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Abstract: A multigranulation rough set (MGRS) model is an expansion of the Pawlak rough set, in
which the uncertain concept is characterized by optimistic and pessimistic upper/lower approximate
boundaries, respectively. However, there is a lack of approximate descriptions of uncertain concepts
by existing information granules in MGRS. The approximation sets of rough sets presented by
Zhang provide a way to approximately describe knowledge by using existing information granules.
Based on the approximation set theory, this paper proposes the cost-sensitive multigranulation
approximation of rough sets, i.e., optimistic approximation and pessimistic approximation. Their
related properties were further analyzed. Furthermore, a cost-sensitive selection algorithm to optimize
the multigranulation approximation was performed. The experimental results show that when
multigranulation approximation sets and upper/lower approximation sets are applied to decision-
making environments, multigranulation approximation produces the least misclassification costs on
each dataset. In particular, misclassification costs are reduced by more than 50% at each granularity
on some datasets.

Keywords: multigranulation rough sets; optimistic approximation; pessimistic approximation; cost-
sensitive; decision-making applications

1. Introduction

As a human-inspired paradigm, granular computing (GrC) solves complex problems
by utilizing multiple granular layers [1–4]. Zadeh [1] noted that information in granules
refer to pieces, classes, and groups, into which complex information is divided in accordance
with the characteristics and processes of understanding and decision-making. From the
different views, GrC models mainly cover four types: fuzzy sets [5], rough sets [6], quotient
spaces [7], and cloud models [8]. As representative models of GrC, rough sets describe
uncertain concepts by upper and lower approximation boundaries, which have been
applied to data mining [9,10], medical systems [11], attribute reductions [12,13], decision
systems [14,15], and machine learning [16].

Regarding similarity, Zhang [17–20] presented the approximation set of rough sets,
vague sets, rough fuzzy sets, rough vague sets, etc. These approximation models were
developed by utilizing the existing equivalence classes to describe uncertain concepts.
The approximation model has a higher similarity with the target concept than the up-
per/lower approximations. Furthermore, the approximation model has been applied in
attribute reduction [21], image segmentation [22], the optimization algorithm [23], etc.
Based on the approximation set theory, Yang [24,25] developed the approximation model
of rough sets based on misclassification costs. In the process of cost-sensitive learning,
the smaller misclassification costs will help to improve the decision-making qualities in
real applications. Recently, from the perspective of three-way decisions [26–29], Yao [30]
constructed a symbol–meaning–value (SMV) model for data analysis. In the three-way
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decision model, the equivalence classes in a boundary region will produce misclassification
costs when they are used as approximation sets. Hence, the approximation model that
is constructed from the perspective of similarity is no longer applicable to cost-sensitive
scenarios. To minimize the misclassification costs of constructing the approximation set,
we proposed the multigranulation approximation, i.e., the optimistic approximation model
and pessimistic approximation model. Moreover, to search the optimal approximation
layer for multigranulation rough sets [31] under the constraints, the algorithm of the cost-
sensitive multigranulation approximation selection is further proposed to be applied to
decision-making environments.

The following sections are arranged as follows: Section 2 presents the related works.
Section 3 introduces the relevant definitions of the multigranulation rough set and ap-
proximation set. Section 4 introduces an approximate representation of the rough sets.
Section 5 presents the cost-sensitive multigranulation approximations of rough sets and
further introduces the optimal multigranulation approximation algorithm. To verify the
availability of the proposed model, the related experiments and discussion are presented in
Section 6. Ultimately, in Section 7, the conclusions are presented.

2. Literature Review

Rough sets are typically constructed based on a single binary relation. However,
in many cases, they may be described in multiple granularity structures. In order to extend
single granularity to multi-granularity in rough approximations, Qian [31] proposed the
multigranulation rough set model (MGRS), where the upper/lower approximations were
defined by multi-equivalence relations (multiple granulations) in the universe [32,33].
For the lower approximation of optimistic MGRS, at least one granular space was obtained,
such that objects completely belonged to the target concept. For the lower approximation
of pessimistic MGRS, objects completely belong to target concepts in each granular space.
MGRS has two advantages: (1) In the process of decision-making applications, the decision
of each decision maker may be independent of the same project (or an element) in the
universe [34]. In this situation, the intersection operations between any two granularity
structures will be redundant for decision-making [35]. (2) Extract decision rules from
distributive information systems and groups of intelligent agents by using rough set
approaches [34,36].

There are many works [33–35,37–42] on multigranulation rough sets. To extend
the MGRS to the neighborhood information system, Hu [43,44] presented matrix-based
incremental approaches to update knowledge about neighborhood information systems by
changing the granular structures. From the perspective of uncertainty measure, Sun [39]
proposed a feature selection based on fuzzy neighborhood multigranulation rough sets.
Xu [38] proposed a dynamic approximation update mechanism of a multigranulation
neighborhood rough set from a local viewpoint. Liu [35] introduced a parameter-free multi-
granularity attribute reduction scheme, which is more effective for microarray data than
other well-established attribute reductions. Based on the three-way decision theory, She [40]
presented a five-valued logic approach for the multigranulation rough set model. From the
above, however, the method of approximately describing the target concept with existing
information granules is not given, which limits the application of the multigranulation
rough set theory. Li [41] presented two kinds of local multigranulation rough set models
in the ordered decision system by extending the single granulation environment to a
multigranulation case. Zhang [42] constructed hesitant fuzzy multigranulation rough sets
to handle the hesitant fuzzy information and group decision-making for person–job fit.

3. Preliminaries

In this section, some necessary definitions related to the multigranulation rough
set and approximation set are reviewed to facilitate the framework of this paper. Let
S = (U, C ∪ D, V, f ) be a decision information table, where U is a non-empty finite set of
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objects, C is a non-empty finite set of condition attributes, D is a set of decision attributes,
V is the set of all attribute values, and f : U × C is an information function.

Definition 1 ((Rough Sets) [6]). Let S = (U, C∪D, V, f ) be a decision information table, A ⊆ C
and X ⊆ U, the lower and upper approximation sets of X are given as follows:

A(X) = { x ∈ U|[x]A ⊆ X},
A(X) = { x ∈ U|[x]A ∩ X 6= φ}.

where [x]A denotes the equivalence class induced by U/A, namely, U/A = {[x]R} = {[x]1, [x]2,
· · ·, [x]l}.

Based on the lower and upper approximations, the universe U can be divided into
three disjoint regions, which are expressed as follows:

POSA(X) = A(X),

BNDA(X) = A(X)− A(X),

NEGA(X) = U − A(X).

