
����������
�������

Citation: Lozano-Rizk, J.E.;

Gonzalez-Trejo, J.E.; Rivera-

Rodriguez, R.; Tchernykh, A.;

Villarreal-Reyes, S.; Galaviz-

Mosqueda, A. Application-Aware

Flow Forwarding Service for

SDN-Based Data Centers. Electronics

2022, 11, 3882. https://doi.org/

10.3390/electronics11233882

Academic Editors: Elisa Rojas,

Sándor Laki and Christian Esteve

Rothenberg

Received: 8 November 2022

Accepted: 21 November 2022

Published: 24 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Application-Aware Flow Forwarding Service for SDN-Based
Data Centers

Jose E. Lozano-Rizk 1,* , Jose E. Gonzalez-Trejo 2 , Raul Rivera-Rodriguez 1,* , Andrei Tchernykh 3 ,
Salvador Villarreal-Reyes 2 and Alejandro Galaviz-Mosqueda 4

1 Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Telematics Division,
Ensenada 22860, Mexico

2 Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Electronics and Telecommunications
Department, Ensenada 22860, Mexico

3 Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Computer Science Department,
Ensenada 22860, Mexico

4 Monterrey Unit, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada,
Apodaca 66629, Mexico

* Correspondence: jlozano@cicese.edu.mx (J.E.L.-R.); rrivera@cicese.edu.mx (R.R.-R.)

Abstract: Security and Quality of Service (QoS) in communication networks are critical factors
supporting end-to-end dataflows in data centers. On the other hand, it is essential to provide
mechanisms that enable different treatments for applications requiring sensitive data transfer. Both
applications’ requirements can vary according to their particular needs. To achieve their goals, it is
necessary to provide services so that each application can request both the quality of service and
security services dynamically and on demand. This article presents QoSS, an API web service to
provide both Quality of Service and Security for applications through software-defined networks. We
developed a prototype to conduct a case study to provide QoS and security. QoSS finds the optimal
end-to-end path according to four optimization rules: bandwidth-aware, delay-aware, security-aware,
and application requirements (considering the bandwidth, delay, packet loss, jitter, and security level
of network nodes). Simulation results showed that our proposal improved end-to-end application
data transfer by an average of 45%. Besides, it supports the dynamic end-to-end path configuration
according to the application requirements. QoSS also logs each application’s data transfer events to
enable further analysis.

Keywords: quality of service; software defined network; API web; data center

1. Introduction

Nowadays, we live in an interconnected world where daily use applications and
services to enable video streaming, video game platforms, office applications, remote work,
financial services that require handling sensitive information, and medical applications,
among many others. Also, a massive amount of data is generated by a wide variety
of devices. Specifically, IoT devices will be one of the primary sources of information
and, therefore, could become the largest provider for big data science [1] and Artificial
Intelligence (AI)-related applications.

Each application has different requirements regarding computing resources, data
storage, network quality of service, and security schemes. The applications that make quick
decisions require analyzing and processing large amounts of data in the shortest possible
time. To achieve their goals, they need to have mechanisms that enable quality of service
and security policies, especially when transferring their information among data centers
connected with state-of-the-art communication networks.

Security and Quality of Service (QoS) are two critical network services that data center
services are required to provide. Security mechanisms provide proof of identity, preserve

Electronics 2022, 11, 3882. https://doi.org/10.3390/electronics11233882 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11233882
https://doi.org/10.3390/electronics11233882
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6154-5712
https://orcid.org/0000-0003-2018-1833
https://orcid.org/0000-0002-1968-8525
https://orcid.org/0000-0001-5029-5212
https://orcid.org/0000-0002-7219-361X
https://orcid.org/0000-0001-7304-1442
https://doi.org/10.3390/electronics11233882
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11233882?type=check_update&version=1

Electronics 2022, 11, 3882 2 of 22

protected information, and prevent database tampering, data alteration and modification,
deviation, duplication, and theft of information [2].

QoS can improve the application’s performance according to their particular needs.
The security and quality of service mechanisms are not independent. Some security mecha-
nisms affect the effectiveness of QoS and vice versa. The intelligent management of quality
of service parameters supports the provisioning of security strategies for applications that
handle sensitive data. The network infrastructure must support several robust routing
mechanisms that also provide reliability on the selected paths [3].

Software-defined network (SDN) provides a mechanism that enables applications to
request certain services or network parameters such as quality of service, security schemes,
or bandwidth, among others [4].

SDN can address the network programmability problem by allowing applications to
program networks at run-time, whether intra-domain or even inter-domain, to meet their
requirements [5]. This process is considered an advantage of SDN compared to traditional
networks. SDNs are gradually spreading to large-scale (such as data centers), and complex
networks (multi-agency collaborative networks) [6].

We designed QoSS, which is defined as an API Web prototype to conduct a case study
to provide QoS and a security scheme to applications. The QoSS allows applications to send
their network and security requirements and gets the optimal end-to-end path considering
four optimization schemes: maximum bandwidth, maximum security level, minimum
delay, and based on application requirements. In the application requirements optimization
scheme, we use a multi-objective optimization method considering the network parameters
such as bandwidth, delay, packet loss, and jitter. Also, the security level of each node is
considered an additional parameter. In the application requirements optimization scheme,
the network and security level parameters must comply with the application requirements.
The QoSS configures the optimal path using the REST API provided by the SDN controller.
Then, the application transfers data from the source to the destination nodes. The QoSS
also logs each application’s data transfer events to enable further analysis.

The QoSS API improves the applications’ performance in their data flow transfer
process, providing a QoS-based optimal end-to-end path according to their requirements.
Furthermore, it provides a secure scheme optimal end-end-end path for the application
data-sensitive transfer process. Figure 1 shows the QoSS API web service general view.

Figure 1. QoSS API Web Service general view.

Electronics 2022, 11, 3882 3 of 22

We organized the rest of the article as follows: Section 2 presents the related work.
Section 3 introduces our proposal called QoSS API: its design and implementation. Section 4
describes the experimental setup. Section 5 presents the performance evaluation and the
discussion of the results. Section 6 presents the conclusions and future directions.

2. Related work
2.1. Software Defined Networking

Software Defined Networking is a network architecture that separates the network
control functions from the communications equipment. SDN allows the user/application
to manage the traffic on the network. A remarkable feature of the SDN is that it integrates
and enables network monitoring, traffic control, quality of service (QoS), and security. The
SDN bases its architecture on three functional layers: the data plane, the control plane, and
the application plane [7]. In SDN general architecture [8], the SDN controller resides in the
control plane. Figure 2 shows a simplified view of the SDN general architecture.

Figure 2. SDN General Architecture.

• Application plane: Consists primarily of SDN and End-User applications that require
network services, such as network security, quality of service, traffic engineering,
access control management, and load balancing, among others. The network is
programmable through applications running on top of the controller interacting with
devices on the underlying data plane. The programmable network capacity is a crucial
aspect of SDN.

• Control plane: Consists of a set of software-based SDN controllers that provide a
consolidated control functionality of an open interface. SDN controllers interact be-
tween the North, South, and East/West interfaces. One of its purposes is to coordinate
the flow forwarding among network devices (nodes) based on its default routing
algorithm. The controller default routing algorithm typically focuses on finding the
path with the shortest distance among end-to-end nodes.

