], the univariate approaches analyze attributes. Multivariate approaches calcu-
late feature dependence before ranking the feature. In addition, a widely utilized statistical
technique for data analysis is principle component analysis (PCA). By choosing a collection
of features that accurately reflects the entire data set, PCA can minimize the size of the
data sets. The initial variables’ principal components are the components with the largest
variance value since PCA is a conversion technique. Following that, the other principal
components are arranged in descending order of variance values [54]. Additionally, the
wrapper-based algorithms assess the quality of the chosen features based on the learning
classifier’s performance.

Electronics 2022, 11, 3782 8 of 21 
 

 

Multivariate approaches calculate feature dependence before ranking the feature. In 
addition, a widely utilized statistical technique for data analysis is principle component 
analysis (PCA). By choosing a collection of features that accurately reflects the entire data 
set, PCA can minimize the size of the data sets. The initial variables’ principal components 
are the components with the largest variance value since PCA is a conversion technique. 
Following that, the other principal components are arranged in descending order of 
variance values [54]. Additionally, the wrapper-based algorithms assess the quality of the 
chosen features based on the learning classifier’s performance. 

Dataset

Selection

Target Dataset Processed Data

Feature
Selection

Feature
Extraction

Transformed
Data

Patterns

Pre-processing and cleaning

Data Mining

Interpretation and Evaluation
 

Figure 2. Feature Selection and Feature Extraction from Dataset. 

In the pre-processing section, the whole procedure for filter techniques takes place 
independent of the model. The models are skipped by the filter. Filter methods primarily 
consider the data’s distribution and correlation and internal relationships. As a result, 
filter techniques have the advantage of being simple and quick to compute. Because of 
their simplicity and quick computing speed, filter approaches are commonly used in the 
diagnosis of this disease. Some popular filtering methods are listed below. The minimum 
redundancy and maximum relevancy (mRMR) method selects characteristics that are far 
apart but have a strong “correlation” with the classification variable. 

The wrapper method decides whether to have or reject a feature depending on a 
classifier’s working change [55]. The wrapper method takes certain classifiers into account 
and provides a well-tailored subset. As a result, wrapper methods have a lower chance of 
finding the local maximum. Due to its huge gain in performance, the wrapper approach 
is popular among ML diagnostics. However, it has drawbacks such as being prone to 
overfitting and being computationally costly. Wrapper-based feature selection techniques 
use a classifier to build ML models with different predictor variables and select the 
variable subset that leads to the best model. 

In contrast, filter-based methods are statistical techniques independent of a learning 
algorithm used to compute the correlation between the predictor and independent 
variables. The predictor variables are scored according to their relevance to the target 
variable. The variables with higher scores are then used to build the ML model. Therefore, 
this research aims to use a filter-based feature selection method, to identify the most 
relevant features for improved PD detection. 

  

Figure 2. Feature Selection and Feature Extraction from Dataset.

In the pre-processing section, the whole procedure for filter techniques takes place
independent of the model. The models are skipped by the filter. Filter methods primarily
consider the data’s distribution and correlation and internal relationships. As a result,
filter techniques have the advantage of being simple and quick to compute. Because of
their simplicity and quick computing speed, filter approaches are commonly used in the
diagnosis of this disease. Some popular filtering methods are listed below. The minimum
redundancy and maximum relevancy (mRMR) method selects characteristics that are far
apart but have a strong “correlation” with the classification variable.

The wrapper method decides whether to have or reject a feature depending on a
classifier’s working change [55]. The wrapper method takes certain classifiers into account
and provides a well-tailored subset. As a result, wrapper methods have a lower chance of
finding the local maximum. Due to its huge gain in performance, the wrapper approach
is popular among ML diagnostics. However, it has drawbacks such as being prone to
overfitting and being computationally costly. Wrapper-based feature selection techniques
use a classifier to build ML models with different predictor variables and select the variable
subset that leads to the best model.
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In contrast, filter-based methods are statistical techniques independent of a learning
algorithm used to compute the correlation between the predictor and independent variables.
The predictor variables are scored according to their relevance to the target variable. The
variables with higher scores are then used to build the ML model. Therefore, this research
aims to use a filter-based feature selection method, to identify the most relevant features
for improved PD detection.