Definition 2 ((Optimistic multigranulation rough sets) [36]). Let S = (U, C ∪ D, V, f )
be a decision information table, A1, A2, . . ., Am ⊆ C and X ⊆ U, then the lower and upper
approximation sets of X related to A1, A2, . . ., Am are given as follows:

m

∑
i=1

AO
i (X) = { x|[x]A1 ⊆ X ∨ [x]A2 ⊆ X ∨ . . . ∨ [x]Am ⊆ X, x ∈ U}, (1)

m

∑
i=1

AO
i (X) =∼

m

∑
i=1

AO
i (∼ X). (2)

Then, (
m
∑

i=1
AO

i (X),
m
∑

i=1
AO

i (X)) is called optimistic multigranulation rough sets. The lower

and upper approximation sets of X in optimistic multigranulation rough sets are presented by
multiple independent approximation spaces. The boundary regions are defined as follows:

BNDO
m
∑

i=1
Ai

(X) =
m

∑
i=1

AO
i (X)−

m

∑
i=1

AO
i (X). (3)

Definition 3 ((Pessimistic multigranulation rough sets) [36]). Let S = (U, C ∪ D, V, f ) be a
decision information table, A1, A2, . . ., Am ⊆ C, and X ⊆ U. The lower and upper approximation
sets of X related to A1, A2, . . ., Am are given as follows:

m

∑
i=1

AP
i (X) = { x|[x]A1 ⊆ X ∧ [x]A2 ⊆ X ∧ . . . ∧ [x]Am ⊆ X, x ∈ U}, (4)

m

∑
i=1

AP
i (X) =∼

m

∑
i=1

AP
i (∼ X). (5)

Then, (
m
∑

i=1
AP

i (X),
m
∑

i=1
AP

i (X)) is called pessimistic multigranulation rough sets. The lower

and upper approximation sets of X in pessimistic multigranulation rough sets are presented by
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multiple independent approximation spaces. However, the strategy is different from optimistic
multigranulation rough sets. The boundary region is defined as follows:

BNDP
m
∑

i=1
Ai

(X) =
m

∑
i=1

AP
i (X)−

m

∑
i=1

AP
i (X). (6)

Definition 4 ((Approximation of rough sets) [17]). Let S = (U, C ∪ D, V, f ) be a decision
information table, A ⊆ C and X ⊆ U. U/A = {[x]1, [x]2, · · ·, [x]l} is a granularity layer on U,
then the α-approximation of X on U/A is defined as follows:

Aα(X) = ∪{[x]i|µ([x]i) ≥ α, [x]i ⊆ U }. (7)

where 0 ≤ α ≤ 1, µ([x]i) =
|[x]i∩X|
|[x]i |

denotes the membership degree of the equivalence class [x]i
belongs to X.

Example 1. Let Table 1 be a decision information table, A1, A2, A3 ⊆ C and X ⊆ U. For the
element x4, the equivalence classes [x4]i(i = 1, 2, 3) belonging to X in the multigranulation approx-
imation space are as follows:

[x4]1 = {x1, x2, x3, x4};
[x4]2 = {x3, x4, x7, x8};
[x4]3 = {x2, x4, x6, x8}.

Accordingly, the membership degrees are computed:

µ([x4]1) =
0 + 0 + 0 + 1

4
= 0.25;

µ([x4]2) =
0 + 1 + 1 + 1

4
= 0.75;

µ([x4]3) =
0 + 1 + 1 + 1

4
= 0.75.

Table 1. A decision information table.

A1 A2 A3 X

x1 0 0 0 0
x2 0 0 1 0
x3 0 1 0 0
x4 0 1 1 1
x5 1 0 0 0
x6 1 0 1 1
x7 1 1 0 1
x8 1 1 1 1

If α is set to 0.5, considering the optimistic approximation, element x4 will be classified into
the optimistic lower approximation sets of X due to one of its membership degrees being greater than
0.5. However, if considering the pessimistic approximation, element x4 will only be classified into
the pessimistic upper approximation sets of X.

Based on the given conditions, we have:

X =
0.25 + 0.25 + 0.25

x1
+

0.25 + 0.25 + 0.75
x2

+
0.25 + 0.75 + 0.05

x3
+

0.25 + 0.75 + 0.75
x4

+
0.75 + 0.25 + 0.25

x5
+

0.75 + 0.25 + 0.75
x6

+
0.75 + 0.75 + 0.25

x7
+

0.75 + 0.75 + 0.75
x8

.
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Then, the results of the optimistic approximations are shown as follows:

m

∑
i=1

AO
i (X) = {x2, x3, x4, x5, x6, x7, x8},

m

∑
i=1

AO
i (X) = {x1, x2, x3, x4, x5, x6, x7, x8},

BNDO
m
∑

i=1
Ai

(X) = {x1}.

Moreover, the results of the pessimistic approximations, in this case, are changed as follows:

m

∑
i=1

AP
i (X) = {x8},

m

∑
i=1

AP
i (X) = {x1, x2, x3, x4, x5, x6, x7, x8},

BNDP
m
∑

i=1
Ai

(X) = {x1, x2, x3, x4, x5, x6, x7}.

4. Cost-Sensitive Approximation Methods of the Rough Sets

Let S = (U, C ∪ D, V, f ) be a decision information table, A ⊆ C and X ⊆ U. U/A =
{[x]1, [x]2, · · ·, [x]l} is a granularity layer on U. λ12 represents the cost generated by taking
an element belonging to X as the approximation, λ21 represents the cost generated by taking
an element that does not belong to X as the approximation. Furthermore, misclassification
costs incurred by the equivalence classes in characterizing X on U/A are given in the
following:

λY = λ12(1− µ([x]i))|[x]i|. (8)

Misclassification costs incurred by the equivalence classes when not characterizing X
on U/A are given in the following:

λN = λ21µ([x]i)|[x]i|. (9)

Herein, µ([x]i) (i = 1, 2, . . ., l) denotes the membership degree of [x]i belonging to X.
Based on the Bayesian decision procedure, the minimum cost decision rules are expressed
as follows:

(P) If λY ≤ λN , [x]i ⊆ A(X);
(N) If λY > λN , [x]i 6⊂ A(X).

It is clear that the above rules are only relevant to the loss function µ̄([x]i). From
Formulas (8) and (9), the decision rules are re-expressed in the following:

(P1) If µ([x]i) ≥ λ12
λ12+λ21

, [x]i ⊆ A(X);

(N1) If µ([x]i) <
λ12

λ12+λ21
, [x]i 6⊂ A(X).

Supposing γ = λ12
λ12+λ21

, then we have the following decision rules:

(P2) If µ([x]i) ≥ γ, [x]i ⊆ A(X);
(N2) If µ([x]i) < γ, [x]i 6⊂ A(X).