• Data plane or infrastructure layer: It consists mainly of forwarding elements, including
physical and virtual switches accessible through an open interface that allows packet
switching and forwarding. The flows provide the basis for forwarding decisions. A
flow is a set of values in the packet fields that act as matched criteria (a filter) and
actions (the instructions).

Electronics 2022, 11, 3882 4 of 22

The terms Northbound Interface and Southbound Interface are used to identify two
access points to hardware and software. A description of the two main SDN controllers
interfaces is described below:

• Southbound interface (SBI): Provides a communication environment between the
controller and switches or communication devices. Install the appropriate flow rules
in the device forwarding table. OpenFlow [9] is the open-source community’s most
widely implemented Southbound interface standard.

• Northbound interface (NBI): Provides communication between the SDN controller
and network applications running at the application plane. This communication is
crucial, as the requirements of each network application can vary considerably. The
applications can communicate with the SDN using various APIs, such as ad-hoc and
REST APIs, to request network resources or services according to their needs.

Placing the network control logic at the central controller provides flexibility, optimizes
network management, and flow monitoring, which is very important in the practical usage
of SDN [10].

Our proposal resides in the application plane and communicates to the SDN controller
using the REST API provided by the Northbound interface. We used these SDN functional-
ities to create, query, and delete flow rules in OpenFlow (OF) switches to forward data flow
according to applications’ QoS and node security requirements.

For additional information, a review of SDN controllers is presented in [11], and in [12],
the authors presented a comparative study of SDN controllers. For the aim of our research,
we used OpenDaylight [13] SDN controller.

2.2. Security Level Evaluation

This section describes the Security Level evaluation process to provide a secure end-
to-end path mechanism applied to our research scenario.

Several methods can be considered for determining the value of the path’s security
level. Some research proposals focus on the attack graph-based method that uses informa-
tion from network elements (nodes) and their relationships (edges) between elements to
determine their risk and identify the route that can be used to attack a target node. In [14],
proposes to measure the risk of a specific path through an arithmetic evaluation of the net-
work elements and edges based on the Common Vulnerability Scoring System (CVSS) [15],
in addition to analyzing the vulnerability correlation between each node. In [16] the authors
propose an attack graph-based Moving Target Defense (MTD) technique focused on the
SDN, which shuffles the network configuration of a host based on its criticality, which can
be exploited by attackers when the host is in the attacked path. Both proposals use CVSS to
get certain vulnerability assessment scores; however, the authors in [14] mentioned that the
CVSS scores have the problem that they do not reflect the specialized parts for each security
environment since they are a method for universal evaluation. In addition, the authors
in [17] determined that the CVSS is not enough to prioritize software vulnerabilities since
their environments have different characteristics.

The QoSS API includes a decision variable that can be modified to use the CVSS
evaluation. However, as a use case, we propose employing a strategy based on elements
that are part of an Information Security Management System (ISMS). Under this approach,
Internet Service Providers (ISP) or data center services providers should deploy an ISMS in
accordance with the best practices in information security to apply policies and procedures
for information assets managing sensitive data. ISMS requires a risk assessment of essential
information assets for its mission-critical operations. ISMS could comply with international
standards such as ISO/IEC 27001 [18]. In the case of risk management, it can be based on
MAGERIT 3.0 [19], among others.

ISO/IEC 27001 and MAGERIT are well-known international standards and method-
ologies that private and public organizations widely use.

The traditional risk assessment method for information security uses assets, threats, and
vulnerabilities. It is not our research scope to define a new methodology for risk assessment.

Electronics 2022, 11, 3882 5 of 22

To calculate the end-to-end path security level, we simulated a scenario where we
defined essential information assets (network nodes) for data center (domains) communica-
tions. We used predefined information security threats based on the MAGERIT 3.0 catalog
of elements.

Each information asset can include a set of threats. Each threat must be evaluated
according to various criteria for risk management or assessment methodology. For the aim
of our research and to provide a case study, we focused on using only the information asset
vulnerability criterion.

As part of our research, each threat’s criterion is evaluated on a scale from 1 to 5.
Level 1 refers to Without any protection and level 5 is considered a level with Reinforced
protection. Table 1 shows the proposed assessment list for our scenario’s information asset
vulnerability criterion.

Table 1. Threat evaluation criterion.

Evaluation Value

Without any protection 1
Low protection 2

Moderated protection 3
Normal protection 4

Reinforced protection 5

The value assigned to the criterion can be related to the number of security controls
already implemented in the information asset, ranging from 1 to 5. It is important to note
that this assignment is not a previously defined rule in any of the methodologies; it is only
a guide for our simulation scenario, but it can be used in a real scenario.

According to the MAGERIT 3.0 catalog of elements, each information asset can have
several threats. For the case of our research, we selected some of the general threats that
can be used to calculate the security level. These threats are displayed below:

1. Unauthorized access.
2. Malicious code.
3. Denial of service.
4. Vulnerability of programs (software).
5. Deliberate attacks.
6. Communication services failure.
7. Interception of information (listening).
8. Routing errors.

Each threat is evaluated based on the values in Table 1 for the information asset
vulnerability criterion to determine the security level. In a real scenario, it is essential to
emphasize that the IT Specialists or the person directly responsible for the information
asset, in partnership with the Information Security Officer or a person with a similar role,
evaluate the criteria for each information asset.

We get the security level of the information asset by calculating the average values of
the total number of threats. Finally, to get the end-to-end path security level, we get the
security level average value of the information assets (network nodes) in the path. Table 2
shows a textual representation of the numeric value using a rating scale.

Table 2. Security level rating scale.

Rating Path Security Level

Critical 1–1.9
Low 2–2.9

Medium 3–3.9
High 4–5

Electronics 2022, 11, 3882 6 of 22

2.3. Quality of Service in SDN

This section presents an overview of the quality of service (QoS) proposals in software-
defined networks.

QoS is an essential element in data center services that impact the application perfor-
mance requiring intensive network communication. Regarding QoS in SDN, we identified
proposals considering their architecture and path selection algorithm. Examples of these
proposals are described below:

In OpenQoS [20], and VSDN [21] use the shortest path among nodes. In some cases,
they also use the delay parameter in their path selection process. Most of the QoS proposals
control bandwidth parameter for data flows allocation [22–24]. In CECT, Ref. [25] proposed
a strategy to reallocate network resources and minimize network congestion taking the
available bandwidth as a constraint. In AmoebaNet [5], authors proposed a service that
uses a Dijkstra shortest path variant algorithm to compute an end-to-end network path,
using only a bandwidth parameter as a constraint. Most of the proposals analyzed describe
experiments considering QoS within a single domain and one controller for the SDN,
except in AmoebaNet. The main goal of the research works described above is to use the
bandwidth as the network parameter for their routing algorithm.

Our proposal QoSS consists of an API Web service prototype to provide QoS and a
security scheme to applications. The QoSS differs from the other QoS proposal mainly
because it provides several optimization schemes according to the needs of the application.
Furthermore, our proposal improves the application’s performance by allowing the dy-
namic end-to-end path configuration considering four optimization schemes: maximum
bandwidth, maximum security, minimum delay, and application requirements (based on
network bandwidth, delay, packet loss, jitter, and security level that must comply with
application requirements). Regarding QoS and Security Level in our proposal, the appli-
cations have the flexibility and the option to request an end-to-end path with the highest
security level. In addition, applications can request an end-to-end path that meets a certain
security level and QoS requirements. The QoSS API also allows applications to log data
transfer events to enable further analysis for service agreements or business needs. These
are the main contributions of our proposal.