4. Materials and Methods
4.1. Dataset

The dataset of recorded speech signals was obtained from Max Little of the University
of Oxford [56,57]. Table 2 contains the details of the dataset. This dataset has an assortment
of acoustic speech measures from 195 persons, where 147 persons have Parkinson’s disease.
All the attributes in the dataset characterize an individual voice measure, and each tuple
represents a total number of voice recordings made by these people. The objective of the
dataset is to differentiate fit persons compared to the unhealthy using the “status” column,
which is set to negative for fit persons and positive for those having the disease.

Table 2. Detail of Parkinson’s Dataset.

Dataset Characteristic Multivariate

No. of Instances 197

Attributes Characteristic Real

No. of Attributes 23

Missing Values N/A

Made by Max Little of the University of Oxford

Associated Tasks Classification

Types of Classification Binary {0 for healthy and 1 for PD patient}

4.2. Parkinson’s Disease Diagnosis Based on Voice Analysis and Machine Learning

Some studies have concentrated on the acoustic level or the fluctuations in fundamen-
tal frequency (F0) caused by vocal activities. The effects of power spectral analysis of F0
phonation in persons with sensorineural audibility loss and the disease have been examined
in [58–60]. F0’s rhythm was unique in the incidence and amplitude of the diseases. Further,
the study demonstrated that the F0 analysis can be a useful tool for neurological diseases
under investigation. The autocorrelation function approach was used to find the basic
frequencies of speech transmissions. According to the concept, Parkinsonian dysprosody is
frequently described as a simple neuro-motor disorder.

The understanding and generation of pitch characteristics in a group of patients were
examined to confirm the idea. Conventional medications, such as LDOPA, define that in the
early stages of PD, LDOPA is a very effective treatment of subjective disease [61]. In [62],
the authors use deep learning to categorize the patient’s speech data as “severe” and “not
severe”. The evaluation measures employed in this study were the unified Parkinson’s
disease ranking scale (UPDRS). The motor UPDRS examines the patient’s motor ability on
a 0–108 scale, while the entire UPDRS provides a range of scores from 0 to 1766.

4.3. Classification of Parkinson’s Disease with ML Classifier

In this technique, we’ll use an ML classifier to classify the disease. First, we select a
target variable of patient health status and measure the number of patients in this report.
We visualize the data graphically after assessing the health status of a patient. Two types
of datasets were developed: 80% of the dataset was used for training and 20% for the
testing dataset. In the following Figure 3, the score of 0 represents the healthy persons
in the sample, whose count is 48, and 1 represents the patients with Parkinson’s disease,
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whose count is 147. The count of Parkinson’s disease patients in the dataset: 147 out of 195
(75.38%). The count of healthy persons in the dataset: 48 out of 195 (24.62%).
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4.4. Building of Machine Learning Techniques with Classifier Evaluation Metrics

By using different types of classifiers, it becomes easy to detect the disease. Classifi-
cation sensitivity, Matthews’s correlation coefficient (MCC), accuracy, specificity, F-score
(F-measure), and other measurement parameters are used to distinguish it. Each of these
measurement criteria includes a formula for calculating it and determining which classifier
is the most qualitatively appropriate for the analysis. It is requisite to focus on the confu-
sion matrix before developing these criteria [63]. The confusion matrix of the multi-class
classifier is shown in Figure 4.
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F1-Score: It represents the accuracy of a model on a given dataset which is also known
as F-Score as shown in Equation (1):

F − Score = 2 ∗ precision ∗ sensitivity
precision + sensitivity

(1)

MCC: It is utilized for model evaluation to evaluate the quality of the binary and multi-
class classifications as shown in Equation (2). It is based on true-negative, true-positive,
and false-negative, false-positive. It lies between −1 to 1 which is defined as follows:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2)

(−1): Contradiction between prediction and observation
(0): No better than random prediction
(1): Perfect classifier (accurate prediction).

