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Abstract: An exchanged-biased anisotropic magnetoresistance bridge sensor for low currents mea-
surement is designed and implemented. The sensor has a simple construction (single mask) and is
based on results from micromagnetic simulations. For increasing the sensitivity of the sensor, the
magnetic field generated by the measurement current passing through the printed circuit board
trace is determined through an analytical method and, for comparative analysis, finite elements
method simulations are used. The sensor performance is experimentally tested with a demonstrator
chip. Four case studies are considered in the analytical method: neglecting the thickness of the trace,
dividing the thickness of the trace in several layers, and assuming a finite or very long conductive
trace. Additionally, the influence of several adjacent traces in the sensor area is evaluated. The study
shows that the analytical design method can be used for optimizing the geometric selectivity of a
non-contacting magnetoresistive bridge sensor setup in single trace, differential, and multi-trace
(planar coil) configurations. Further, the results can be applied for developing highly performant
magnetoresistance sensors and optimizations for low field detection, small dimensions, and low costs.

Keywords: magnetoresistive sensors; anisotropic magnetoresistance; current sensors; planar Hall
effect; exchange bias; magnetic field modeling; micromagnetic simulations

1. Introduction

Measurement of the electric current is a key element in electrical systems, even more
so with the continuous development and full-scale implementation of Industry 4.0 and
5.0 technologies in an Internet of things era. Some key characteristics can be identified for
modern current measurement applications, such as high accuracy and sensitivity, linear
response, DC/AC operation, low thermal drift, immunity to interferences, IC packaging,
reduced costs, and power consumption.

Resistive-based current-sensing techniques are adequate for some applications but
they present a lot of disadvantages, such as power loss, no galvanic isolation, and low
bandwidth [1], issues that are not present with non-contacting current sensing techniques.

Typical non-contacting current sensor technologies are AC/DC current transformers,
fluxgate magnetometers [2,3], or those that utilize Hall effect [4–7], anisotropic magne-
toresistive (AMR) sensors [2,5,8], giant magnetoresistive (GMR) [4,9–11], and tunnelling
magneto-resistance (TMR) sensors [12,13]. Current sensors based on magnetoresistive
effects offer high accuracy, endurance, low temperature drift, low offset, and are suitable for
low volume production together with tight integration capabilities with integrated circuits
(ICs). An overview detailing their properties, performance characteristics, magnetic field
behavior, as well as specific advantages and drawbacks was performed in [14,15]. Thus,
for superior sensor characteristics (immunity to some electromagnetic interferences, high
sensitivity, linearity), a double differential implementation of magnetoresistive current
sensors should be used together with a multi-trace planar coil setup for improving low
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field response with a biasing system utilizing coils or permanent magnets. Versatility of
the sensing system can be improved with a coil biasing system, but power consumption
increases in this case.

Besides the general desirable characteristics for a sensor (sensitivity, low linearity
error, low offset, and stability over time), in order to better define the requirements for a
high performant current sensor, specific parameters for magnetic sensors have to be taken
into account: hysteresis, perming, and geometric selectivity. Hysteresis is related to the
magnetic material behavior and is usually defined as the current changing between the
maxima of the full-scale range. Perming is the change in the sensor offset caused by a high
intensity external magnetic field. Geometric selectivity refers to sensitivity of the sensor
in function of the characteristics of the conductor through which the measured current is
passing and the influence of crosstalk from non-measured currents or external magnetic
fields [16]. Other practical characteristics are desirable, depending on the application in
which they are implemented: immunity to high electric field variations, frequency response
from DC to MHz, cost, weight, and size requirements.

The electrical resistivity of magnetic thin films (usually Fe, Co, Ni, or alloys like
Permalloy—Ni80Fe20) is anisotropically dependent on the direction of the applied magnetic
field [17]. Thus, the layer resistivity depends on the angle between the magnetization
and direction of current flow. Moreover, the magnetization rotation direction and angle
depend on the applied external field’s amplitude. The electrical resistance change can be
measured as roughly the square of the cosine of the angle between the magnetization and
the direction of current flow. This constitutes the basis for effects such as planar Hall effect
(PHE), which is a consequence of the AMR effect.

Regarding the layout of AMR sensors, the basic approach is to utilize several magnetic
thin film resistive elements that have a large aspect ratio (about 10 nm thin, a few µm
wide, and tens of µm long), such that the magnetization is aligned on the longitudinal
(easy) axis, connected in a Wheatstone bridge configuration for increased thermal stability
and sensitivity around zero field. The maximum sensitivity and linearity are achieved
when the magnetization is at 45◦ with respect to the current direction. This is commonly
achieved using the Barber pole biasing technique [18] or other biasing techniques, such as
herringbone [19].

In terms of classification, AMR sensors can be divided into two classes: those that
are similar to Hall sensors and AMR bridges. [20]. The first class are those that share a
geometry with Hall sensors, where the current is injected along one direction in the sensor
cross and the voltage is measured orthogonally, these are referred as PHE sensors. In the
second class, the AMR elements are combined in a Wheatstone bridge, such that the current
is injected along one direction and the voltage is measured in the orthogonal direction.
To further differentiate between the two classes, the term “PHE bridge (PHEB) sensors”
was introduced to distinguish between other AMR bridge sensors, the more correct term
being “exchange-biased AMR bridge sensors [21]. A comprehensive study for the geometry
influence and structure of AMR/PHE sensors was performed in [22].

We demonstrated that both DC and AC currents through linear stripes can be mea-
sured down to µA using GMR sensors [15], however, some limitations in terms of sensor
sensitivity, size, and setup complexity were found. For achieving lower detection limits,
this study aims to consider some possible sources of electromagnetic interferences and trace
current dimensional effects that can have adverse effects on the response of the magnetore-
sistive sensor. An analytical method can be used to estimate the response of the sensor, but
such an approach is dependent on the number of dimensional parameters that are taken
into account when modeling the magnetic field in the sensor area. This can be especially
important for low currents which are producing magnetic fields that have to be measured.
The method implemented in [15] did not take into account the length or thickness of the
trace or specific trace geometries.

This work aims to improve the analytical method from [15], to include trace length
and thickness as dimensional parameters. A comparative study is performed with different
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versions of the analytical method and finite elements simulations with COMSOL Multi-
physics to study the influence of trace geometry and sensor placement on the magnetic
field intensity in the sensor area. Results are applied for the design and implementation of
a proof-of-concept exchange-biased AMR bridge sensor: often called planar Hall resistance
(PHR) in the literature. The mode of operation of the sensor is proven using multi-domain
micromagnetic simulations. Focus is placed on design optimizations by sensor placement
and trace configurations that can be applied for various non-contacting current sensors.
Experimental results from the PHR bridge sensor setup and a previously implemented
GMR sensor setup are performed to validate the results. The main purpose of this study is
to serve as the basis for designing optimized magnetoresistive sensor designs, improved
mostly through geometric selectivity and experimental setup.