Definition 5. Let S = (U, C ∪ D, V, f ) be a decision information table, A ⊆ C and X ⊆ U.
U/A = {[x]1, [x]2, · · ·, [x]l} is a granularity layer on U, then the cost-sensitive approximation
model (CSA) of rough sets is defined as follows:

A(X) = ∪
{
[x]i

∣∣∣∣µ([x]i) ≥ λ12

λ12+λ21
, [x]i ⊆ U

}
. (10)
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Suppose 0 ≤ λ12, λ21 ≤ 1, boundary region I and boundary region II are denoted
by BN1(X) = { [x]i| λ12

λ12+λ21
≤ µ([x]i) < 1}and BN2(X) = { [x]i|0 < µ([x]i) < λ12

λ12+λ21
},

respectively, then BN(X) = BN1(X) ∪ BN2(X), and A(X) = BN1(X) ∪ POS(X). Figure 1
shows the CSA of rough sets, where BN1(X) is the dark blue region, which denotes the
region in the boundary region used as the approximation. BN2(X) is the light blue region,
which denotes the region in the boundary region not used as the approximation. Therefore,
the region surrounded by the green broken line in Figure 1 constructs the approximations
of rough sets, and the misclassification costs come from two uncertain regions, defined as
follows:

DC(A(X)) = ∑
[x]i∈BN1(X)

λY + ∑
[x]i∈BN2(X)

λN . (11)

Figure 1. The approximation of rough sets (surrounded by the broken line).

Theorem 1. Let S = (U, A ∪D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C, then
DC(A1(X)) ≥ DC(A2(X)).

Proof of Theorem 1. Let U be a non-empty finite domain, U/A1 = {E1, E2, · · ·, El} and
U/A2 = {F1, F2, · · ·, Fm}. Because A1 ⊆ A2, U/A2 4 U/A1. According to the condition,
for simplicity, supposing only one granule E1 can be subdivided into two finer sub-granules
by ∆A = A2 − A1 (the more complicated cases can be transformed into this case, so
we will not repeat them here). Without loss of generality, let E1 = F1 ∪ F2, E2 = F3,
E3 = F4, . . ., El = Fm (m = l + 1), namely, U/A2 = {F1, F2, E2, E3, . . ., El}. There are two
cases to prove the theorem as follows:

(1) Suppose µ̄(E1) ≥ γ, obviously, E1 ⊆ A1(X).

Case 1. µ̄(F1) ≥ γ and µ̄(F2) ≥ γ. Namely, F1 ⊆ A(X) and F2 ⊆ A(X). Case 1, in
which the granules are subdivided in BN1(X), can be shown in Figure 2a, then

∆DCA1−A2(X) = DC(A1(X))− DC(A2(X))

= λ12(1− µ(E1))|E1| − λ12(1− µ(F1))|F1| − λ12(1− µ(F2))|F2|.
= (|E1| − |F1| − |F2|+ ∑

xi∈F1

µ(xi) + ∑
xi∈F2

µ(xi)− ∑
xi∈E1

µ(xi))λ12.

Because ∑
xi∈E1

µ(xi) = ∑
xi∈F1

µ(xi) + ∑
xi∈F2

µ(xi) and |E1| = |F1|+ |F2|, then ∆DCA1−A2 =

0. Therefore, DC(A1(X)) = DC(A2(X)).
Case 2. µ̄(F1) ≥ γ and µ̄(F2) < γ. Namely, F1 ⊆ A(X) and F2 6⊂ A(X). Case 2, in

which the granules are subdivided in BN1(X), can be shown in Figure 2b, then

∆DCA1−A2 = DC(A1(X))− DC(A2(X))

= λ12(1− µ(E1))|E1| − λ12(1− µ(F1))|F1| − λ21µ(F2)|F2|
= |F2|(λ12 − µ̄(F2)(λ21 + λ12))

Because µ̄(F2) < γ = λ12
λ12+λ21

and |E1| = |F1|+ |F2|, then ∆DCA1−A2(X) ≥ 0. There-
fore, DC(A1(X)) > DC(A2(X)).
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(2) Suppose µ̄(E1) < γ, obviously, E1 6⊂ A1(X).

Case 1. µ̄(F1) ≥ γ and µ̄(F2) < γ. Namely, F1 ⊆ A(X) and F2 6⊂ A(X). Case 1, in
which the granules are subdivided in BN2(X), can be shown in Figure 2c, then

∆DCA1−A2 = DC(A1(X))− DC(A2(X))

= µ̄(E1)|E1|λ21 − µ̄(F2)|F2|λ21 − (1− µ̄(F1))|F1|λ12

= |F1|µ̄(F1)((λ21 + λ12)− λ12).

Because µ̄(F1) ≥ γ = λ12
λ12+λ21

, then ∆DCA1−A2 ≥ 0. Therefore, DC(A1(X)) ≥
DC(A2(X)).

Case 2. µ̄(F1) < γ and µ̄(F2) < γ. Namely, F1 6⊂ R(X) and F2 6⊂ R(X). Case 2, in
which the granules are subdivided in BN2(X), can be shown in Figure 2d, then

∆DCA1−A2 = DC(A1(X))− DC(A2(X))

= µ̄(E1)|E1|λ21 − µ̄(F1)|F1|λ21 − µ̄(F2)|F2|λ21

= ( ∑
xi∈E1

µ(xi)− ∑
xi∈F1

µ(xi)− ∑
xi∈F2

µ(xi))λ21.

(a)

(b)

(c)

(d)

Figure 2. The granules subdivided in BN1(X) and BN2(X) of the cost-sensitive approximation
model of rough sets. And all the red circles in the figure represent the set X. In addition, (a) shows the
case 1 in which the granules are subdivided in BN1(X); (b) shows the case 2 in which the granules
are subdivided in BN1(X); (c) shows the case 1 in which the granules are subdivided in BN2(X);
(d) shows the case 2 in which the granules are subdivided in BN2(X).
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Because ∑
xi∈E1

µ(xi) = ∑
xi∈F1

µ(xi) + ∑
xi∈F2

µ(xi), then ∆DCA1−A2 = 0. Therefore, DC(A1

(X)) = DC(A2(X)).

Theorem 1 shows that the misclassification costs in the approximation model will
monotonously decrease with the changing approximation space, in accordance with human
cognitive mechanisms.

5. Cost-Sensitive Multigranulation Approximations and Optimal Granularity
Selection Method

The multigranulation rough set model (MGRS) [43] extends single granularity to
multi-granularity in rough approximations to describe an uncertain concept. MGRS is an
expansion of the classical rough set, and the target concept is characterized by optimistic
and pessimistic upper/lower approximation boundaries in MGRS, respectively. However,
there is a lack of an approximate description of an uncertain concept by utilizing the
equivalence classes in MGRS. In this section, based on the model proposed in Section 3, we
further construct the approximations of MGRS.