5. Experiments and Results

The proposed work is implemented in Python 3.7: JupyterLab. Here we detail the
experimental setup and the results of the four machine learning classification methods.

5.1. SVM-Classifier

SVM is one of the most prevalent classifier models because it provides accurate as
well as highly robust results. The fundamental goal of SVM is to classify the training data
by separating the classes while executing a multiple-class learning activity. It allows for the
best classification performance on training data and accurately classifies patterns from the
data [64]. The training procedure uses a sequential minimization strategy, and classification
accuracy is shown to be higher in SVM due to its greater generalization ability [65]. The
linear SVM is calculated by using the following Equation (3).

y = f (x) = wTx − b (3)

where x represents the data, y represents the class label, w represents the weight of vector
orthogonal to the decision hyper-plane, b represents the offset of the hyper-plane and T
shows the transpose operator [66].

In this study, we use the sklearn library in the SVM-classifier module for the classifica-
tion of the given dataset. Table 3 represents the results that are generated by using the SVM
classifier (Figure 5). Figure 6 represents the confusion matrix with the true positive, true
negative, false positive, and false negative value of a PD person by using the SVM classifier.

Table 3. SVM Classifier.

Name Results

Accuracy Score of test data 87.17%

Accuracy Score of training data 88.46%

Execution Time 0.03111 s

F1-score 66.19%

MCC 56.59%
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5.2. Naive Bayes Classifier

Another main essential category method of ML is the naive Bayes classifier technique.
It provides effective classification and learning and the majority of results are acquired
through the naïve Bayes method [67]. Naïve Bayes, based on Bayes’ theorem, determines
the likelihood of an event occurring depending on the event’s circumstances. For instance,
variations in the voice are common in people with the disease; hence, these symptoms are
linked to the prediction for diagnosis of this disease. The naive variation of the theorem ex-
tends and simplifies the original Bayes theorem, which gives a mechanism for determining
the probability of a target occurrence. To estimate the likelihood of the medical condition,
the data comprise numerous speech signal variants. The sklearn Gaussian naive Bayes
algorithm is used to provide the classifier module for the execution of the naïve Bayes
categorization. The result of the classifier is shown in Table 4 and graphical representation
is illustrated in Figure 7.
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Table 4. Naïve Bayes Classifier Results.

Name Results

Accuracy Rate of test data 74.11%

Accuracy Rate of training data 76.23%

Execution Time 0.0323 s

F1-score 86.74%

MCC 66.56%
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5.3. Artificial Neural Network

ANN is a subfield of deep neural networks that predict how the human brain works.
In general, there is a significant distinction between the human brain and ANN. The
brain has ‘n’ number of parallel neurons, whereas the machine only has a finite sum of
processors. Additionally, neurons are meeker and more relaxed than computer processors.
Another major disparity between computer systems and the brain is the ability to process
information on a larger scale. Neurons are made up of synapses or networks that operate
together [64,68]. In this article, the main aim is to classify the functionality of ANN
techniques in the early detection of this disease which is built on the subsequent phases:

i. Identifying the responsibility and function of ANN in the detection of this disease.
ii. Making observations on labels and features of datasets.

iii. Grouping the types of the studied disease centered on their symptoms.
iv. Examining the accurate outcomes.

These outcomes can be further used in the medical sector as direction for developers
considering ANN deployment to enhance the civic health potential as a reaction to the
studied disease [69].