2. Materials and Methods

Materials and methods is structured into several sections. Firstly, the basic principles
of the AMR, PHE (Section 2.1), and GMR effects (Section 2.2) are detailed, which are
utilized in the experimental setup. Secondly, the analytical method for estimating the
magnetic field intensity in the sensor area by a single or multiple printed circuit board
(PCB) traces through which a current is flowing is shown in Section 2.3. Section 2.4
describes the layout of the PHR bridge sensor and critical analysis is performed using
a single domain and multi-domain micromagnetic method to justify the specific layout
influences for the sensing elements as well. Section 2.5 and part of Section 2.6 show
the influence of thermal and magnetic annealing processes on the sensor performance
to optimize sensitivity of the sensors. Exchange bias field effects on sensor response are
justified throughout Sections 2.4 and 2.5. Finally, Section 2.6 also describes the experimental
setup and manufacturing steps for the demonstrator chip. Various sensor design steps and
best practices can be extracted from all sections.

2.1. Principle of Operation–AMR and PHE Effects

The AMR effect appears in ferromagnetic bulk materials or thin films from Ni, Co,
Fe, and their alloys [23]. The AMR effect comes from the dependence of the electrical
resistivity of a material on the angle between the direction of electric current and direction
of magnetization inside the material. In other words, the physical origin of AMR can be
attributed to the anisotropic s–d scattering of electrons due to the spin–orbit coupling
on 3d orbitals of ferromagnetic materials. [24,25]. The result of this effect is that in most
magnetic materials, the resistivity of the material increases when the direction of the current
is parallel to the applied magnetic field and minimum when the direction of the current is
perpendicular. The AMR ratio can be expressed by:

∆ρ

ρ⊥
=

ρ‖ − ρ⊥
ρ⊥

(1)

where both resistivities ρ‖ and ρ⊥ are expressed at saturation field, parallel, and perpendic-
ular to the current direction, respectively.

Usually, for magnetic materials, this ratio is not larger than 5%, while for typical
ferromagnetic NiFe films, the AMR value is in the order of 2–2.2% for magnetic fields of a
few Oe [12]. Commonly, Ni80Fe20 (Permalloy) is used due to close to zero magnetostriction
constants in all directions. For a schematic representation of the AMR effect, we can
consider a thin film of ferromagnetic material (Figure 1). Note that for actual devices, an
easy axis of magnetization is defined through the shape anisotropy (l > w) and the uniaxial
anisotropy field HK. If an electrical current passes through the film along x direction and
the magnetization, M, which makes an angle θ with the current, the longitudinal, Ex, and
transverse, Ey, components of the electric field can be derived by considering the angular
dependency of the resistivity tensor components ρxx and ρxy [7,18]:

Ex = jx · ρxx = jxρ⊥ + jx
(

ρ‖ − ρ⊥
)

cos2θ (2)
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Ey = jxρxy = jx
(

ρ‖ − ρ⊥
)

sinθcosθ (3)

with
∣∣∣∣→j ∣∣∣∣ = jx and ρ‖ and ρ⊥ as defined above.
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Figure 1. Schematic representation of the AMR and PHE effects on a Permalloy thin film through

which a current is flowing along the x axis;
→
M is the magnetization which makes an angle θ with the

current direction due to the applied field,
→
H which is perpendicular on the applied current.

The variation of the longitudinal resistivity, given by ρxx and measured through
Ux = Ex × l, characterizes the AMR effect. The second term, Ey, shows generation of a
signal perpendicular to the current direction in a geometry typical for Hall effect but with
the applied field contained in the film plane. This is the PHE signal, VPHE, which is also
defined in Figure 1:

VPHE = l

(
ρ‖ − ρ⊥

)
t

sinθcosθ (4)

2.2. Principle of Operation–GMR Effect

The GMR effect takes place in multilayered magnetic structures of the type FM/NM/FM
coupled by exchange interaction. Here, FM denotes ferromagnetic layers of Ni80Fe20, Co,
CoFeB layers with thicknesses between 1–100 nm and NM represents nonmagnetic layers,
usually from Cu or Ag with thickness of about 1 nm, that mediate the exchange interaction
between the FM layers. The basis of this effect is that a change in the electrical resistance of
the magnetic multilayers is produced in response to an applied external magnetic field. The
resistance change is dependent on the angle between the direction of the magnetizations
of adjacent layers. Thus, when the ferromagnetic layers are magnetized in parallel, the
resistance is at a minimum value, RP- while at antiparallel orientation, the resistance is at
a maximum value. The electrical resistance dependency between the angle and direction
of the electric current and the magnetization in the magnetic layers can be expressed
by [26–29]:

R =
RAP + RP

2
+

RP − RAP
2

cosθ (5)

Thus, for antiparallel configuration and parallel, we obtain:

θ = 180◦ → cosθ = −1 → R = RAP = RHigh (6)

θ = 0◦ → cosθ = 1 → R = RP = RLow (7)

The magnitude of the GMR effect is around 5–20% and is expressed by:

GMR =
RAP − RP

RAP
100 [%], (8)

The AA003-02 sensor was used in the experimental setup, which contains two ac-
tive GMR elements, and two magnetically shielded identical sensors, together forming a
Wheatstone bridge with an average sensitivity 25–40 µV/(V × A/m) [15,30].
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2.3. Design Optimization of the Non-Contacting Current Sensor Based on Analytical Method for
Current Stripes

Electromagnetic field modeling can offer great insight into the behavior, operation,
and possible improvements for devices that rely on specific configuration of the magnetic
field for proper operation, especially if these devices are susceptible to interferences or very
high sensitivity is required. Applying software and mathematical methods for analyzing
high-sensitivity magnetic sensors is a very a useful tool for improving their characteristics:
reducing susceptibility to electromagnetic interferences, improving the signal-to-noise ratio,
reducing size or costs. Several approaches from the literature have proposed modeling of
the field produced by various configurations of single or multiple loops of wire in the same
plane [31,32]. Most solutions focus on complex integral solutions that are usually solved
with numerical methods [33], through FEM simulations [34], or serve application-specific
purposes [35]. Although most methods that can be found in the literature are accurate up
to a certain point, they are not adapted for the specificity required for field estimation
in common setups in which magnetoresistive sensors are involved. However, many
solutions shown in the literature, either lack automation or require intense computation
steps. In this study, several specific optimizations are performed which reduce complexity
significantly and do not require computationally intensive FEM simulations. For ease of
use and integration with other instrumentation functionalities, the analytical method was
implemented in a LabView application.

The basic principle of the proposed setup is to increase the intensity of the magnetic
field in the non-contacting current sensor area, and thus the accuracy and sensitivity by
a proper design of the current stripes from which the magnetic field to be measured is
generated. This was achieved by integrating a planar coil below the magnetoresistive sensor
which will increase the magnetic field intensity in the sensitive area of the sensor, essentially
increasing sensor sensitivity for the same input current. In the current measurement setup,
the MR sensors act as magnetometers, thus if a current, I, passes through a wire, the
magnetic field, B, will produce a change in the output of the MR sensor. The working
principle of the non-contacting current measurement setup for both single and multi-trace
configurations is illustrated in Figure 2.
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An approach optimized for low field detection by utilizing multiple current traces,
in a double differential system, and implemented in a custom printed circuit board was
demonstrated [15].