5.1. Cost-Sensitive Multigranulation Approximations of Rough Sets

Definition 6. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C and
X ⊆ U. The optimistic membership degree of x ∈ U related to A1, A2, . . ., Am is given as follows:

µO
m
∑

i=1
Ai

(x) = max{µ([x]Ai )|i = 1, 2, . . ., m}. (12)

Definition 7. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C and
X ⊆ U. The approximation model of the optimistic MGRS of X related to A1, A2, . . ., Am is given
as follows:

m

∑
i=1

AO
i (X) = { x|µ([x]A1) ≥ γ ∨ µ([x]A2) ≥ γ ∨ . . . ∨ µ([x]Am) ≥ γ, x ∈ U}. (13)

From the perspective of the optimistic membership degree,
m
∑

i=1
AO

i (X) can be =expressed as

follows:

m

∑
i=1

AO
i (X) = { x|µO

m
∑

i=1
Ai

(x) ≥ γ, x ∈ U}. (14)

The corresponding decision regions are defined as follows:

BN1O
m
∑

i=1
Ai

(X) = { x|1 > µO
m
∑

i=1
Ai

(x) ≥ γ, x ∈ U},

BN2O
m
∑

i=1
Ai

(X) = { x|0 < µO
m
∑

i=1
Ai

(x) < γ, x ∈ U},

POSO
m
∑

i=1
Ai

(X) = { x|µO
m
∑

i=1
Ai

(x) = 1, x ∈ U},

NEGO
m
∑

i=1
Ai

(X) = { x|µO
m
∑

i=1
Ai

(x) = 0, x ∈ U}.

We have

m

∑
i=1

AO
i (X) = BN1O

m
∑

i=1
Ai

(X) ∪ POSO
m
∑

i=1
Ai

(X). (15)
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The misclassification costs of approximations of optimistic MGRS come from two uncertain
regions BN1O

m
∑

i=1
Ai

(X) and BN2O
m
∑

i=1
Ai

(X), which are defined in the following:

DC(
m

∑
i=1

AO
i (X)) = ∑

x∈BN1O
m
∑

i=1
Ai

(X)

λY + ∑
x∈BN2O

m
∑

i=1
Ai

(X)

λN .
(16)

Theorem 2. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C,
X ⊆ U and X1, X2, . . ., Xn ⊆ U. The following properties hold:

(1)
m
∑

i=1
AO

i (X) =
⋃m

i=1 Ai(X);

(2)
m
∑

i=1
AO

i (
⋂n

j=1 Xj) =
⋃m

i=1 (
⋂n

j=1 AO
i (Xj));

(3)
m
∑

i=1
AO

i (
⋂n

j=1 Xj) ⊆
⋂n

j=1 (
m
∑

i=1
AO

i (Xj));

(4)
m
∑

i=1
AO

i (
⋃n

j=1 Xj) ⊇
⋃n

j=1 (
m
∑

i=1
AO

i (Xj));

(5)
m
∑

i=1
AO

i (X) ⊆
m
∑

i=1
AO

i (X) ⊆
m
∑

i=1
AO

i (X).

Proof of Theorem 2.

(1) From Formula (14),
m
∑

i=1
AO

i (X) =
⋃m

i=1 Ai(X) obviously holds.

(2)
m
∑

i=1
AO

i (
⋂n

j=1 Xj) =
⋃m

i=1 AO
i (
⋂n

j=1 Xj) =
⋃m

i=1 (
⋂n

j=1 AO
i (Xj)).

(3)
m
∑

i=1
AO

i (
⋂n

j=1 Xj) =
⋃m

i=1 (
⋂n

j=1 Ai(Xj))

=
⋂n

j=1 (
⋃m

i=1 Ai(Xj) ∩ · · ·

=
⋂n

j=1 (
m
∑

i=1
AO

i (Xj)) ∩ · · ·

=
⋂n

j=1 (
m
∑

i=1
AO

i (Xj)).

(4) From Xj ⊆
⋃n

j=1 Xj,wehave
m
∑

i=1
AO

i (Xj) ⊆
m
∑

i=1
AO

i (
⋃n

j=1 Xj). Therefore,
m
∑

i=1
AO

i (
⋃n

j=1 Xj) ⊇⋃n
j=1 (

m
∑

i=1
AO

i (Xj)).

(5) It is easy to prove by Formulas (1), (2), and (14).

Definition 8. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C and
X ⊆ U. The pessimistic membership degree of x ∈ U related to A1, A2, . . ., Am is given as follows:

µP
m
∑

i=1
Ai

(x) = min{µ([x]Ai )|i = 1, 2, . . ., m}. (17)

Definition 9. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C and
X ⊆ U. The approximation model of pessimistic MGRS of X related to A1, A2, . . ., Am is given
as follows:

m

∑
i=1

AP
i (X) = { x|µ([x]A1) ≥ γ ∧ µ([x]A2) ≥ γ ∧ . . . ∧ µ([x]Am) ≥ γ, x ∈ U}. (18)
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From the perspective of the pessimistic membership degree,
m
∑

i=1
AP

i (X) can be expressed

as follows:
m

∑
i=1

AP
i (X) = { x|µP

m
∑

i=1
Ai

(x) ≥ γ, x ∈ U}. (19)

The corresponding decision regions are expressed in the following:

BN1P
m
∑

i=1
Ai

(X) = { x|1 > µP
m
∑

i=1
Ai

(x) ≥ γ, x ∈ U},

BN2P
m
∑

i=1
Ai

(X) = { x|0 < µP
m
∑

i=1
Ai

(x) < γ, x ∈ U},

POSP
m
∑

i=1
Ai

(X) = { x|µP
m
∑

i=1
Ai

(x) = 1, x ∈ U},

NEGP
m
∑

i=1
Ai

(X) = { x|µP
m
∑

i=1
Ai

(x) = 0, x ∈ U}.

We have

m

∑
i=1

AP
i (X) = BN1P

m
∑

i=1
Ai

(X) ∪ POSP
m
∑

i=1
Ai

(X) . (20)

The misclassification costs of approximations of optimistic MGRS come from two uncertain
regions BN1P

m
∑

i=1
Ai

(X) and BN2P
m
∑

i=1
Ai

(X) , which are defined in the following:

DC(
m

∑
i=1

AP
i (X)) = ∑

x∈BN1P
m
∑

i=1
Ai

(X)

λY + ∑
x∈BN1P

m
∑

i=1
Ai

(X)

λN .
(21)

Theorem 3. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C,
X ⊆ U and X1, X2, . . ., Xn ⊆ U. The following properties hold:

(1)
m
∑

i=1
AP

i (X) =
⋂m

i=1 (Ai(X));

(2)
m
∑

i=1
AP

i (
⋂n

j=1 Xj) =
⋂n

j=1 (
m
∑

i=1
AP

i (Xj));

(3)
m
∑

i=1
AP

i (
⋃n

j=1 Xj) ⊇
⋃n

j=1 (
m
∑

i=1
AP

i (Xj));

(4)
m
∑

i=1
AP

i (X) ⊆
m
∑

i=1
AP

i (X) ⊆
m
∑

i=1
AP

i (X).