2.4. Application Programming Interface

The Application Programming Interface (API) is a mechanism that allows two software
components or agents to communicate with each other [26]. APIs allow interoperability
among different platforms on the web.

APIs emerged from the need to exchange information with various data providers to
solve particular objectives. When designing an API, it is essential to consider its usability,
scalability, and performance. There are different APIs paradigms. Some examples are
listed below:

1. Native library APIs: Provide additional functionality through classes or other func-
tions. They are specific to programming languages such as Java, C++, Python, .Net,
and others.

2. SOAP (Simple Object Access Protocol): SOAP APIs are web services that rely on a
strict XML protocol to define the message exchange format for requests and responses.

3. RPC-based (Remote Procedure Call): RPC-based APIs are web services that call a
method on a remote server using HTTP.

4. REST (Representational State Transfer): REST APIs are web services that allow a
client or program to request resources using URL routes and the operation to perform
(GET, POST, PUT, DELETE). REST APIs use HTTP as the transport protocol for
message requests and responses. It is the most commonly used type of API across
several platforms and cloud providers.

For the aim of our research, we designed a prototype of an API Web based on REST.
The primary purpose of REST is to improve different non-functional properties of the web
system, such as performance, scalability, simplicity, reliability, and visibility [27].

Electronics 2022, 11, 3882 7 of 22

REST APIs are generally based on the following rules:

• Resources are part of URLs.
• Each resource has one URL for collections (plural) and another URL for a specific

element (singular).
• Use nouns instead of verbs for resources.
• Use HTTP methods to specify the action to the web server (POST, GET, PUT, and

DELETE) for CRUD (Create, Read, Update, Delete) operations.
• Use standard HTTP response status code to indicate success or an error.
• REST APIs return JSON or XML responses. Lately, JSON is most used and has become

a standard for modern APIs.

3. Design and Implementation

In this section, we present the design of QoSS, an API Web that provides QoS and
security following application requirements. Our proposal’s main objective is to find the
optimal end-to-end path considering four optimization schemes: bandwidth-aware, delay-
aware, security-aware, and application requirements (considering the bandwidth, delay,
packet loss, jitter, and security level of each node in the network). Besides, it supports the
dynamic end-to-end path configuration according to applications requirements. The QoSS
API Web prototype also records each application data transfer to enable further analysis.

The problem formalization for optimal end-to-end path selection according to the
applications’ QoS and Security level requirements is described below.

3.1. Path Selection: Problem Formalization

In a communication network topology, there are n paths for data flow transfer from
source to destination nodes (typically referred to as end-to-end paths), and it is represented
in Equation (1):

Ps,d = {p1, p2, . . . pn} (1)

where:

s = Source node,

d = Destination node,

P = Set of paths from the source node s to the destination node d,

p = End-to-end path, p ∈ Ps,d, pn = {l1, l2, . . . ln},
l = Network links for each node on an end-to-end path.

The network parameter values are different for each path. These parameters are the
metrics for network conditions. Our proposal uses the bandwidth (B(p)), delay (D(p)),
jitter (J(p)), and packet loss (PLR(p)) to provide network QoS. We also use the parameter
(S(p)) to provide the path security level.

The default routing algorithm selects network paths considering the cost or distance
between network nodes. The SDN controller uses these metrics to select the shortest path
(p̃). It is represented in Equation (2) as the minimum cost value in n possible paths:

p̃ = [min(Cst(Ps,d))] (2)

The default routing algorithm does not consider other additional parameters that
provide network conditions. Some applications should consider these parameters to
improve network performance instead of just considering the shortest path. The path (p̂n)
considers the network parameters and security level used by our proposal. It is represented
in Equation (3):

p̂n = [B̂(pn), Ŝ(pn), D̂(pn), Ĵ(pn), P̂LR(pn)] (3)

Electronics 2022, 11, 3882 8 of 22

Regarding the end-to-end path Security Level, the general process to calculate it is
described in Section 2.2 and is represented in Equation (4).

S(pn) =
∑l∈pn sl

|Sl |
(4)

where:

pn = End-to-end path, p ∈ Ps,d, pn = {l1, l2, . . . ln},
S = Security level for each network node l ∈ pn, Sl = {s1, s2, . . . sl},

s = Thread vulnerability network node evaluation, sl =
∑t∈l tx
|t| ,

t = Values set for each threat for a given node, tx ∈ l, tx = {t1, t2, . . . tx},
c = Criterion score set for a given threat, c ∈ tx, c = {1, 2, 3, 4, 5}.

We used a (̂) symbol to identify a path with better metrics conditions. It must have the
maximum available bandwidth and security level among the n paths and are represented
in Equations (5) and (6) respectively. Also, this path must have the minimum value of each
of the corresponding end-to-end parameters such as delay, jitter, and packet loss among
the n paths, represented in Equations (7)–(9).

In end-to-end network path selection, in the case of the bandwidth parameter, it has a
concave metric composition where the end-to-end paths (pn) were selected considering the
minimum capacity bandwidth of the network links (ln) that rules the maximum bandwidth
for the corresponding (pn). The parameters, such as delay and jitter, have an additive
metric composition rule for the end-to-end path. To get the path security level value, we
calculated it as the average of the values of each network node in the end-to-end path,
as represented in Equation (4). For the scope of our research, we used these criteria for
end-to-end path calculation based on QoS constraints and security levels:

B̂(pn) = [max(B(Ps,d))], (5)

Ŝ(pn) = [max(S(Ps,d))], (6)

D̂(pn) = [min(D(Ps,d))], (7)

Ĵ(pn) = [min(J(Ps,d))], (8)

̂PLR(pn) = [min(PLR(Ps,d))], (9)

where:

B(pn) = Path available bandwidth,

S(pn) = Path security level

D(pn) = Path delay,

J(pn) = Path jitter,

PLR(pn) = Path packet loss.

The applications and their network requirements set are represented in Equations (10)
and (11):

A = [â1, â2, . . . , ân] (10)

ân = [B(ân), S(ân), D(ân), J(ân), PLR(ân)] (11)

where:

A = Application set,

â = Application per f ormance requirements,

Electronics 2022, 11, 3882 9 of 22

B(ân) = Bandwidth application requirement,

S(ân) = Security level application requirement,

D(ân) = Delay application requirement,

J(ân) = Jitter application requirement,

PLR(ân) = Packet loss application requirement

In Equation (12), the application requires a minimum bandwidth limit rate, and in
Equation (13) a minimum security level. In Equations (14)–(16), each metric has a maximum
tolerable limit required by the application. The network and security level parameters must
comply with the application’s requirements:

B̂(an) ≤ B(p̂n) (12)

Ŝ(an) ≤ S(p̂n) (13)

D̂(pn) ≤ D(ân) (14)

Ĵ(pn) ≤ J(ân) (15)

̂PLR(pn) ≤ PLR(ân) (16)