In order to estimate Bx, an analytical model based on Biot–Savart law was derived,
which assumes that the sensor is centered above the multiple trace at distance h (Figure 3).
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Note that the thickness of each trace is divided by an m number of layers, consequently,
h changes for each individual layer (from the center of each layer). For the finite length
correction, we introduced the sum of the sine functions of the angles between the sensor
area (above central trace) and for each end of the linear current trace (Figure 3a). Note that
some geometric correction can still be introduced, especially for a large number of adjacent
traces or nonlinear trace configurations.
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correction of the magnetic field in the sensor area based on the distance from the linear trace ends; (b)
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For calculating the magnetic field, the Biot–Savart equation was applied to the geome-
try shown in Figure 3 and integrated:

d
→
B =

µ0 Id
→
l ×→r

4π·r3 100 [%], (9)

By assuming a very long conductive trace (Figure 2d, the elementary current produced
by the current I, can be expressed, using the Biot–Savart law by:

dBn = µ0
dI

2πr
= µ0

Idx
D
· 1

2π
√

h2 + x2
; dI =

I
D

dx, (10)

dBnx = dBn · cosθ = µ0
Idx

2πD
· 1√

h2 + x2
· h√

h2 + x2
, (11)

where µ0 = 4π × 10−7 H/m is the vacuum magnetic permeability, D is the trace width, t is
the trace thickness (not used in the equation), Td is the distance between the traces, h is the
height on which the sensing element is placed above the trace, and θ is the angle shown in
Figure 3a used to estimate the Bx component of the magnetic field.

By assuming a uniform linear current density, I/D, and integrating equation 11 from
Dn1 to Dn2, the x component of the magnetic field generated by a trace n = 1, 2, 3, . . . , in
the sensor area is determined corresponding for 2n + 1 traces for a planar coil (Equation
(12)). If now, we introduce the length correction factor and divide the thickness of the trace
in m layers, we get equation 13. If we take into account MR chip dimensions, usually the
maximum value of n can be up to 6 (13 total traces).

Bnx =
µ0 I

2πD

[
arctan

(
Dn2

h

)
− arctan

(
Dn1

h

)]
[T], (12)
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Bnx =
m

∑
i=0

(
µ0

I
m

2πD

[
arctan

(
Dn2

hi

)
− arctan

(
Dn1

hi

)]
· (sinα1 + sinα2)

)
[T] (13)

For a single trace (n = 0), from equation 13 it follows:

B0x =
m

∑
i=0

(
µ0

I
m

πD

[
arctan

(
D

2hi

)]
· (sinα1 + sinα2)

)
[T] (14)

A study based on four possible cases for this analytical method was performed: Case
I- Infinite trace length, with a single layer (trace thickness neglected), Case II- Infinite trace
length, with m = 35 layers (1 µm each layer), Case III, finite trace length, with a single
layer (trace thickness neglected), and Case IV- finite trace length, with m = 35 layers (1 µm
each layer). For Case II and Case IV, layered trace thickness means that the thickness of
each trace is divided on a number of layers through which we assume a constant current,
I/m is flowing (where m is the number of layers). The analytical method is in such a way
implemented that the results of the final field is the sum of the field produced by the
individual layers.

Moreover, for a comparative analysis of the results obtained with the analytical method,
two use cases were studied using finite elements method simulations. Firstly, for a singular
trace, results were compared with a single trace U-shaped current trace (Figure 4a) modeled
to simulate the behavior in a double differential configuration. The specific dimensions
of the U-shaped trace are chosen based on the ability to integrate highly sensitive and
miniature magnetoresistive sensors, for example [36], in a double differential configuration
in a very small package. Secondly, comparative analysis with experimental results is
performed for the case of a multi-trace planar coil. The results of this comparison are shown
in the Results and Discussion section.
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is flowing (where m is the number of layers). The analytical method is in such a way im-
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Moreover, for a comparative analysis of the results obtained with the analytical 
method, two use cases were studied using finite elements method simulations. Firstly, for 
a singular trace, results were compared with a single trace U-shaped current trace (Figure 
4a) modeled to simulate the behavior in a double differential configuration. The specific 
dimensions of the U-shaped trace are chosen based on the ability to integrate highly sen-
sitive and miniature magnetoresistive sensors, for example [36], in a double differential 
configuration in a very small package. Secondly, comparative analysis with experimental 
results is performed for the case of a multi-trace planar coil. The results of this comparison 
are shown in the Results and Discussion section. 

 
 

(a) (b) 

Figure 4. Design and experimental implementation of (a) Geometry and parameters for the U-
shaped trace; (b) Plane view of the planar coil with seven traces. Figure 4. Design and experimental implementation of (a) Geometry and parameters for the U-shaped

trace; (b) Plane view of the planar coil with seven traces.

2.4. Principle of Operation of the Exchange Bias AMR Bridge Sensor

The design that serves as the layout for the demonstrator chip is shown in Figure 5.
This design, which has two identical sensors is aimed at defining magnetoresistive struc-
tures adapted to the magnetic field produced by electric currents in the conditions of
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minimizing the effects created by temperature variations and interferences from external
magnetic fields. The two sensors chip shows a double differential measurement system,
in the sense that each of the AMR bridges is a differential sensor. On top of the sensor, a
U-shaped Silver band is placed. The U-shaped trace was printed on top of a Kapton band
with a thickness of 45 µm, by using a prototyping system (Voltera V-One) [37]. This band
was placed on top of the sensors.
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that the four AMR chip elements are in a Wheatstone bridge configuration (arms of the 
bridge R1−R4). Note that each resistor arm of the bridge can be constituted from multiple 
stripes for specific configurations [20]. Thus, the resistance of each arm is dependent on 
the number of stripes. If there is a positive applied current though the resistor, the output 
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butions on the resistance of a single stripe (in our case, equivalent to one arm of the AMR 

Figure 5. Layout of the exchange biased AMR bridge sensor chip: (a) Chip layout with over imposed
U-shaped current trace on top of the AMR bridges; (b) Dimensions of the chip; (c) Working principle
of the AMR bridge sensor; (d) Equivalent circuit of a single AMR bridge sensor. Note that the
structured is within a square of 4 × 4 mm2 and was realized on a 5 × 5 mm2 chip. The margins are
0.5 mm while the arm of the bridge has a length L = 1 mm and a width of either 0.1 or 0.2 mm. The
contacting pads size can be reduced such that the chip can fit inside a 3 × 3 mm2 footprint.