In the experiment of an artificial neural network, the dataset was split into two parts
i.e., the training dataset (80%) and the test dataset (20%). The classification results of the
artificial neural network were found to be very high in the form of the average accuracy
score which was the highest among all the classification methods, i.e., 96.7% shown in
Table 5 and graphical representation is shown in Figure 8.
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Table 5. Artificial Neural Network Classifier Outcome.

Title Results

Accuracy Rate of test data 96.7%
Accuracy Rate of training data 97.4%

Execution Time 0.025 s
F1-Score 87.01%

MCC 70.11%
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5.4. K-Nearest Neighbor

The KNN technique is costly while presenting with a huge training dataset since it
has been used most of the time in pattern recognition. KNN is the base concept of learning
by analogy utilized to categorize the nearest neighbors. It is accomplished by comparing
closely similar training tuples to the provided test tuple. As a result, “n” characteristics are
utilized to recognize training tuples in which each tuple corresponds to a distinct point in
the n-dimensional space. The KNN classifier’s responsibility in the event of an unlabeled
tuple is to explore the pattern space for all k training tuples that are close together [64].
This study aims to identify the accuracy rate of detecting the subject disease. To find out
the difference between affected patients and healthy persons, the KNN algorithm is used.
In terms of accuracy, experimental data reveal that the ANN classifier outperformed the
KNN classifier on average. The results of the KNN classifier are shown in Table 6 with the
accuracy rate of the training and test datasets, F1-score, and MCC illustrated in Figure 9.

Table 6. KNN Classifier Results.

Name Results

Accuracy Rate of test data 87.17%
Accuracy Rate of training data 88.46%

Execution Time 0.03111 s
F1-score 71%

MCC 65.02%
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5.5. Summary of Evaluation Results

The performance of all the classifier models used in the experiment for the disease’s
prediction is illustrated in Table 7. The artificial neural network classifier scores the highest
accuracy rate followed by SVM, naïve Bayes, and KNN. Figure 10 shows the graphical
representation of the results obtained by these four ML classifiers based on various param-
eters. Table 7 illustrates that SVM attained the average accuracy for the training and test
datasets, which are 88.46% and 87.17% respectively, F1-score (66.19%), and MCC (56.59%),
sensitivity and specificity 62.5% and 93.54%, respectively. In addition, the naïve Bayes
achieved the average accuracy for the training and test datasets, F1-score, MCC, sensitivity,
and specificity, which are 76.23%, 74.11%, 86.74%, 66.56%, 84%, and 79.76% respectively.

Table 7. An overview of evaluation results.

Performance Measure
Accuracy F1-Score MCC Sensitivity Specificity

Training
Dataset

Test
Dataset

SVM 88.46% 87.17% 66.19% 56.59% 62.5% 93.54%
Naïve
Bayes 76.23% 74.11% 86.74% 66.56% 84% 79.76%

KNN 88.46% 87.17% 71% 65.02% 60.0% 93.54%
ANN 97.4% 96.7% 87.01% 70.11% 92.42% 91.25%

It has been observed that the results obtained by the SVM and KNN have the same
values for all the parameters except MCC (65.02 %) and sensitivity (60%). Finally, the
best accuracy was obtained by the ANN where the results of parameters such as accuracy
of the training and test datasets, F1-score, MCC, sensitivity, and specificity are 97.4%,
96.7%, 64.55%, 87.01%, 70.11%, 92.42%, and 91.25%, respectively. Overall, the results of our
experiments show that ANN outperforms SVM, naive Bayes, and KNN.
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6. Comparative Study and Discussion

This section examines the efficient comparative result analysis of the proposed tech-
nique with other conventional machine learning techniques. The comparison of the pro-
posed study with previously published research is shown in Table 8.

Table 8. Performance Comparison with previous studies.