As mentioned above, our proposal supports four optimization rules: maximum band-
width (Equation (5)), maximum security (Equation (6)), minimum delay (Equation (7)), and
according to application requirements (complying with lower limits for bandwidth, delay,
jitter, packet loss rate, and level of security parameters). The application requirements rule
process is described below:

Each application requires a set of network parameters, as described in Equations (12)–(16).
To resolve the multi-objective problem [28], we used the ε-constraint method [29] for path
selection. We define the following objective function, represented in Equations (17)–(19):

max(B(pn), (S(pn)), (17)

min(D(pn), J(pn), PLR(pn)) (18)

s.t :

f (x) =



B̂(an) ≤ B(p̂n)

Ŝ(an) ≤ S(p̂n)

D̂(pn) ≤ D(ân)

Ĵ(pn) ≤ J(ân)

̂PLR(pn) ≤ PLR(ân)

(19)

We used the delay parameter as the primary objective, subject to the constraints of
the other objectives (end-to-end available bandwidth, security level, jitter, and packet loss).
From the set of feasible paths, we minimize the delay to get the optimal path when the
available bandwidth and security level are greater than or equal to the application and
packet loss rate and jitter are less than or equal to what is required by the application.
Equations (20) and (21):

min = D̂(pn) (20)

s.t : 
B̂(an) ≤ B(p̂n)

Ŝ(an) ≤ S(p̂n)

Ĵ(pn) ≤ J(ân)

̂PLR(pn) ≤ PLR(ân)

(21)

Electronics 2022, 11, 3882 10 of 22

3.2. API Web Design

The QoSS general design is based on the REST API web paradigm. Figure 3 shows
the interaction between the different modules and their communication. It starts with
the application that sends to the QoSS API its network service requirements (these can be
the quality of service and security level). QoSS API gets the network topology querying
the SDN Controller REST API to compute the optimal end-to-end path and performs its
configuration on the OF switches through communication by the SDN Controller REST
API. QoSS creates a record of the application data transfer events. Figure 4 shows the QoSS
API general sequence diagram.

Figure 3. QoSS General Process.

The QoSS API consists of the following general processes:

1. API Web Service (endpoints)

(a) apptransfer (Log app data transfer process)
(b) appflowrule (Applications flow rule control)
(c) appqsconf (Get applications QoS parameters)

2. Communicator

(a) Get network topology
(b) Get end-to-end paths

3. Optimization

(a) Compute optimal path
(b) Configure optimal path

Electronics 2022, 11, 3882 11 of 22

Figure 4. QoSS API general sequence diagram.

3.3. API Web Service

This process describes an API Web design that allows applications to communicate
via HTTP commands, such as:

1. get: fetch an existing resource.
2. post: create a new resource.
3. put: create or update a resource.
4. delete: delete a resource.

We designed the following Uniform Resource Identifiers (URIs) or API endpoints:

3.4. API Endpoint: Apptransfer

The application’s transfer log is stored using the apptransfer endpoint. Table 3 shows
the resource description for apptransfer endpoint.

Table 3. RESOURCE: apptransfer.

Parameter Type Description

idtlog integer Id transfer log
idapp integer Application ID
snode integer Source node (OF Switch)
dnode integer Destination node (OF Switch)
ipsource string IP source host
ipdest integer IP destination host
r_bl integer End-to-end path Min bandwidth requirement
r_dl integer End-to-end path Max delay requirement
r_sl float End-to-end path Min security level requirement
r_jl integer End-to-end path Max jitter requirement
r_plr float End-to-end path Max packet loss rate requirement
optrule string Optimizacion rule MAX_BL, MAX_SL, MIN_DL, APP_RT
idflow integer Id Flow rule (used to configure rule in OF switches)
priority integer Flow rule priority
ipprot integer IP protocol 6: TCP, 17: UDP
appclass string Application Classification BE,VS,VZ,HP
optpath string Optimal path. List of OF switches -comma separated-
starttime datetime Date and time when started data transfer, format: YYYY-MM-DD hh:mm:ss
endtime datetime Date and time when finished data transfer, format: YYYY-MM-DD hh:mm:ss

Electronics 2022, 11, 3882 12 of 22

Table 4 shows the apptransfer endpoint specification.

Table 4. API endpoint specification: apptransfer.

Endpoint Inputs Outputs Scope

GET /apptrans-
fer/:idapp

Required: idapp (integer) 200 OK Array of apptransfer
records matching idapp. The re-
sponse is described in Listing 1

read

POST /apptrans-
fer/:idapp

Required: idapp. The request
is described in Listing 2

201 OK create

PUT /apptrans-
fer/:idapp

Required: idapp. The request
is described in Listing 3

200 OK update

Listing 1. Response array of JSON objects for apptransfer endpoint.

{
" i d t l o g " : 12 ,
" idapp " : " 6 0 0 0 " ,
" snode " : 1 ,
" dnode " : 20 ,
" ipsource " : " 1 " ,
" ipdes t " : " 6 " ,
" r _ b l " : 85 ,
" r_dl " : 30 ,
" r _ s l " : 0 ,
" r _ j l " : 8 ,
" r _ p l r " : 0 . 0 ,
" optru le " : "MAX_BL" ,
" idflow " : 6 ,
" p r i o r i t y " : 201 ,
" ipprot " : 6 ,
" appclass " : "BE " ,
" optpath " : " 1 , 2 , 5 , 4 , 17 , 18 , 2 0 " ,
" s t a r t t i m e " : " 2 0 2 2 : 0 7 : 1 8 1 0 : 2 9 : 2 0 " ,
" endtime " : " 2 0 2 2 : 0 7 : 1 8 1 0 : 3 2 : 4 1 "

} ,
{ . . . }

Listing 2. Request <body> JSON object for apptransfer endpoint.

{
" i d t l o g " : 12 ,
" snode " : 1 ,
" dnode " : 20 ,
" ipsource " : " 1 " ,
" ipdes t " : " 6 " ,
" r _ b l " : 85 ,
" r_dl " : 30 ,
" r _ s l " : 0 ,
" r _ j l " : 8 ,
" r _ p l r " : 0 . 0 ,
" optru le " : "MAX_BL" ,
" idflow " : 6 ,
" p r i o r i t y " : 201 ,
" ipprot " : 6 ,
" appclass " : "BE " ,
" optpath " : " 1 , 2 , 5 , 4 , 17 , 18 , 2 0 " ,
" s t a r t t i m e " : " 2 0 2 2 : 0 7 : 1 8 1 0 : 2 9 : 2 0 " ,
" endtime " : " 2 0 2 2 : 0 7 : 1 8 1 0 : 3 2 : 4 1 "

}

Electronics 2022, 11, 3882 13 of 22

Listing 3. Request <body> JSON object for apptransfer endpoint.

{
" idflow " : 6 ,
" optpath " : " 1 , 2 , 5 , 4 , 17 , 18 , 2 0 " ,
" s t a r t t i m e " : " 2 0 2 2 : 0 7 : 1 8 1 0 : 2 9 : 2 0 " ,
" endtime " : " 2 0 2 2 : 0 7 : 1 8 1 0 : 3 2 : 4 1 "

}

3.5. API Endpoint: Appflowrule

The appflowrule endpoint receives a JSON file to manage application-specific flow rules.
Table 5 shows the appflowrule endpoint specification.

Table 5. API endpoint specification: appflowrule.