Based on the equivalent circuit for one AMR bridge sensor (Figure 5d), we can note
that the four AMR chip elements are in a Wheatstone bridge configuration (arms of the
bridge R1−R4). Note that each resistor arm of the bridge can be constituted from multiple
stripes for specific configurations [20]. Thus, the resistance of each arm is dependent on
the number of stripes. If there is a positive applied current though the resistor, the output
voltage (potential increase in the y-direction) from the bridge is:

V = I
R2R3 − R1R4

R1 + R2 + R3 + R4
≈ 1

2
I(R3 − R1) (15)

where the result of the expression is valid when R1 + R2 ≈ R3 + R4, thus when Istripe = I/2.
In [20], a single domain approach was used to model the response and field contri-

butions on the resistance of a single stripe (in our case, equivalent to one arm of the AMR
bridge). The expression that was obtained for the resistance of a single sensor construction
element (single stripe) was:

R(α) = R0 − sin(2α)
(

S0Bext
y + S0Bs f cosα

)
(16)
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where R0 is the stripe resistance when θ = 0 (θ is the magnetization rotation angle for a
single domain stripe), α is the angle of a positive current passing through the stripe on
the x-axis, S0 is the single stripe low field sensitivity, Bext

y is the field contribution due to
homogenous external applied fields along the y-axis, and Bs f is the contribution of the
magnetic field induced by the bias current passing though the sensor (the self-field).

The single stripe low-field sensitivity S0 is [20]:

S0 ≡ −
l∆ρ

wt(Bex + BK)
(17)

where w is the width, l is the length, t is thickness of the stripe, ∆ρ = ρ‖ − ρ⊥, Bex is the
exchange pinning field, and BK is the anisotropy field.

In order to validate the AMR bridge (PHR) sensor mode of operation for actual opera-
tion, we used a multi-domain simulation approach using LLG micromagnetics v4 [22,38].
The mask required for the simulation was obtained by editing a SEM image of the sensor
and performing a black/white cleanup (Figure 6). The magnetic layer and spacing layer are
situated in a 1000 × 2000 × 10 nm structure. The parameters used for the simulation are:
saturation magnetization MS = 710 kA/m [14,22], exchange constant A = 1.3 × 10−11 J/m,
anisotropy constant Ku = 500 J/m3 [39], the exchange bias field (pinning field) Hex = 150 Oe,
temperature T = 0 K; discretization cell 10 × 10 × 10 nm3. The convergence condition was
maintained at 1 × 10−4. Note that between Ku and the anisotropy field Hk, there is the
following relation HK = 2Ku/MS. Generally, micromagnetic simulators model structures at
0 K such that thermal fluctuations do not influence the results. These fluctuations make
obtaining convergence difficult, especially for models with a high number of magnetic
spins. Structures larger than 2 × 2 µm2 are usually not simulated because results are not
significantly different and the computation time requirements are high. The magnetiza-
tion distribution for different applied field values (H = 0 Oe, H = −150 Oe, H = 150 Oe,
H = 250 Oe) is shown in Figure 7. From Figure 7 and the magnetization distribution along
the x and y axis for the entire structure compared with the central area of the AMR bridge at
low field values (Figure 8), it can be denoted that the contacting pads and traces have very
little influence on the magnetization characteristic of the sensor as the magnetic moments of
the vertical stripes almost do not change at different applied fields and thus no additional
hysteretic behavior is added to the central area of the structure.
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Figure 6. AMR bridge sensor, multi-domain simulation mask layout: (a) SEM image of the sensor
with obtained mask image after editing; (b) Overview of the imported mask in the software with the
marked direction of the applied field and exchange bias field.
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direction of the applied field while the blue arrow shows the orientation of the exchange bias field. 
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Figure 8. AMR bridge sensor, multi-domain simulation results for low field values: (a) Magnetiza-
tion distribution along the x-axis; (b) Magnetization distribution along the y-axis; (c) PHE signal for 
the entire structure; (d) PHE signal for the central area of the structure (bridge). 

Figure 7. Simulated multi-domain magnetization distribution of the AMR bridge structure at different
field values (H = 0 Oe, H = −150 Oe, H = 150 Oe, H = 250 Oe). The red arrow signifies the direction of
the applied field while the blue arrow shows the orientation of the exchange bias field. The encircled
areas show that no matter the field value, the orientation of the magnetic moments does not change
and does not influence the behavior of the central area of the structure, thus there is no signal change
with the applied field for these areas.

Electronics 2022, 11, x FOR PEER REVIEW 10 of 25 
 

 

 
Figure 7. Simulated multi-domain magnetization distribution of the AMR bridge structure at dif-
ferent field values (H = 0 Oe, H = -150 Oe, H = 150 Oe, H = 250 Oe). The red arrow signifies the 
direction of the applied field while the blue arrow shows the orientation of the exchange bias field. 
The encircled areas show that no matter the field value, the orientation of the magnetic moments 
does not change and does not influence the behavior of the central area of the structure, thus there 
is no signal change with the applied field for these areas. 

  
(a) (b) 

  
(c) (d) 

Figure 8. AMR bridge sensor, multi-domain simulation results for low field values: (a) Magnetiza-
tion distribution along the x-axis; (b) Magnetization distribution along the y-axis; (c) PHE signal for 
the entire structure; (d) PHE signal for the central area of the structure (bridge). 

Figure 8. AMR bridge sensor, multi-domain simulation results for low field values: (a) Magnetization
distribution along the x-axis; (b) Magnetization distribution along the y-axis; (c) PHE signal for the
entire structure; (d) PHE signal for the central area of the structure (bridge).
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2.5. Fabrication of Exchange Bias AMR Bridge Sensor Demonstrator

The AMR bridge sensors use spintronic structures of the type Ni80Fe20(10 nm)/FeMn
(1 nm) and were deposited at ICPE-CA Bucharest though magnetron sputtering on an
oxidized silicon substrate and microfabricated through the liftoff method. Given the par-
ticularities of the deposition method, the structures are amorphous and have a very low
electrical conductivity. Additionally, the deposited structures do not show an established
magnetocrystalline anisotropy axis or an exchange bias field, Hex, between the antiferro-
magnetic layer (FeMn) and the permalloy (Ni80Fe20) magnetic layer. Finally, 5 × 5 mm2

chips were cut. Of note is that a single mask was used for the chip, thus reducing complex-
ity of the microfabrication process significantly. A scanning electron microscope image of
the chip can be seen in Figure 9a. Several chips were thermally treated, Figure 9bc, with
the purpose of enhancing the crystalline structures of the deposited layers and thus the
electric conductivity. The thermal treatment was made in an argon (Ar, 99.99%) atmosphere,
2 mbarr pressure at a temperature of 450 ◦C for two hours [40].
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Cu sheet, and the probe. The temperature is increased to 200 °C and the system is intro-
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Figure 9. (a) SEM image of the AMR bridge sensor; (b) Direction and intensity of the applied field, B
over the structure during the magnetic annealing process.