Proof of Theorem 3.

(1) ∀x ∈
m
∑

i=1
AP

i (X), according to Definition 9, µ([x]Ai ) ≥ γ holds, i = 1, 2, · · ·, m. Ac-

cording to Definition 5, x ∈ Ai(X), i = 1, 2, · · ·, m and x ∈ ⋂m
i=1 (Ai(X)) holds, i.e.,

m
∑

i=1
AP

i (X) ⊆ ⋂m
i=1 (Ai(X)). ∀x ∈ ⋂m

i=1 (Ai(X)), µ([x]Ai ) ≥ γ, i = 1, 2, · · ·, m. Accord-

ing to Definition 7, x ∈
m
∑

i=1
AP

i (X) holds, i.e.,
⋂m

i=1 (Ai(X)) ⊆
m
∑

i=1
AP

i (X). Therefore,

we have
m
∑

i=1
AP

i (X) =
⋂m

i=1 (Ai(X)).
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(2) From the proof of (1),
m
∑

i=1
AP

i (
⋂n

j=1 Xj) =
⋂m

i=1 Ai(
⋂n

j=1 Xj). According to Defini-

tion 7,
⋂m

i=1 Ai(
⋂n

j=1 Xj) =
⋂m

i=1
⋂n

j=1 Ai(Xj). Because
⋂m

i=1 Ai(Xj) =
m
∑

i=1
AP

i (Xj),

m
∑

i=1
AP

i (
⋂n

j=1 Xj) =
⋂m

i=1 Ai(
⋂n

j=1 Xj) =
⋂n

j=1
⋂m

i=1 Ai(Xj) =
⋂n

j=1(
m
∑

i=1
AP

i (Xj)).

(3) ∀x ∈ ⋃n
j=1 (

m
∑

i=1
AP

i (Xj)), ∃Xk(k ∈ {1, 2, · · ·, n}), x ∈
m
∑

i=1
AP

i (Xj). According to Defini-

tion 7, ∀Xj, j = 1, 2, · · ·, n, µ([x]Ai ) ≥ γ, , i = 1, 2, · · ·, m, x ∈
m
∑

i=1
AP

i (
⋃n

j=1 (Xj)) holds.

Therefore,
m
∑

i=1
AP

i (
⋃n

j=1 Xj) ⊇
⋃n

j=1 (
m
∑

i=1
AP

i (Xj)).

(4) It is easy to prove by Formulas (4), (5), and (19).

Theorem 4. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C and
X ⊆ U, A = A1 ∪ A2 ∪ . . . ∪ Am and X1, X2, . . ., Xn ⊆ U. The following properties hold:

(1)
m
∑

i=1
AP

i (X) ⊆
m
∑

i=1
AO

i (X) ⊆ A(X);

(2)
m−1
∑

i=1
AO

i (X) ⊆
m
∑

i=1
AO

i (X) and
m−1
∑

i=1
AP

i (X) ⊇
m
∑

i=1
AP

i (X).

Proof of Theorem 4.

(1) According to Definition 6, we only need to prove
m
∑

i=1
AP

i (X) ⊆
m
∑

i=1
AO

i (X). ∀x ∈
m
∑

i=1
AP

i (X), according to Definition 7, µ([x]Ai ) ≥ γ. From Definition 5, we have

x ∈
m
∑

i=1
AO

i (X).

(2) It is easy to prove according to Definitions 5 and 7.

Lemma 1. Let S = (U, C ∪ D, V, f ) be a decision information table, A ⊆ C and X ⊆ U,
U/A = {E1, E2, ..., El} is a granularity layer on U. The following properties hold:

(1) ∑
Ei∈BN1(X)

λY
Ei
≤ ∑

Ei∈BN1(X)
λN

Ei
;

(2) ∑
Ei∈BN2(X)

λN
Ei
≤ ∑

Ei∈BN2(X)
λY

Ei
. Here, Ei ∈ U/A (i = 1, 2, . . ., l).

Proof of Lemma 1.
(1) λY

Ei
− λN

Ei
= λ12(1 − µ(Ei))|Ei| − λ21µ(Ei)|Ei| = |Ei|(λ12 − (λ12 + λ21))µ(Ei), be-

cause Ei ∈ BN1(X), we have λ12
λ12+λ21

≤ µ(Ei) < 1, then λY
Ei
≤ λN

Ei
, therefore

∑
Ei∈BN1(X)

λY
Ei
≤ ∑

Ei∈BN1(X)
λN

Ei
.

(2) λY
Ei
− λN

Ei
= λ12(1 − µ(Ei))|Ei| − λ21µ(Ei)|Ei| = |Ei|(λ12 − (λ12 + λ21))µ(Ei). Be-

cause Ei ∈ BN2(X), we have 0 < µ(Ei) < λ12
λ12+λ21

, then λY
Ei
≥ λN

Ei
. Therefore,

∑
Ei∈BN2(X)

λN
Ei
≤ ∑

Ei∈BN2(X)
λY

Ei
.

Lemma 1 shows that the misclassification costs incurred by the equivalence classes in
characterizing X are not more than the misclassification costs incurred by the equivalence
classes when they do not characterize X in BN1(X). Moreover, misclassification costs
incurred by the equivalence classes when they do not characterize X are not more than the
misclassification costs incurred by the equivalence classes in characterizing X in BN2(X).
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Theorem 5. Let S = (U, C ∪ D, V, f ) be a decision information table, A ⊆ C and X ⊆ U,
the following properties hold:

(1) ∑
x∈BN1O

m
∑

i=1
Ai

(X)

λY ≤ ∑
x∈BN1O

m
∑

i=1
Ai

(X)

λN and ∑
x∈BN1P

m
∑

i=1
Ai

(X)

λY ≤ ∑
x∈BN1P

m
∑

i=1
Ai

(X)

λN ;

(2) ∑
x∈BN2O

m
∑

i=1
Ai

(X)

λN ≤ ∑
x∈BN2O

m
∑

i=1
Ai

(X)

λY and ∑
x∈BN1P

m
∑

i=1
Ai

(X)

λN ≤ ∑
x∈BN1P

m
∑

i=1
Ai

(X)

λY.

Proof of Theorem 5. From Lemma 1, Theorem 5 holds.