Endpoint Inputs Outputs Scope

POST
/appflowrule/:idapp

Required: idapp. The request
is described in Listing 4

200 OK create

DELETE
/appflowrule/:idapp

Required: idapp. The request
is described in Listing 4

200 OK delete

Listing 4. Request <body> JSON object for appflowrule endpoint.

{
" p r i o r i t y " : 200 ,
" date_created " : "2022 −08 −09 1 2 : 0 0 : 0 0 "

}

3.6. API Endpoint: Appqsconf

The appqsconfig endpoint receives a JSON file with the application QoS and Security
level requirements. Table 6 shows the appqsconfig endpoint specification.

Table 6. API endpoint specification: appqsconfig.

Endpoint Inputs Outputs Scope

POST /appqscon-
fig/:idapp

Required: idapp. The request is
described in Listing 5

200 OK create

Listing 5. Request <body> JSON object for appqsconfig endpoint.

{
" ipsource " : 1 0 . 0 . 0 . 1 ,
" ipdes t " : 1 0 . 0 . 0 . 6 ,
" r _ b l " : 85 ,
" r_dl " : 30 ,
" r _ s l " : 5 ,
" r _ j l " : 8 ,
" r _ p l r " : 0 . 0 0 8 ,
" optru le " : "MAX_BL" ,
" p r i o r i t y " : 201 ,
" apikey " : " secre tapik123xxxx "

}

In Listing 5, the application sends a JSON file to the QoSS API web containing the IP
addresses of the source and destination nodes, as well as the end-to-end requirements in
terms of minimum bandwidth, minimum security level, maximum delay, maximum jitter,
maximum packet loss, flow priority, and the optimization rule, which in this case is the
maximum bandwidth that meets the minimum requirement.

Electronics 2022, 11, 3882 14 of 22

3.7. Communicator Process

The QoSS starts the communicator process to get the network topology querying the
SDN controller. Then, it creates an internal network to:

1. Assign weights on each link (bandwidth, security level, delay, jitter, packet loss rate)
2. Find the end-to-end paths from the source to destination hosts.

The Communicator process creates a set of end-to-end paths to be used by the Opti-
mization process.

3.8. Optimization Process

The QoSS proposes that applications can request the optimization rule according to
their requirements in network parameters to transfer their data flows. This process can
support four optimization rules: maximum bandwidth, maximum security level, minimum
delay, and according to application requirements (complying with bandwidth, delay, jitter,
packet loss rate, and the security level parameters).

Section 3.1 describes the process for computing the optimal path according to the
optimization rule required by the applications.

Once the QoSS gets the optimal path, it configures the flow rules containing the
optimal path with the application priority higher than the controller forwarding method.
Each data flow rule is allocated and configured in the OF switches for the end-to-end path
through the SDN controller.

The following section describes the simulation model and experiment setup for the
application dataflow transfer process among hosts located in distributed domains.

4. Experimental Setup
Simulation Model

The simulation model considers a network topology for host-to-host data flow trans-
fers between two SDN-enabled distributed clouds. We propose a distributed network,
as illustrated in Figure 5. We aim to find the optimal path to transfer the most dataflow
through the end-to-end nodes. In this case, we transfer dataflow between H1 and H14 hosts.

Mininet [30] is one of the most used platforms in the literature for SDN emulation. It
has compatibility and flexibility with other applications and controllers. We used Mininet
for experimental setup and network testbed.

We installed Mininet in a virtual machine with a Linux Debian operating system,
with 4vCPUs, 16 GB of RAM, and 200 GB of disk space (NLSAS disks). Two other virtual
machines were used for the OpenDaylight SDN controllers with the same specifications.

List of software and tools used:

• Linux Debian 10
• Mininet 2.3
• OpenDayLight (ODL) SDN Controller
• Iperf for data stream transfers performance
• Anaconda Scientific Python
• QoSS API web service:

– Python Flask with SQLAlchemy, JWT
– Python 3 programming language
– Built-in Python Flask Web Server
– Postman for API Rest testing
– Visual Studio Code

Figure 5 shows the experimental topology of an SDN-enabled network with two
domains. Controllers A and B managed their domains, respectively. Since they are indepen-
dent domains, each controller gets its domain’s status and network information. In [31], the
authors describe an inter-domain approach where each local SDN controller communicates
with a global SDN controller. In our proposal, we developed the QoSS API to communicate
with the SDN controllers and find the end-to-end paths among each domain host.

Electronics 2022, 11, 3882 15 of 22

Figure 5. Experimental topology.

For this scenario, the network parameters configured in each link are delay, jitter,
and bandwidth, and propose a security level for each node. We simulated the network
parameters and the security level values. Regarding the security level parameter, we
simulated it according to the evaluation process described in Section 2.2 and represented
in Equation (4). Table 7 shows a vulnerability evaluation score for a network node link
interface (S6,S14). The resulting score of 2 indicates that the network node has Low protection
according to the threat criterion evaluation in Table 1.

Table 7. Vulnerability evaluation simulation scenario: Threats evaluation for the network node link
interface (S6,S14). Evaluation’s result (average): 2.

Threat ID Description Value (1 to 5)

1 Unauthorized access 4
2 Malicious code 1
3 Denial of service 1
4 Vulnerability of programs (software) 1
5 Deliberate attacks 1
6 Communication services failure 3
7 Interception of information (listening) 1
8 Routing errors 4

Table 8 shows the security level evaluation for one of the end-to-end paths from H1
to H14 hosts. This path has Low security as referred in Table 2 but is closer to Medium
according to its evaluation result of 2.7. Additional security controls could be applied to
network nodes’ threat evaluation to increase the security level score.

The QoSS API provides applications to request a secure end-to-end path based on an
optimization scheme considering the path security level value.

In the Mininet simulator, we assigned values for each link’s delay, jitter, and band-
width parameters. The security level was added as an additional metric in the QoSS API
optimization process. The metrics values corresponding to each link in the experimental
topology for A and B domains are represented in Tables A1 and A2 listed in Appendix A.

Electronics 2022, 11, 3882 16 of 22

Table 8. Vulnerability evaluation simulation scenario: Path Security Level from hosts H1 to H14.
Evaluation’s result (average): 2.7.

Network Node LI Th1 Th2 Th3 Th4 Th5 Th6 Th7 Th8 Evaluation

S14, S6 4 1 1 1 1 3 1 4 2
S6, S2 3 3 2 2 1 3 1 4 2.3
S2, S1 2 3 3 2 1 3 1 3 2.2

S22, S23 2 2 2 2 3 3 3 3 2.5
S23, S31 4 4 4 4 3 3 4 3 3.6
S31, S38 2 2 2 1 3 1 3 2 2
S38, S44 4 5 5 3 5 5 4 5 4.5

In this work, we used the OpenDayLight (ODL) [13] controller for its flexibility
in getting the network topology information and providing a REST API that enables
network programmability. The QoSS API assigned the flow rules on each OF switch to
accomplish application QoS or security level optimization using its API endpoints described
in Section 3.

Mininet emulates the experimental network topology where each domain uses its
ODL controllers. Controller A Domain has 21 OpenFlow (OF) switches and 8 compute
hosts, while Controller B Domain has 23 OF switches and 6 compute hosts.