The magnetic annealing system was comprised of: (1) Electronically controlled heated
air blower (40–300 ◦C), (2) Vacuum pump (2 mbarr), (3) Electronic thermometer with K-type
thermocouple; (4) Support Copper (Cu) sheet at the end of which a chip is fixed for the
magnetic annealing, (5) Stainless steel tube connected to the vacuum pump, (6) Neodynium
permanent magnets. The chip is placed at the end of a copper sheet which is introduced into
a stainless-steel tube, which is connected to the vacuum pump. Given the small volume, a
2 mbarr pressure is obtained in approximately 15 min. Initially, the system is not placed
between the poles of the magnets. After 15 min of vacuum, tube (5) is heated to 100 ◦C with
the air blower for 10 min, in order to degas the interior walls, the Cu sheet, and the probe.
The temperature is increased to 200 ◦C and the system is introduced within the poles of
the magnets which generate a field of B = 0.1 T in the area of the tip of the tube where the
chip is located. The temperature is maintained for 5 min after which it is dropped to 30 ◦C
within 10 min. Field measurements were made with a Lake Shore 475 DSP Gaussmeter.

In order to produce the U-shaped current trace, Figure 4a, on the surface of the sensor,
the utilized method was to print directly on a Flexible Kapton band, with silver ink, Voltera
Adorable Anchovy, Flex 2 ink type [41], which remains flexible after thermal treatment for
eliminating organic compounds. This ink is kept between 4–10 ◦C and is also compatible
with polyethylene terephthalate (PET) and other flexible polymer substrates. The resistivity
of the ink is around 1.36 × 10−7 Ωm after thermal treatment. The U-shaped trace was
realized utilizing the dedicated PCB printer, Voltera V-One, Figure 10 [37]. A 6 mm wide
and 45 µm (micrometer measured) Kapton band was used. For maintaining mechanical
integrity and flatness during printing, the Kapton tape was temporarily fixed on a standard
FR4 PCB board. The printer was configured to print a 35–40 µm layer from a distance
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of 0.08 mm from the surface and for the printing head, a 150 µm metallic tip was used.
Immediately after printing, the entire ensemble was thermally treated at 160 ◦C for 30 min.
By using a scalpel, a strip containing a single trace was cut and placed on the surface of the
sensor. On the ends of the U-shaped trace, two wires were bonded using silver paste. The
electrical resistance of the conductive trace was measured with the Keithley 2700 digital
multimeter using a 4-wire method: R4w = 0.096 Ω.
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2.6. Galvanomagnetic Characterization of the Exchange-Biased AMR Bridge Sensor
2.6.1. Experimental Setup

The functional block diagram of the setup can be seen in Figure 11. Evaluating the
performance of the sensor is necessary as they should be able to detect low magnetic fields,
under 1 Oe (10−4 T in air). Note that given the identical layout, results for a single sensor
on the chip are shown.
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strator chip.

The chip measurement setup for both cases is shown in Figure 12. The magnetic field
is applied in the sensor plane. A Keithley 6221 power supply is used to supply the sensors
and a Keithley 2182 A nanovoltmeter for measuring the voltage output. As a magnetic field
source, a Helmholtz coil was used, able to generate fields up to 200 Oe, which was powered
by a programmable current source, Kepco BOP 100–10 MG. The coil was calibrated using
the Lakeshore 475 DSP digital gaussmeter while data acquisition was done on a PC. For
some tests, a biasing field was applied, Hbias, in order to linearize the characteristic of the
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sensor and to highlight the necessity for magnetic annealing; H is applied on the direction
of the field which will be generated by the conductive trace, Figure 5. The sensor was
supplied with a 1 mA current, DC.
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Magnetic Annealing 

For comparison purposes, the field characteristics for a chip with only thermal treat-
ment applied and for a chip that went through the magnetic annealing process are shown. 

Figure 12. Measurement schematic for the AMR bridge sensors: (a) For the thermally annealed chip;
(b) For the thermally and magnetically annealed chip.

Before testing, the chip was contacted with silver plated Cu wires. The wire-bonding
was done with Ag paste from Sigma-Aldrich with a 24 h curing time at room temperature.
The contacted chip was placed on a connecting PCB board, SO8, MSOP8 which allows
placement in a DIP PIN 8 socket with gold plated pins, Figure 13a. Over the chip, the
printed U-shaped trace was placed. Thus, a compact structure was obtained, which can
be considered a hybrid integrated circuit that can be manipulated and characterized to
allow great versatility. A second U-shaped trace was placed beneath the sensor to show
the setup implementation for higher currents testing. Since the response of the sensor
for low field values is of interest, a small size Helmholtz coil system was placed next to
the chip, Figure 13b. The entire setup is placed in a ferromagnetic enclosure for magnetic
shielding. The chip was introduced in a DIP PIN 16 socket where necessary connections
were made to the connection grid while remaining pins was used to connect the current
traces. An additional two ferrite permanent magnets were used to compensate the effect of
the exchange bias field, Hex (noted as Hbias, Figure 12b).
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mounted in the shielded box, as implemented for characterization and testing.

2.6.2. Characterization of the Demonstrator Chip—After Thermal and Magnetic Annealing

For comparison purposes, the field characteristics for a chip with only thermal treat-
ment applied and for a chip that went through the magnetic annealing process are shown.

For the chip with only the thermal treatment, we can note, Figure 13a, the nonlinear,
hysteretic characteristic, typical for AMR structures with no magnetic anisotropy and
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defined direction for Hex. By applying a prepolarization field, Hbias, like in Figure 12a, the
nonlinearity of the response characteristic can be reduced, Figure 14b. This field has the
same effect such as Hex which can be induced through magnetic annealing; HEB depends
on the nature of the FM and AFM layers, the quality of the interface between these layers,
and the magnetic annealing process.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 25 
 

 

For the chip with only the thermal treatment, we can note, Figure 13a, the nonlinear, 
hysteretic characteristic, typical for AMR structures with no magnetic anisotropy and de-
fined direction for Hex. By applying a prepolarization field, Hbias, like in Figure 12a, the 
nonlinearity of the response characteristic can be reduced, Figure 14b. This field has the 
same effect such as Hex which can be induced through magnetic annealing; HEB depends 
on the nature of the FM and AFM layers, the quality of the interface between these layers, 
and the magnetic annealing process. 

  
(a) (b) 

Figure 14. Thermally annealed AMR bridge sensor, field characteristics: (a) No applied biasing field; 
(b) Field characteristics for different Hbias values. 

For the chip with both the thermal treatment and magnetic annealing, the results can 
be seen in Figure 14b for sensor “1”: and Figure 15b for sensor “2”, connected as shown 
in Figure 11b. The Helmholtz coils field characteristic (Figure 16) was obtained by placing, 
instead of the chip in the setup, the Hall probe of the Lakeshore 475 DSP gaussmeter. 