Theorem 5 shows that misclassification costs incurred by the equivalence classes in
characterizing X are not more than misclassification costs incurred by the equivalence
classes when they do not characterize X in BN1O

m
∑

i=1
Ai

(X) and BN1P
m
∑

i=1
Ri

(X). Moreover, mis-

classification costs incurred by the equivalence classes when they do not characterize X are
not more than misclassification costs incurred by the equivalence classes in characterizing
X in BN2O

m
∑

i=1
Ai

(X) and BN2P
m
∑

i=1
Ai

(X).

DC(
m
∑

i=1
AO

i (X)), DC(
m
∑

i=1
AO

i (X)) and DC(
m
∑

i=1
AO

i (X)) denote the misclassification costs

generated when
m
∑

i=1
AO

i (X),
m
∑

i=1
AO

i (X) and
m
∑

i=1
AO

i (X) are approximated to X, respectively.

Then, the following theorem holds:

Theorem 6. Let S = (U, C ∪ D, V, f ) be a decision information table, A ⊆ C and X ⊆ U, Then,

DC(
m
∑

i=1
AO

i (X)) ≤ DC(
m
∑

i=1
AO

i (X)) and DC(
m
∑

i=1
AO

i (X)) ≤ DC(
m
∑

i=1
AO

i (X)).

Proof of Theorem 6. When
m
∑

i=1
AO

i (X) is taken as the approximation of X, DC(
m
∑

i=1
AO

i (X)) =

∑
x∈BN(X)

λN; when
m
∑

i=1
AO

i (X) is considered the approximation of X, DC(
m
∑

i=1
AO

i (X)) =

∑
x∈BN(X)

λY; when DC(
m
∑

i=1
AO

i (X)) is considered the approximation of X, DC(
m
∑

i=1
AO

i (X)) =

∑
x∈BN1(X)

λY + ∑
x∈BN2(X)

λN .

Because BN(X) = BN1(X) ∪ BN2(X), we have:

DC(
m

∑
i=1

AO
i (X)) = ∑

x∈BN1(X)

λN + ∑
x∈BN2(X)

λN ,

DC(
m

∑
i=1

AO
i (X)) = ∑

x∈BN1(X)

λY + ∑
x∈BN2(X)

λY.

Therefore, according to Theorem 5,

DC(
m

∑
i=1

AO
i (X)) ≤ DC(

m

∑
i=1

AO
i (X)),

DC(
m

∑
i=1

AO
i (X)) ≤ DC(

m

∑
i=1

AO
i (X)).
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Theorem 6 indicates that when DC(
m
∑

i=1
AO

i (X)), DC(
m
∑

i=1
AO

i (X)) and DC(
m
∑

i=1
AO

i (X))

are used as approximations of X, respectively, DC(
m
∑

i=1
AO

i (X)) generates the least misclassi-

fication costs.

DC(
m
∑

i=1
AP

i (X)), DC(
m
∑

i=1
AP

i (X)) and DC(
m
∑

i=1
AP

i (X)) denote the misclassification costs

generated when
m
∑

i=1
AP

i (X),
m
∑

i=1
AP

i (X) and
m
∑

i=1
AP

i (X) are approximated to X, respectively.

Theorem 7. Let S = (U, C ∪ D, V, f ) be a decision information table, A ⊆ C and X ⊆ U. Then,

DC(
m
∑

i=1
AP

i (X)) ≤ DC(
m
∑

i=1
AP

i (X)) and DC(
m
∑

i=1
AP

i (X)) ≤ DC(
m
∑

i=1
AP

i (X)).

Proof of Theorem 7. Similar to Theorem 6, Theorem 7 is easy to prove.

From Theorem 7, when DC(
m
∑

i=1
AP

i (X)), DC(
m
∑

i=1
AP

i (X)) and DC(
m
∑

i=1
AP

i (X)) are used

as approximations of X, respectively, DC(
m
∑

i=1
AP

i (X)) generates the least misclassification

costs. Theorems 6 and 7 reflect the advantages of the multigranulation approximation sets
that are used for approximating the target concept.

5.2. The Optimal Multigranulation Approximation Selection Method

The objects in the boundary region may be reclassified under different granularities.
As a result, the equivalence classes used to represent the approximation set will be changed
in the boundary region. In practical applications, the optimal approximation selection
should consider both the misclassification and test costs. In MGRS, uncertain concepts
characterized in a finer approximation layer result in lower misclassification costs, and test
costs increase with the added attributes. Therefore, it is essential to find a balance between
misclassification and test costs.

Lemma 2. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C,
A1 ⊆ A2 ⊆, . . .,⊆ Am, and X ⊆ U, then ∀x ∈ U, µO

m−1
∑

i=1
Ai

(x) ≤ µO
m
∑

i=1
Ai

(x).

Lemma 3. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C,
A1 ⊆ A2 ⊆, . . .,⊆ Am, and X ⊆ U, then ∀x ∈ U, µP

m−1
∑

i=1
Ai

(x) ≥ µP
m
∑

i=1
Ai

(x).

Theorem 8. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C,
A1 ⊆ A2 ⊆, . . .,⊆ Am and X ⊆ U, only when µ(x)(x ∈ BN1O

m−1
∑

i=1
Ai

(X)) changed with the

attribute increased, then DC(
m−1
∑

i=1
AO

i (X)) ≥ DC(
m
∑

i=1
AO

i (X)).
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Proof of Theorem 8.

DC(
m

∑
i=1

AO
i (X)) = ∑

x∈BN1O
m
∑

i=1
Ai

(X)

λY + ∑
x∈BN2O

m
∑

i=1
Ai

(X)

λN

= ∑
x∈BN1O

m
∑

i=1
Ai

(X)

λ12(1− µ(x)) + ∑
x∈BN2O

m
∑

i=1
Ai

(X)

λ21µ(x).

According to Lemma 2, we have

µO
m−1
∑

i=1
Ai

(x) ≤ µO
m
∑

i=1
Ai

(x).

Obviously, DC(
m−1
∑

i=1
AO

i (X)) ≥ DC(
m
∑

i=1
AO

i (X)).

From Theorem 7, for optimistic MGRS, to reduce the misclassification costs of the
approximation, we can add the attribute that only changes the membership of objects in
x ∈ BN1O

m−1
∑

i=1
Ai

(X).

Theorem 9. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C and
A1 ⊆ A2 ⊆, . . .,⊆ Am, X ⊆ U, only when µ(x) (x ∈ BN2P

m−1
∑

i=1
Ai

(X)) changed with the attributes

increased, then DC(
m−1
∑

i=1
AP

i (X)) ≥ DC(
m
∑

i=1
AP

i (X)).

Proof of Theorem 9.