The QoSS API gets the network topology querying the SDN controller REST API,
then it finds the end-to-end paths from source and destination nodes. If nodes belong to
different domains, it is necessary to perform an end-to-end path selection process in each
domain, establishing the end-to-end path between the source/destination node. Once the
QoSS API gets the optimal path, it configures the flow rules on each OF device through
the SDN controller. Finally, the QoSS API end-to-end optimal path is used to forward the
application dataflow transfer from the source to the destination node.

In our experiment, the controller default routing method is based on the path with
minimum hops from H1 to H14 hosts.

We defined the following steps for tests execution:

1. Experimental topology development using the Python CLI provided by Mininet.
2. Create an inter-domain approach network topology with two domains (A and B). Use

one ODL external controller per domain.
3. Run network performance tests from H1 to H14 with IPERF using TCP and UDP

dataflows with Controller default data flow forwarding:

(a) First tests set: Execute data transfer test (H1 to H14). Get the elapsed time in
seconds.

(b) Second tests set: Execute data transfer test (H1 to H14). Get the number of
Mbps transferred for a specific period of time.

4. Repeat step 3 with QoSS API using different optimization rules (MAX_BL, MIN_DL,
and APP_RT).

5. Get results.

5. Performance Evaluation

We used IPERF [32] to test network performance between hosts H1 and H14, applying
the ODL controller default routing method and QoSS API web-based on MIN_DL, and
MAX_BL optimization rules in the simulation model. IPERF was configured with default
values and set time intervals to 200 s for each data transfer. We repeated the experiment 20
times for TCP, and UDP data flows.

The QoSS API selected the end-to-end paths that matched the bandwidth, delay, jitter,
and security level criterion. Table 9 shows the QoSS optimal paths and the ODL default
path metrics used in the test sets.

Electronics 2022, 11, 3882 17 of 22

Table 9. ODL default and QoSS optimal paths metrics from Hosts 1 to 14 in the simulation model.

Method Network Path DL (ms) BW (Mbps) JI (ms) SL

ODL (SPF) S14, S6, S2, S1, S22, S23, S31, S38, S44 190 70 10 2.7
QoSS MAX_BL S14, S7, S3, S1, S22, S24, S32, S38, S44 145 100 5 3.3
QoSS MIN_DL S14, S7, S5, S1, S22, S26, S32, S37, S44 105 70 10 2.8
QoSS APP_RT S14, S7, S5, S1, S22, S24, S32, S38, S44 120 100 10 3.3

Our first experiment goal is to measure the application completion time when trans-
ferring 1 GB of data using the ODL controller default method compared to the QoSS API
maximum bandwidth (MAX_BL) optimization rule. The controller default transfer time
was 240.31 s on average, with a standard deviation of 10.16 s. Meanwhile, the QoSS API
MAX_BL optimal path requires less than half of the time to transfer the same amount of
data, with an average of 91.34 s and a standard deviation of 0.20 s, a 62% improvement.
We also compared the ODL default method to the QoSS API minimum delay (MIN_DL)
optimization rule. Figure 6 shows the evaluation results.

Figure 6. ODL vs. QoSS API optimization rules comparison. Time elapsed (in seconds) for each test
to transfer 1 GB of raw data.

The second set of experiments considered the ODL controller default and QoS applica-
tion requirements. In this scenario, we evaluated the advantages of using the QoSS API
APP_RT optimization rule compared to the path provided by the ODL SDN controller.

The application QoS and security level requirements for end-to-end paths were: band-
width ≥ 70 Mbps, delay ≤145 ms, jitter ≤ 15 ms, and the security level ≥ 3. We used the
QoSS optimization rule based on application requirements (APP_RT). The metric values
for the QoSS API APP_RT selected end-to-end path are shown in Table 9.

IPERF was used to transfer data flows between H1 and H14 hosts. Using TCP and
UDP flows, we measured the data transfer capacity in MB with a time interval of 200 s. As
in the previous cases, we performed the IPERF tests 20 times.

The ODL controller obtained an average of 833 MB with UDP dataflows, and the
QoSS API APP_RT transferred 1217 MB. In this test, the QoSS transferred around 45%
more data than the ODL controller in the same time interval. Regarding the TCP flow tests,
the controller transferred 844.4 MB, and the QoSS API APP_RT transferred 2201 MB. The
UDP and TCP test results are shown in Figures 7 and 8. The TCP and UDP transfer rate
comparison between the controller default versus the QoSS API APP_RT flow forwarding
methods are shown in Figures 9 and 10.

Electronics 2022, 11, 3882 18 of 22

Figure 7. UDP Data transfer comparison. Controller default (ODL -SPF) vs. QoSS API (APP_RT).
Time interval: 200 s.

Figure 8. TCP Data transfer comparison. Controller default (ODL -SPF) vs. QoSS API (APP_RT).
Time interval: 200 s.

Figure 9. TCP Data transfer rate comparison. Controller default vs. QoSS API (APP_RT).

The test results showed that the QoSS API APP_RT optimal path considering a QoS
approach has a higher performance than the path provided by the SDN controller default
method. In the test results, it is observed that the QoSS API improved the application
data transfer process by an average of 45%, and in some cases, 62% compared to the SDN
controller method.

Electronics 2022, 11, 3882 19 of 22

Figure 10. UDP Data transfer rate comparison. Controller default vs. QoSS API (APP_RT).

The controller default algorithm seeks to establish a path regardless of the network
conditions. This algorithm selects the shortest path by default, considering a single metric
for the routing process.

Concerning the security level required by the application (≥3), Figure 11 shows that
only the QoSS APP_RT and the QoSS Max_BL optimal paths meet the requirement while
the ODL default path does not. As a result, our proposal enables applications to use an
end-to-end network path with a specific security level requirement while also benefiting
from its performance.

Figure 11. ODL vs. QoSS API Path Security Level Comparison.

6. Conclusions

The QoSS API web enhances applications’ performance by providing dynamic and
on-demand QoS and security-level optimal end-to-end paths. The path selection process
considers network conditions and application requirements. The QoSS API web is adap-
tive for any routing condition that can be established. In contrast, the controller default
algorithm does not address these essential features to improve the routing service.

Our proposal QoSS API provides end-to-end paths that meet the QoS requirements
established by applications, such as bandwidth, delay, jitter, and packet loss rate, improving
their performance by an average of 45%, and in some cases by 62%. Furthermore, QoSS
provides end-to-end paths with a specific security level that can be used for data-sensitive
applications. QoSS also creates a log of each application’s data transfer events to enable
further analysis for a decision-making process. QoSS API web prototype also enhances the
development of SDN testbeds.

In future work, we will improve the QoSS API web service to provide additional
application requirements such as computing resources, storage, and security services for

Electronics 2022, 11, 3882 20 of 22

data-sensitive applications. Also, to support AI-related applications and a software-defined
data center cloud architecture.

Author Contributions: All the authors were involved in research design and conceptualization;
Writing—original draft, J.E.L.-R., J.E.G.-T. and R.R.-R.; Methodology, J.E.L.-R., A.T., S.V.-R. and
A.G.-M.; Formal analysis, J.E.G.-T., A.T. and R.R.-R.; Writing—review and editing, J.E.L.-R., R.R.-R.,
S.V.-R. and A.G.-M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the Consejo Nacional de Ciencia y Tecnologia (CONACYT,
Mexico), and the Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Baja
California, (CICESE, Mexico).