By comparing the results from Figures 14a and 15a, for Hbias = 0, we can note the 
emergence of the Hex field in the magnetically cured probe. In order to reduce hysteretic 
behavior and nonlinearity, two permanent magnets were placed on the wall of the metal-
lic shielded box. Due to the box being ferromagnetic, the field from the magnets closes 
through it. Figure 15b shows the characteristics V = f(H) for two values of the biasing field 
Hbias = 45, respectively, 80 Oe. Additionally, the positions of the two magnets were modi-
fied such that a compromise is obtained between sensitivity and linearity. The Hbias = 80 
Oe was considered optimal as higher values will reduce sensitivity. Note that the two 
sensors have a 1 mm gap between them. The light asymmetries between the response of 
the sensors will be compensated in the differential measurement system. By taking into 
account the distribution of the current through the U-shaped band and the magnetic field 
orientation created by the sensors, the output voltage will be of type: Vdiff = Vsensor1 − Vsensor2, 
as discussed in detail in [14,15]. 

  
(a) (b) 
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For the chip with both the thermal treatment and magnetic annealing, the results can
be seen in Figure 14b for sensor “1”: and Figure 15b for sensor “2”, connected as shown in
Figure 11b. The Helmholtz coils field characteristic (Figure 16) was obtained by placing,
instead of the chip in the setup, the Hall probe of the Lakeshore 475 DSP gaussmeter.
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Figure 15. Thermally and magnetically cured AMR bridge sensor, field characteristics at different
biasing levels (Hbias = 0, 45, 80 Oe): (a) Field characteristics for sensor 1; (b) Field characteristics for
sensor 2 Hbias = 80 Oe bias level.

By comparing the results from Figures 14a and 15a, for Hbias = 0, we can note the
emergence of the Hex field in the magnetically cured probe. In order to reduce hysteretic
behavior and nonlinearity, two permanent magnets were placed on the wall of the metallic
shielded box. Due to the box being ferromagnetic, the field from the magnets closes through
it. Figure 15b shows the characteristics V = f(H) for two values of the biasing field Hbias = 45,
respectively, 80 Oe. Additionally, the positions of the two magnets were modified such
that a compromise is obtained between sensitivity and linearity. The Hbias = 80 Oe was
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considered optimal as higher values will reduce sensitivity. Note that the two sensors have
a 1 mm gap between them. The light asymmetries between the response of the sensors
will be compensated in the differential measurement system. By taking into account the
distribution of the current through the U-shaped band and the magnetic field orientation
created by the sensors, the output voltage will be of type: Vdiff = Vsensor1 − Vsensor2, as
discussed in detail in [14,15].
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3. Results and Discussion
3.1. Case Study Utilizing Analytical Model and Finite Elements Method Simulations for Currrent
Stripes Optimization

For the finite elements method (COMSOL) simulation, a single trace “U-shaped”
current trace was modeled (Figure 4b) to simulate the behavior in a double differential
configuration. The specific dimensions of the U-shaped trace are chosen based on the
ability to integrate highly sensitive and miniature magnetoresistive sensors. The specific
parameters utilized for both the COMSOL simulation and the analytical model are shown
in Table 1. Note, that in COMSOL, the U-shaped trace was modeled using Ag material
properties but with a reduced resistivity of 1.36 × 10−7 Ωm to correspond to the experi-
mental measurement, while the planar coil was modeled with Cu material properties with
a resistivity of 1.72 × 10−8 Ωm. Note that the thickness of the U-shaped trace was 35 µm in
the simulation for direct comparison with the planar coil thickness.

Table 1. Parameters utilized for the analytical model and COMSOL simulation (U-shaped trace and
planar coil).

Symbol Name Quantity

D Trace width
Planar coil with 7 traces: 0.22 mm

U-shaped trace: 1.2 mm

Td Distance between traces
Planar coil with 7 traces: 0.19 mm

U-shaped trace: N/A

I Current through trace 0.1 A

h Distance between sensor
and trace

Planar coil with 7 traces: 0.045 [mm] to
3.58 [mm]

U-shaped trace: 0.045 mm to 2.08 mm

t Trace thickness 35 µm

m Number of layers in
which t is divided 35 (1 µm each layer)
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Table 1. Cont.

Symbol Name Quantity

L Trace length
Planar coil with 7 traces: 42 mm

U-shaped trace: 3.2 mm

∆l
Sensor position on
trace length 1

Planar coil with 7 traces: 21 mm

U-shaped trace: 1.6 mm

Vs Sensor input voltage U-shaped trace setup: 4.399 V
Planar coil setup: 4.096 V

S Sensor sensitivity

U-shaped
trace sensor setup:

S1: 159 µV/(V × A/m)
(0.01268 mV/V-Oe)

S2: 188.54 µV/(V × A/m)
(0.0150034 mV/V-Oe)

Sdifferential: 347.94 µV/(V × A/m)
(0.0277 mV/V-Oe)

Planar coil
sensor setup: Sdifferential: 32.67 µV/(V × A/m)

1 The sensor position on the trace length is given by ∆l
L ·100 [%].

Figure 17a shows the magnetic field intensity distribution along the x-axis, Hx obtained
from the COMSOL simulation of the U-shaped trace, and Figure 17b of the Multitrace from
Figure 4b. In order to better illustrate the field values at specific points, at height h above
the sensor, data were extracted for points of interest along transverse (Figures 18a and 19)
and longitudinal lines, Figure 18b (note the insets).
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conductive trace is assumed (Case I and Case II) are closer to the results obtained from 
COMSOL while for the finite model (Case III and Case IV), results more closely converge 
to the results from the simulation at larger distances from the trace. Moreover, for the 
planar coil configuration, the analytical model provides results similar to the simulation 
for distances closer to the coil (Case I and Case II) while Case III and IV converge more 
closely at further distances which is the opposite behavior as in the case of just a single 
trace. We suspect some of the inaccuracies of the finite length models can be corrected by 
further geometric corrections. Additionally, more studies can be performed at various dis-
tances and trace configurations as the specific magnetic field at further trace distances can 
also contain y and z components, which can affect the sensor response, thus the analytical 
method can be improved to also account for those changes. Table 2 shows validation data 

Figure 17. Magnetic field distribution on the x-axis for the U-shaped trace and planar coil for a
100 mA current according to COMSOL simulations: (a) U-shaped current trace: Hx field distribution
at height h = 45 µm (Hx_sensor = 40.630 A/m) and h = 80 µm (Hx_sensor = 39.056 A/m ) from the current
trace; (b) Multitrace (7 traces): Hx field distribution at height h = 45 µm (Hx_sensor = 126.67 A/m ) and
h = 80 µm (Hx_sensor = 121.94 A/m) from the current trace.