DC(
m

∑
i=1

AP
i (X)) = ∑

x∈BN1P
m
∑

i=1
Ai

(X)

λY + ∑
x∈BN2P

m
∑

i=1
Ai

(X)

λN

= ∑
x∈BN1P

m
∑

i=1
Ai

(X)

λ12(1− µ(x)) + ∑
x∈BN2P

m
∑

i=1
Ai

(X)

λ21µ(x).

According to Lemma 3, we have

µP
m−1
∑

i=1
Ai

(x) ≥ µP
m
∑

i=1
Ai

(x).

Obviously, DC(
m−1
∑

i=1
AP

i (X)) ≥ DC(
m
∑

i=1
AP

i (X)).

From Theorem 9, for pessimistic MGRS, to reduce the misclassification costs of the
approximation, we can add the attribute that only changes the membership of objects in
x ∈ BN2O

m−1
∑

i=1
Ri

(X).

In practical applications, on the one hand, the factors included in the test cost, such as
money, time, environment, etc., are hard to evaluate objectively. On the other hand, these
factors are hard to be integrated because of their different dimensions. In this section, we
will evaluate test costs in an attribute-driven form, which are more objective.
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Definition 10. Let S = (U, C ∪ D, V, f ) be a decision information table, a ∈ C and X ⊆ U,
the significance of a is defined as follows:

Sig(a, C, D) = DCC−{a} − DCC. (22)

Definition 11. Let S = (U, C ∪ D, V, f ) be a decision information table, a ∈ C, A ⊆ C and
X ⊆ U; the test cost to construct A(X) is defined as follows:

TCA= ∑
a∈A

Sig(a, C, D). (23)

In this paper, for simplicity, to present the optimal granularity selection of the multi-
granulation approximation, we only use the optimistic MGRS as an example.

Definition 12. Let S = (U, C ∪ D, V, f ) be a decision information table, A1, A2, . . ., Am ⊆ C

and X ⊆ U; the test cost to construct
m
∑

i=1
AO

i (X) can be defined as follows:

TC m
∑

i=1
AO

i

=
m

∑
i=1

TCAi . (24)

In this paper, the misclassification and test costs for user requirements are represented

as DCu and TCu, respectively. A multigranulation approximation
k
∑

i=1
AO

i (X) is selected to

meet the constraints DC k
∑

i=1
AO

i (X)
≤ DCu and TC k

∑
i=1

AO
i (X)

≤ TCu, then the related decision

are made on
k
∑

i=1
AO

i (X). Figure 3 presents the optimal multigranulation approximation

selection of optimistic MGRS. Herein,
3
∑

i=1
AO

i (X) complies with the requirements of the

misclassification costs and fails to comply with the requirements of the test costs; AO
1 (X)

complies with the requirements of the test cost and fails to comply with the requirements

of misclassification costs;
2
∑

i=1
AO

i (X) complies with both requirements of misclassification

costs and test costs, enabling effective calculations according to granularity optimization.
Similarly, the optimal approximation selection of pessimistic MGRS is the same. We
formalize the computation as an optimization problem:

arg min
k

Cost k
∑

i=1
AO

i (X)
, (25)

s.t.

ξDC k
∑

i=1
AO

i (X)
≤ DCu;

TC k
∑

i=1
AO

i (X)
≤ TCu.

where Cost k
∑

i=1
AO

i (X)
= ξDC k

∑
i=1

AO
i

+ TC k
∑

i=1
AO

i

, and Cost k
∑

i=1
AO

i (X)
denotes the total cost for

constructing
k
∑

i=1
AO

i (X). ξ = |U|∣∣∣∣ m
∑

i=1
AO

i (X)

∣∣∣∣ ∗
1

DC(Am(X))
reflects the contribution degree of the

multigranulation approximation layer for the misclassification costs of
k
∑

i=1
AO

i (X).
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Figure 3. The optimal granularity selection of the optimistic multigranulation approximation. And
the red circles in the figure represent the set X.

5.3. Case Study

Table 2 is an evaluation form of the company venture capital given by five experts.
U = {x1, x2, . . ., x900} is 900 investment plans, which are evaluated by 5 experts. The risk
level is divided into three categories, including high and low. Suppose that DCu = 5 and
TCu = 2.5.

(1) According to the above conditions, the attribute significance can be computed by
Formula (25), which is shown in Table 3.

(2) Each multigranulation approximation is obtained by adding attributes in ascending
order of attribute significance, E4 → E3 → E2 → E1 → E5 in each stage, respectively.
We represent the attributes as follows: A1 = E4, A2 = E3, A3 = E2, A4 = E1, and
A5 = E5.

(3) For each multigranulation approximation layer, DC k
∑

i=1
AO

i

, TC k
∑

i=1
AO

i

, and Cost k
∑

i=1
AO

i (X)

are computed by Formulas (16), (24), and (25), respectively, where k = 1, 2, . . ., 5 and
the results are displayed in Table 4.

Table 2. Evaluation form of the company’s venture capital.

Firm E1 E2 E3 E4 E5 D

x1 3 3 3 3 1 High
x2 2 1 2 3 2 High
x3 2 1 2 1 2 High
· · · · · · ·
· · · · · · ·
· · · · · · ·

x898 3 3 2 2 3 Low
x899 3 1 3 3 1 Low
x900 1 1 3 3 1 Low

Table 3. Description of attribute significance.

Attribute E1 E2 E3 E4 E5

Sig(a, C, D) 0.74 0.56 0.54 0.36 0.77
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Table 4. The description of cost in each multigranulation approximation.

AO
1 (X)

2
∑

i=1
AO

i (X)
3
∑

i=1
AO

i (X)
4
∑

i=1
AO

i (X)
5
∑

i=1
AO

i (X)

ξDC 8.3 5.9 4.7 3.6 3.5
TC 0.36 0.9 1.46 2.2 2.97

Cost 8.66 6.8 6.16 5.8 6.47

Cost k
∑

i=1
AO

i (X)
changes with the increased attributes and only Cost 3

∑
i=1

AO
i (X)

and Cost 4
∑

i=1
AO

i (X)

satisfy DC k
∑

i=1
AO

i (X)
≤ DCu and TC k

∑
i=1

AO
i (X)

≤ TCu at the same time. According to the For-

mula (25), we choose the multigranulation approximation layer with the lowest total cost

from the above layers; its corresponding approximation layer is
3
∑

i=1
AO

i (X). Therefore,

3
∑

i=1
AO

i (X) is the optimal multigranulation approximation used for deciding investment

plans, because it possesses lower misclassification costs, i.e., from the perspective of op-
timistic MGRS, E4, E3, and E2 are reasonable expert sets. The analysis of the case study
shows that the proposed method can search for a reasonable approximation under the
constraint conditions.