Data Availability Statement: The data presented in this study are available in Appendix A.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SDN Software Defined Network
ISMS Information Security Management System
QoS Quality of Service
API Application Programming Interface
REST Representational State Transfer

Appendix A

Tables A1 and A2 show the metrics values corresponding to each link in the experi-
mental topology for A and B domains.

Table A1. Controller A Network Node metrics in the simulation model.

Link Metrics Link Metrics Link Metrics

S1, S2 20, 2.2, 0, 100 S4, S12 20, 3.6, 0, 100 S11, S18 20, 2, 0, 70
S1, S3 25, 3.5, 0, 100 S5, S7 20, 3.5, 10, 100 S11, S19 25, 2, 0, 100
S1, S4 10, 2.5, 0, 100 S5, S9 12, 4.5, 0, 100 S12, S20 55, 2, 0, 100
S1, S5 5, 3.8, 0, 100 S5, S11 25, 2.7, 0, 100 S12, S21 15, 2, 0, 80
S2, S6 20, 2.3, 0, 100 S5, S13 15, 3.5, 0, 100 S13, S20 15, 2, 5, 80
S2, S8 15, 4.2, 0, 100 S6, S14 80, 2, 10, 80 S13, S21 0, 2, 0, 100
S2, S10 25, 3.8, 0, 100 S6, S15 60, 2, 0, 60 S14, H1 0, 2, 0, 100
S2, S12 10, 3.6, 0, 100 S7, S14 25, 2, 0, 100 S15, H2 0, 2, 0, 80
S3, S7 25, 3.5, 5, 100 S7, S15 20, 2, 5, 80 S16, H3 0, 2, 0, 70
S3, S9 20, 4.5, 0, 100 S8, S16 20, 2, 0, 100 S17, H4 0, 2, 0, 100
S3, S11 10, 2.7, 0, 100 S8, S17 15, 2, 0, 70 S18, H5 0, 2, 0, 100
S3, S13 20, 3.5, 5, 100 S9, S16 10, 2, 5, 50 S19, H6 0, 2, 0, 70
S4, S6 15, 2.3, 0, 100 S9, S17 15, 2, 5, 80 S20, H7 0, 2, 0, 80
S2, S8 10, 4.2, 0, 100 S10, S18 15, 2, 0, 80 S21, H8 0, 2, 0, 100
S4, S10 15, 3.8, 0, 100 S10, S19 10, 2, 0, 50

100Metrics: delay (ms), security, jitter (ms), and bandwidth (Mbps).

Table A2. Controller B Network Node metrics in the simulation model.

Link Metrics Link Metrics Link Metrics

S22, S23 15, 2.5, 0, 100 S27, S34 15, 4.4, 5, 80 S34, S39 10, 2, 0, 80
S22, S24 10, 4.5, 0, 100 S28, S33 15, 4.4, 0, 100 S34, S40 20, 2, 0, 100
S22, S25 5, 3.8, 0, 100 S28, S34 20, 3.8, 0, 80 S35, S41 15, 2, 0, 100
S22, S26 5, 3.6, 0, 100 S28, S35 15, 2.2, 10, 60 S35, S42 15, 2, 0, 80
S23, S27 15, 3.5, 0, 100 S29, S34 15, 3.8, 0, 70 S36, S41 10, 2, 0, 70
S23, S29 15, 2.7, 0, 100 S29, S35 20, 2.2, 0, 80 S36, S42 15, 2, 0, 100

Electronics 2022, 11, 3882 21 of 22

Table A2. Cont.

Link Metrics Link Metrics Link Metrics

S23, S31 25, 3.6, 0, 100 S29, S36 20, 3.6, 0, 100 S37, S43 20, 2, 0, 100
S24, S28 10, 4.2, 0, 100 S30, S35 15, 2.2, 0, 70 S37, S44 10, 2, 0, 70
S24, S30 15, 4.4, 0, 100 S30, S36 15, 3.6, 0, 100 S38, S43 15, 2, 0, 80
S24, S32 20, 2.7, 0, 100 S30, S37 15, 4, 5, 80 S38, S44 15, 4.5, 0, 100
S25, S27 10, 3.4, 0, 100 S31, S36 15, 2, 5, 80 S39, H9 0, 020, 100
S25, S29 15, 2.7, 0, 100 S31, S37 10, 2, 0, 100 S40, H10 0, 2, 0, 100
S25, S31 10, 3.6, 0, 100 S31, S38 20, 2, 0, 70 S41, H11 0, 2, 0, 100
S26, S28 15, 4.2, 0, 100 S32, S37 20, 2, 0, 100 S42, H12 0, 2, 0, 100
S26, S30 10, 4.4, 0, 100 S32, S38 25, 2.5, 0, 100 S43, H13 0, 2, 0, 100
S26, S32 5, 2.7, 0, 100 S33, S39 15, 2, 0, 100 S44, H14 0, 2, 0, 100
S27, S33 10, 3, 5, 100 S33, S40 10, 2, 0, 70

Metrics: delay (ms), security, jitter (ms), and bandwidth (Mbps).

References
1. Xuan, S.; Zhang, Y.; Tang, H.; Chung, I.; Wang, W.; Yang, W. Hierarchically Authorized Transactions for Massive Internet-of-Things

Data Sharing Based on Multilayer Blockchain. Appl. Sci. 2019, 9, 5159. [CrossRef]
2. Bays, L.; Oliveira, R.; Barcellos, M.; Gaspary, L.; Madeira, E. Virtual network security: Threats, countermeasures, and challenges.

J. Internet Serv. Appl. 2015, 6, 1. [CrossRef]
3. Mao, J.; Liu, J.; Qi, C.; Wang, M.; Cheng, H.; Chen, J. RouteGuardian: Constructing secure routing paths in software-defined

networking. Tsinghua Sci. Technol. 2017, 22, 400–412. [CrossRef]
4. Stallins, W. Software-Defined Networks and OpenFlow. Internet Protocol J. 2013, 16, 2–14.
5. Shah, S.A.; Wu, W.; Lu, Q.; Zhang, L.; Sasidharan, S.; DeMar, P.; Guok, C.; Macauley, J.; Pouyoul, E.; Kim, J.; et al. AmoebaNet: An

SDN-enabled network service for big data science. J. Netw. Comput. Appl. 2018, 119, 70–82. [CrossRef]
6. Lu, Y.; Fu, Q.; Xi, X.; Chen, Z.; Zou, E.; Fu, B. A policy conflict detection mechanism for multi-controller software-defined

networks. Int. J. Distrib. Sens. Netw. 2019, 15:5, 1–12. [CrossRef]
7. Akyildiz, I.F.; Lee, A.; Wang, P.; Luo, M.; Chou, W. A roadmap for traffic engineering in software defined networks. Comput. Netw.