From Figures 18 and 19, we can notice that, as expected, the magnetic field intensity
is maximum at the center of the trace and there is a minimum magnetic field intensity
between the traces. Figure 20a results show that the analytical model converges towards
the COMSOL simulation results in the following way (for the U-shaped trace): for higher
field values and consequently closer distance from the trace, the cases where a very long
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conductive trace is assumed (Case I and Case II) are closer to the results obtained from
COMSOL while for the finite model (Case III and Case IV), results more closely converge
to the results from the simulation at larger distances from the trace. Moreover, for the
planar coil configuration, the analytical model provides results similar to the simulation for
distances closer to the coil (Case I and Case II) while Case III and IV converge more closely
at further distances which is the opposite behavior as in the case of just a single trace. We
suspect some of the inaccuracies of the finite length models can be corrected by further
geometric corrections. Additionally, more studies can be performed at various distances
and trace configurations as the specific magnetic field at further trace distances can also
contain y and z components, which can affect the sensor response, thus the analytical
method can be improved to also account for those changes. Table 2 shows validation data
for the central point (note inset from Figure 18a) between the COMSOL simulation results
and the analytical method, after which the analytical method for the seven traces planar
coil is compared with experimental results from [15]. The parameters from Table 1 were
used for the results shown is Table 2. Note that the field values are calculated for 45 µm
(thickness of the Kapton tape on which the trace is printed) and 80 µm distance between
the sensor and the trace for the U-shaped trace and 0.8 mm or 0.08 mm for the planar coil
as the planar coil experimental setup utilized the AA003-02 encapsulated sensors [31].
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Table 2. Comparative analysis between COMSOL simulation, analytical model, and experimental
data.

Trace Type Validation Case h 1

[mm]
Hx

[A/m]
Vout

2

[mV]
Vdifferential

2

[mV]

U-shaped trace
(Figure 4a)

Itrace = 100 mA
Vs = 4.399 V 3

COMSOL simulations
0.08 39.056 - -
0.045 40.630 - -

Analytical
method

Case I: Infinite length,
t neglected

0.08 38.150
S1: 0.02675

0.05839S2: 0.03164

0.045 39.680
S1: 0.02782

0.06073S2: 0.03291

Case II: Infinite length, m = 35 layers
(1 µm each layer)

0.08 36.7321
S1: 0.02575

0.05622S2: 0.03046

0.045 38.2408
S1: 0.02681

0.05853S2: 0.03171

Case III: Finite length,
t neglected

0.08 32.0769
S1: 0.02249

0.04910S2: 0.0266

0.045 33.3818
S1: 0.02341

0.05109S2: 0.02768

Case IV: Finite length, m = 35 layers
(1 µm each layer)

0.08 30.8842
S1: 0.02165

0.04727S2: 0.02561

0.045 32.1704
S1: 0.02255

0.04924S2: 0.02668

Experimental results 0.045 31.7423
S1: 0.0198

0.042S2: 0.022

Planar coil with
7 traces

(Figure 4b)
Itrace = 100 mA
Vs = 4.096 V 3

COMSOL simulation
0.8 79.780 - -
0.08 121.94 - -

Analytical
method

Case I: Infinite length,
t neglected

0.8 82.5885 11.8702 23.7404
0.08 157.422 22.6257 45.2514

Case II: Infinite length, m = 35 layers
(1 µm each layer)

0.8 81.2428 11.6768 23.3536
0.08 140.624 20.2115 40.423

Case III: Finite length,
t neglected

0.8 67.9498 9.9838 19.9676
0.08 132.465 19.0388 38.0776

Case IV: Finite length, m = 35 layers
(1 µm each layer)

0.8 66.8427 9.821 19.642
0.08 118.331 17.0073 34.0146

Experimental results 0.8 - 10.716 21.432

1 Distance between the sensing element and the current trace. Note that 0.045 mm is the distance between the
sensors and the U-shaped trace in the experimental setup and 0.8 mm is the distance between the sensing element
and the current trace in the experimental setup for the planar coil with the AA003-02 encapsulated sensors
[31]. 2 Output voltage for a single sensor (Vout) and for the two sensors in differential configuration (Vdifferential).
3 Sensors supply voltage in differential configuration.



Electronics 2022, 11, 3888 19 of 25

Figure 21 shows results obtained with the analytical method for a multi-trace
configuration–different numbers of trace configurations (from 1 to 21 traces). We can
denote, that the field intensity in the sensor area increases up until 13 traces, after which
the field increase is minor. From tests, we determined that this number is consistent no
matter the trace configuration of the planar coil (D, Td) and the current flowing through the
trace. We consider that at a higher number of traces, other field parameters on the y and z
axis also play a role in the field distribution, thus accuracy of the results can be affected
with the current implementation.
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By analyzing the data from Table 2, for the U-shaped trace, we can note that the
estimated value of the surface parallel component of the magnetic field in the sensor
area varies between 30 and 39.68 A/m (between 0.4 and 0.48 Oe), depending on the
chosen model. Given that the U-shaped trace is a relatively short trace (3.2 mm), with a
length/width ratio = 2.66, and h is comparable with the thickness of the layer, we consider
that the estimation corresponding to Case IV is closer to reality. With these data, an
estimation of the signal level which will be obtained from the sensors can be made for a
100 mA current through the metallic band and considering a 3 mA current through the
sensors: Vsensor1 = 0.0186 ∗ 3 ∗ 0.4 = 0.022 mV, respectively, Vsensor2 = 0.0165 ∗ 3 ∗ 0.4 =
0.0198 mV. In differential regime, an output voltage of around 0.042 mV for an I = 100
mA current through the current trace, which means 0.084 mV for a signal variation of 200
mApp. Furthermore, for the planar coil with 7 traces, the experimental value is between
those of Case II and Case III of the analytical model. Thus, it can be denoted that for a very
long current trace compared with the location and size of the sensor, the length of the trace
can be neglected while for shorter traces (like for the U-shaped trace), length correction is
necessary for adequate magnetic field estimation.

In terms of electrical parameters from the COMSOL simulation, there is not a very
good correlation between the simulation and experimental results: the electrical resistance
is close enough to the experimental parameters for the planar coil (Rsimulated = 1.422 Ω and
Rmeasured = 2 Ω) considering not all parameters are taken into account (such as the entire
length of the planar coil as implemented in the experimental setup) and the inductance is
~13 times lower (Lsimulated = 1.9895 µH, and Lmeasured = 26.3 µH), while for the U-shaped
trace, the electrical resistance is ~11 lower (Rsimulated = 0.008455 Ω and Rmeasured = 0.096 Ω).
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3.2. Demonstrator Chip with AMR Bridge (PHR) Sensors

By taking into account the setup (Figure 11), the option to supply the sensors with a
constant voltage source was tested but the response proved to be unstable. Given that the
two sensors have very similar resistances, the option to supply the sensors with a constant
current source was chosen as in Figures 14 and 16. The K2635A current source was set to
6 mA. The current was evenly distributed between the two sensors as confirmed by the
offset voltages measured for each sensor, which are very close to those when the sensors
were separately supplied at 3 mA. In the conditions described above, the K2635A source
determined:

• The voltage at the terminals of the bridge: 4.399 V;
• The total resistance of the bridge: 0.734 kΩ;
• The power dissipated by the bridge: 13.1 mW.