6. Simulation Experiment and Result Analysis
6.1. Simulation Experiment

In this section, the effectiveness and rationality of our model are demonstrated as
shown by illustrative experiments. The computer used in the experiments was a WIN
10 operating system with 3.10-GHz CPU and 16.0 GB RAM, and the programming soft-
ware was MATLAB R2022a. The capability of the proposed model was evaluated on six
UCI datasets, which are shown in Table 5. In our experiments, we randomly took away
some known attribute values from datasets 10–12 to create incomplete decision systems.
The missing values are randomly distributed on all conditional attributes.

Table 5. The description of datasets.

ID Dataset Attribute
Characteristics Instances Condition

Attributes

1 Bank Integer 39 12
2 Breast-Cancer Integer 699 9
3 Car Integer 1728 6
4 ENB2012data Real 768 8
5 Mushroom Integer 8124 22
6 Tic Integer 958 9
7 Air Quality Real 9358 12
8 Concrete Real 1030 8
9 Hcv Real 569 10
10 Wisconsin Real 699 9
11 Zoo Integer 101 16
12 Balance Integer 625 4

From Figure 4, for classical rough sets, the misclassification costs of the approximation
model monotonously decrease with the granularity being finer, which complies with human
cognitive habits.
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Figure 4. The misclassification cost with the changing granularity on each dataset.

In Figure 5, O DC1, O DC2, O DC3 and O DC4 represent ∑
x∈BN1O

m
∑

i=1
Ai

(X)

λY, ∑
x∈BN1O

m
∑

i=1
Ai

(X)

λN,

∑
x∈BN2O

m
∑

i=1
Ai

(X)

λN and ∑
x∈BN2O

m
∑

i=1
Ai

(X)

λY, respectively. P DC1, P DC2, P DC3 and P DC4 rep-

resent ∑
x∈BN1P

m
∑

i=1
Ai

(X)

λY, ∑
x∈BN1P

m
∑

i=1
Ai

(X)

λN , ∑
x∈BN2P

m
∑

i=1
Ai

(X)

λN and ∑
x∈BN1P

m
∑

i=1
Ai

(X)

λY, respectively.

From Figure 5, under different granular layers, misclassification costs incurred by the
equivalence classes in approximating X are always less than or equal to misclassification
costs incurred by the equivalence classes when they do not characterize X in BN1O

m
∑

i=1
Ai

(X)

and BN1P
m
∑

i=1
Ai

(X). Moreover, misclassification costs incurred by equivalence classes when

they do not characterize X are less than or equal to the misclassification costs incurred
by the equivalence classes in approximating X in BN2O

m
∑

i=1
Ai

(X) and BN2P
m
∑

i=1
Ai

(X). This is

consistent with Theorem 4.
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Figure 5. The misclassification cost of two boundary regions under different granularities.

In Figure 6, the horizontal and vertical axes denote the granularity and misclassifi-

cation costs, respectively. O DC_lower, O DC_upper and O DC represent DC(
m
∑

i=1
AO

i (X)),

DC(
m
∑

i=1
AO

i (X)) and DC(
m
∑

i=1
AO

i (X)). P DC_lower, P DC_upper and P DC represent

DC(
m
∑

i=1
AP

i (X)),DC(
m
∑

i=1
AP

i (X)) and DC(
m
∑

i=1
AP

i (X)), respectively, namely, the misclassi-

fication costs generated when
m
∑

i=1
AO

i (X),
m
∑

i=1
RO

i (X) and
m
∑

i=1
AO

i (X) are approximated to

X and the misclassification costs generated when
m
∑

i=1
AP

i (X),
m
∑

i=1
AP

i (X) and
m
∑

i=1
AP

i (X)

are approximated to X. Obviously, compared with
m
∑

i=1
AO

i (X) and
m
∑

i=1
AO

i (X), the mis-

classification costs of
m
∑

i=1
AO

i (X) are the least on each granularity. Similarly, compared
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with
m
∑

i=1
AP

i (X),
m
∑

i=1
AP

i (X), the misclassification costs of
m
∑

i=1
AP

i (X) are the least on each

granularity. This is consistent with Theorems 5 and 6.
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Figure 6. The misclassification costs of
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with the changing granularity of each dataset.

6.2. Results and Discussions

According to the above experiments, compared with the upper/lower approxima-
tion sets, we can conclude that the multigranulation approximations have the following
advantages when applied to decision-making environments:

(1) The misclassification costs of the approximation model monotonously decrease with
the granularity being finer;

(2) In multigranulation approximations, under different granular layers, the misclassi-
fication costs incurred by the equivalence classes in approximating X are less than
or equal to the misclassification costs incurred by the equivalence classes when they
do not characterize X in boundary region I of optimistic and pessimistic rough sets.
Moreover, the misclassification costs incurred by equivalence classes when they do
not characterize X are less than or equal to the misclassification costs incurred by
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the equivalence classes in approximating X in boundary region II of optimistic and
pessimistic rough sets;

(3) Compared with the upper/lower approximation sets, the misclassification costs of
the multigranulation approximations are the least on each granularity.

7. Conclusions

In MGRS, optimistic and pessimistic upper/lower approximation boundaries are
utilized to characterize uncertain concepts. They still cannot take advantage of the known
equivalence classes to establish the approximation of an uncertain concept. To handle the
problem, cost-sensitive multigranulation approximations of rough sets were constructed.
Furthermore, an optimization mechanism of the multigranulation approximations is pro-
posed, which selects the optimal approximation to obtain the minimum misclassification
costs under the conditions. The case study shows that the proposed algorithm is capa-
ble of searching for a rational approximation under restraints. Finally, the experiments
demonstrate that the multigranulation approximations possess the least misclassification
costs. In particular, our models apply to the decision-making environment where each
decision-maker is independent. Moreover, our models are useful for extracting decision
rules from distributive information systems and groups of intelligent agents through rough
set approaches [34,36]. Figure 7 presents a diagram that summarizes the works conducted
in this paper. Herein, we present the process of the cost-sensitive multigranulation approxi-
mations of rough sets; according to different granulation mechanisms, our approach can
be extended to uncertainty models, i.e., vague sets, shadow sets, and neighborhood rough
sets. These results will be important to contribute to the progress of the GrC theory.

Figure 7. Diagram of works conducted in this paper.

Our future work will focus on the following two aspects: (1) We hope to build a more
reasonable three-way decision model based on our model from optimistic and pessimistic
perspectives; (2) we wish to combine the model with the cloud model theory to extend
our model to construct a multigranulation approximation model with bidirectional cog-
nitive computing. This will offer more cognitive advantages and benefits in application
fields with uncertainty from multiple perspectives, i.e., image segmentation, clustering,
and recommendation systems.
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