2014, 71, 1–30. [CrossRef]
8. Kreutz, D.; Ramos, F.; Verissimo, P.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-Defined Networking: A Comprehensive

Survey. Proc. IEEE 2015, 103, 14–76. [CrossRef]
9. OpenFlow. Open Networking Foundation. Available online: https://www.opennetworking.org (accessed on 18 December 2021).
10. Isyaku, B.; Mohd Zahid, M.S.; Bte Kamat, M.; Abu Bakar, K.; Ghaleb, F.A. Software Defined Networking Flow Table Management

of OpenFlow Switches Performance and Security Challenges: A Survey. Future Internet 2020, 12, 147. [CrossRef]
11. Paliwal, M.; Shrimankar, D.; Tembhurne, O. Controllers in SDN: A review report. IEEE Access 2018, 6, 36256–36270. [CrossRef]
12. Gupta, N.; Maashi, M.S.; Tanwar, S.; Badotra, S.; Aljebreen, M.; Bharany, S. A Comparative Study of Software Defined Networking

Controllers Using Mininet. Electronics 2022, 11, 2715. [CrossRef]
13. OpenDayLight Project. Available online: https://www.opendaylight.org (accessed on 20 December 2021).
14. Shin, G.Y.; Hong, S.S.; Lee, J.S.; Han, I.S.; Kim, H.K.; Oh, H.R. Network Security Node-Edge Scoring System Using Attack Graph

Based on Vulnerability Correlation. Appl. Sci. 2022, 12, 6852. [CrossRef]
15. Common Vulnerability Scoring System SIG. Available online: https://www.first.org/cvss/ (accessed on 30 October 2022).
16. Yoon, S.; Cho, J.-H.; Kim, D.S.; Moore, T.J.; Free-Nelson, F.; Lim, H. Attack Graph-Based Moving Target Defense in Software-

Defined Networks. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1653–1668. [CrossRef]
17. Reyes, J.; Fuertes, W.; Arévalo, P.; Macas, M. An Environment-Specific Prioritization Model for Information-Security Vulnerabilities

Based on Risk Factor Analysis. Electronics 2022, 11, 1334. [CrossRef]
18. ISO/EIC 27001 Information Security Management Homepage. Available online: https://www.iso.org/isoiec-27001-information-

security.html (accessed on 20 October 2022).
19. PILAR MAGERIT 3 Risk Management Methodology. Available online: https://pilar.ccn-cert.cni.es/index.php/en/methodology/

pilar-methodology (accessed on 19 October 2022).
20. Egilmez, H.E.; Dane, S.T.; Bagci, K.T.; Tekalp, A.M. OpenQoS: An OpenFlow Controller Design for Multimedia Delivery with End-

to-End Quality of Service over Software-Defined Networks. In Proceedings of the Signal & Information Processing Association
Annual Summit and Conference, Hollywood, CA, USA, 3–6 December 2012.

21. Owens, H.; Durresi, A. Video over Software-Defined Networking (VSDN). In Proceedings of the 16th International Conference on
Network-Based Information Systems, Gwangju, Korea, 4–6 September 2013.

22. Karaman, M.; Gorkemli, B.; Tatlicioglu, S.; Komurcuoglu, M.; Karakaya, O. Quality of Service Control and Resource Priorization
with Software Defined Networking. In Proceedings of the 1st IEEE Conference on Network Softwarization (NetSoft), London,
UK, 13–17 April 2015.

http://doi.org/10.3390/app9235159
http://dx.doi.org/10.1186/s13174-014-0015-z
http://dx.doi.org/10.23919/tst.2017.7986943
http://dx.doi.org/10.1016/j.jnca.2018.06.015
http://dx.doi.org/10.1177/1550147719844710
http://dx.doi.org/10.1016/j.comnet.2014.06.002
http://dx.doi.org/10.1109/JPROC.2014.2371999
https://www.opennetworking.org
http://dx.doi.org/10.3390/fi12090147
http://dx.doi.org/10.1109/ACCESS.2018.2846236
http://dx.doi.org/10.3390/electronics11172715
https://www.opendaylight.org
http://dx.doi.org/10.3390/app12146852
https://www.first.org/cvss/
http://dx.doi.org/10.1109/TNSM.2020.2987085
http://dx.doi.org/10.3390/electronics11091334
https://www.iso.org/isoiec-27001-information-security.html
https://www.iso.org/isoiec-27001-information-security.html
https://pilar.ccn-cert.cni.es/index.php/en/methodology/pilar-methodology
https://pilar.ccn-cert.cni.es/index.php/en/methodology/pilar-methodology

Electronics 2022, 11, 3882 22 of 22

23. Govindarajan, K.; Meng, K.; Ong, H.; Tat, W.M.; Sivanand, S.; Leong, L.S. Realizing the Quality of Service (QoS) in Software-
Defined Networking (SDN) Based Cloud Infrastructure. In Proceedings of the 2nd International Conference on Information and
Communication Technology (ICoICT), Bandung, Indonesia, 28–30 May 2014.

24. Tomovic, S.; Prasad, N.; Radusinovic, I. SDN control frame- work for QoS provisioning. In Proceedings of the IEEE 22nd
Telecommunications Forum, Belgrade, Serbia, 25–27 November 2014.

25. Tajiki, M.M.; Akbari, B.; Shojafar, M.; Ghasemi, S.H.; Barazandeh, M.L.; Mokari, N.; Chiaraviglio, L.; Zink, M. CECT: Computa-
tionally efficient congestion-avoidance and traffic engineering in software-defined cloud data centers. Clust. Comput. 2018, 21,
1881–1897. [CrossRef]

26. Demircioglu, E.D.; Kalipsiz, O. API Message-Driven Regression Testing Framework. Electronics 2022, 11, 2671. [CrossRef]
27. Banias, , O.; Florea, D.; Gyalai, R.; Curiac, D.-I. Automated Specification-Based Testing of REST APIs. Sensors 2021, 21, 5375.

[CrossRef] [PubMed]
28. Coello, C.A.; Lamont, G.B.; Van Veldhuizen, D.A. Evolutionary Algorithms for Solving Multi-Objective Problems; Springer: Boston,

MA, USA, 2007. [CrossRef]
29. Parvizi, M.; Shadkam, E.; Jahani, N. A hybrid COA/ε-constraint method for solving multiobjective problems. Int. J. Found.

Comput. Sci. Technol. 2015, 5, 27–40. [CrossRef]
30. Mininet SDN Simulator. Available online: http://www.mininet.org (accessed on 10 February 2022).
31. Lee, G.M.; Ryu, D.K.; Park, G. Software-defined networking approaches for link failure recovery: A survey. Sustainability 2020, 12, 4255.
32. IPERF Network Performance Tool. Available online: https://iperf.fr (accessed on 25 April 2022).

http://dx.doi.org/10.1007/s10586-018-2815-6
http://dx.doi.org/10.3390/electronics11172671
http://dx.doi.org/10.3390/s21165375
http://www.ncbi.nlm.nih.gov/pubmed/34450820
http://dx.doi.org/10.1007/978-0-387-36797-2
http://dx.doi.org/10.5121/ijfcst.2015.5503
http://www.mininet.org
https://iperf.fr

	Introduction
	Related work
	Software Defined Networking
	Security Level Evaluation
	Quality of Service in SDN
	Application Programming Interface

	Design and Implementation
	Path Selection: Problem Formalization
	API Web Design
	API Web Service
	API Endpoint: Apptransfer
	API Endpoint: Appflowrule
	API Endpoint: Appqsconf
	Communicator Process
	Optimization Process

	Experimental Setup
	Performance Evaluation
	Conclusions
	Appendix A
	References