Reference Basis Machine Learning Classifier Accuracy Sensitivity Specificity

Sakar et al. [70] Speech SVM and KNN 68.45% 60 50
Vadovsk’y and Parali [71] Speech C4.5 + C5.0 + randomforest + CART 66.5 NA NA

Ouhmida, A. [72] Speech SVM, K-NN, Decision Tree 98.26% (AUC) NA NA
Mabrouk et al., [73] Speech Random forest, SVM, MLP, KNN 78.4% (SVM), 82.2% (KNN) NA NA

Benba et al. [74] Speech HFCC-SVM 87.5% 90% 85%

Proposed Work Speech SVM, naïve Bayes, KNN and ANN 87.17%, 74.11%, 87.17%,
and 96.7%

62.5%, 84%, 60%,
and 92.42%

93.54%, 79.76%,
93.54%, and 91.25%

As per the comparative analysis, the proposed model (using four machine learning
algorithms) shows better results obtained as compared to all other experimental machine
learning models and the existing state of the art. In the proposed study, the best result
was achieved by ANN with 96.7% accuracy, which is higher than the other experimental
algorithms. The authors of [49] collected 20 PD and 20 HC speech datasets using high-quality
recording equipment and used KNN and SVM to analyze the datasets in order to detect
PD. KNN and SVM classifiers performed with accuracy rates of 59.52% (LOSO) and 68.45%
(LOSO), respectively. In addition to [50], the authors used various algorithms such as C4.5,
C5.0, random forest, and CART based on decision trees. The authors experimented on
40 individuals’ records, where 50% were affected with the subjective disease and 50% were
HC. For this study, the highest average model accuracy of 66.5% was attained. ANN was used
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by [51] to identify PD. The dataset was obtained from the University of California, Irvine’s
machine learning library. A total of 45 attributes were chosen as input values and one outcome
for the categorization using the MATLAB tool. With an accuracy of 94.93%, their suggested
model was able to differentiate healthy individuals from PD subjects. In [52], the authors
used random forest, SVM, MLP, and KNN classifiers for the detection of PD patients from HC.
The result obtained from this study was 78.4% and 82.2% for the SVM and KNN classifiers,
respectively. In a study by [53], the authors examined the comparison between the patients
with PD (PWP) and healthy controls (HC) based on a variety of speech samples. In their study,
human factor cepstral coefficients (HFCC) were applied. The extracted HFCC was used to
generate the average voice print for each voice recording. For the classification, SVM was
used with a variety of kernels, including RBF, polynomial, linear, and MLP. The SVM’s linear
kernel allowed for the highest accuracy of 87.5%.

In addition to the comparisons mentioned above, the performance of the proposed
methodology is compared with related ML methods for PD analysis in various scenarios
and with various types of evaluated PD datasets. The proposed technique outperformed
other similar contributions of ML methods in terms of performance for diagnosing PD, as
seen in the above table, and is thus superior to them.

7. Conclusions

Automated ML techniques may classify PD from HC and predict the outcome using
non-invasive speech biomarkers as features. With noisy and high-dimensional data, our
study compares the performance of multiple machine learning classifiers for disease detec-
tion. Accuracy at the clinical level is feasible with careful feature selection. In this paper, we
compared ML classifiers: SVM with an accuracy of 87.17%, naïve Bayes’ classifier with an
accuracy of 74.11%, ANN with an accuracy of 96.7%, and KNN with an accuracy of 87.17%.
We used these techniques to distinguish between affected patients and healthy people.
The disease is diagnosed using human speech signals. The acquired results demonstrate
how feature selection techniques work well with ML classifiers, especially when working
with voice data where it is possible to extract a large number of phonetic characteristics.
The proposed early diagnosis approach makes it possible to detect PD with high accuracy
in its early stages and the subjective disease’s severe symptoms can be prevented. Many
categorization algorithms are being used in the medical imaging area to obtain the best
level of accuracy. This research may be used in different machine learning methods and
datasets to improve classifier performance and reach the maximum accuracy score. In order
to improve the accuracy of the models created, future efforts will make use of the already-
existing recordings and add to the number of existing attributes. In order to compare the
collected data, various different records processing software that are available online may
also be used.
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