The output voltages from the two sensors were applied to the LabJack EI1040 con-
ditioning system [42], Figure 11, which supplies two voltages at the output, equal with
the input voltages but ground referenced. The obtained signal is applied to the K2182A
nanovoltmeter. The current through the Ag band is generated by the K6221 source set to
generate a sine waveform with 0.04 Hz (thus, quasi-stationary regime). The band current
passes through the ground through a R = 6.903 Ω load resistance. The output from this
resistor is read by a data acquisition system such that Vdiff = Vsensor1−Vsensor2 = f(I) data
are acquired. Figure 22 shows the response characteristic of the sensor in differential
configuration in function of the current through the printed Ag band. We can note a good
linearity of the system with a sensitivity between 4–4.67 · 10−4 mV/mA. Additionally, from
Figure 20b, we can note that the experimental results are in good qualitative agreement
with the output signal estimated in Section 3.1.
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The demonstrator chip was tested in AC conditions. The total current through the
sensors remained 6 mA. The K6221 source was programmed to generate alternative current
through the U-shaped trace, Figure 11. The signal was amplified by the SR 560 low noise
voltage amplifier from Standford Research; the gain was set to 2·104 and filters were used
that cut frequencies higher than 1 kHz and lower than 5 Hz. The signal from the load
resistor R = 6.903 Ω is applied on channel 1 and the one corresponding to the current sensor
is applied on channel 2 of the HDO 4000 Lecroy Teledyne digital oscilloscope, which allows
the analysis of the signal supplied by the chip.

In the Ag band, the current was injected with the following amplitudes: 5, 10, 15, 25,
25, 50, 75 s, i 100 mA at a 100 Hz frequency. With the HDO 4000 digital oscilloscope, the
waveforms of the signal generated by the chip and the effective signal value were measured.
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The calibration curve was obtained (Figure 23a). Additionally, the frequency response of
the sensor was tested in this case, Figure 23b. Finally, in Figure 24, the waveforms obtained
for a sinewave current with the amplitude Ipeak = 5, 25, and 50 mA at 100 Hz are shown.
From Figure 24, it can be noted that for Ipeak > 15 mA, the waveform of the output voltage
shows minimal distortions, following closely the sinusoidal waveform of the current, also
confirmed by the Fourier analysis.

The detection limit of the setup is around 2 mA (both DC and AC). The linearity error
was determined from Figure 22b by determining a 0.006 mV error for a signal variation of
0.078 mV, which constitutes around a 7.5% linearity error. The sensor was tested between a
range of 0–100 mA to avoid any significant thermal effects on the conductive band which
can influence the signal stability. Note that the setup aims to serve as a proof of concept
and cannot be compared directly with commercial solutions but is now subject to new
developments, especially concerning the multilayer structure used to deposit the sensors.
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4. Conclusions

The aim of this study is to serve as a basis in designing and optimizing a magnetore-
sistive bridge sensor for current measurement and low magnetic field sensing. Focus was
placed on improving the geometric selectivity of the setup by employing an analytical
model which can be used to optimize sensor placement and configuration to achieve the
best ratio in terms of sensitivity, complexity, and physical size. The optimization process
means: appropriate biasing of the sensor, adequate spacing of components to avoid par-
asitic magnetic fields, thus greatly improving the sensitivity of the sensor by increasing
the useful magnetic field present in the sensor area. This can be applied, for example,
for non-destructive testing of electronic circuits when measuring the current in different
regions of a printed circuit board.

The magnetic field modeling study of conductive traces for sensing applications has
shown that the implemented analytical method can serve as an essential tool for designing
high-sensitivity magnetoresistive sensor applications.

The analytical method included four study cases: neglecting the thickness of the trace,
dividing the thickness of the trace in several layers, finite or very long conductive trace,
and several adjacent traces in the sensor area. It was established that, in terms of accuracy
with experimental data, the case of the analytical model when the trace is finite in length
and the thickness of the trace is taken into account and divided in an appropriate number
of layers, is the most accurate. However, for longer trace lengths, models which neglect the
length of the trace can prove more accurate and are closer to the COMSOL FEM model.
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A detailed overview of the layout, behavior, and fabrication steps for a demonstra-
tor AMR bridge sensor setup focused on low fields was performed. The behavior of the
magnetoresistive structure that comprise the sensor was demonstrated through both equa-
tions from a single domain micromagnetic model and simulations using a multi-domain
micromagnetic approach. Through micromagnetic simulations, it was proved that only
the AMR bridge sensor generates the output depending on the applied field. Other parts
of the structure (such as the contacting pads or connecting traces) do not influence the
magnetization dynamics of the bridge with the proposed setup.

Very useful data were obtained, such as the optimal number of traces in a planar coil
setup to increase the field in the sensor area or the field distribution, depending on the
distance from the trace. This method was proven to be accurate when compared with
COMSOL simulations and experimental measurements for the implemented AMR bridge
sensor and for a giant magnetoresistive (GMR)-based current sensor. Several specific
optimizations were performed to the model, which reduce complexity significantly and
do not require computationally intensive FEM simulations compared with other solutions
shown in the literature [31,33–35], which either lack automation or require computationally
intense steps. Further developments of the analytical method can focus on geometric
corrections for multi-trace or non-linear trace configurations.

Furthermore, the proposed setup aims to create a highly versatile and sensitive sensor
setup by taking advantage of inherent benefits in terms of sensor treatment and design
(exchange bias field, geometry) and setup advantages (differential configuration, optimized
U-shaped trace design, sensors placed in a magnetically shielded box). Given the rela-
tively simple fabrication steps and procedure for the AMR bridge sensor, the proposed
sensor design is for proof-of concept purposes only. This approach has some advantages,
such as: simple fabrication, reduced costs, ease of use, and integration possibilities and
disadvantages, such as: nonlinearity, increased resistivity, and limited sensitivity com-
pared to commercial solutions [43–45]. Thus, the novelty of our approach is focused on
modeling-setup optimizations and single mask chip microfabrication.

Results were shown for both thermally and magnetically annealed sensors illustrated
into a complex testing device for DC/AC testing. From the analysis of the experimental
results, a detection limit of approximately ± 2 mA can be estimated. An almost linear
characteristic was obtained in the 0–200 Hz range, with an estimated 7.5% linearity error.
Results can be significantly improved by utilizing more complex structures based on the
GMR or TMR effect, with cross-axis anisotropy, which can lead to significantly enhanced
performance of this type of sensor. The findings from this study can also be applied for
magnetic nanoparticles detection placed on branches of the PHR sensor instead of the
U-shaped stripe. They can be seen as additional sources of the magnetic field which can
unbalance the bridge. Future studies can also focus on more complex sensor layouts
together with refined analytical modeling in xyz directions and simulations for more
complex sensor layouts in multiple axis orientations.
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