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Abstract: The modeling and drive control of electric machines are still actively researched scientific
topics. Most of the existing models contain parameters that have no physical content or cannot
be measured at all. For this reason, the use of observers in modern drive control algorithms is
necessary. The main goal of this paper is to present the mathematical formalism of a linear matrix
inequality (LMI)-based controller-observer design for a tensor product (TP) transformation-based
model, including its implementation in a simulation environment. Based solely upon simulation
results, the designed observer can provide a stable and accurate state space variable, regardless of the
highly nonlinear induction machine model.
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1. Introduction

The increasing presence of electromobility can be observed all over the world, resulting
in the manufacturing of a wide variety of vehicles. In all cases, an electric powertrain
has been developed and applied. With respect to the application, we can find any type
of electric machines, from one of the oldest induction machines (IM), to the switched
reluctance, or axial flux, machines. One of the consequences of the current energy crisis is
that optimizing the energy use of the powertrains has gained considerable attention as a
field of research. This requires an accurate and comprehensive description of the system.
In order to be able to control these precisely described systems with high nonlinearity,
it is necessary to use different types of observers. This way, we have the opportunity
to determine physically unmeasurable parameter values, which are necessary for the
control algorithm.

Induction machine modeling is not a new research topic when it comes to the use
of coordinate transformations and meaning [1]. However, depending on the achievable
objective, an extremely diverse field of science can be observed. Thoughout this work, a
direct rotor field-oriented control (DRFOC)-based control algorithm has been implemented,
where the number and type of the state variables used during the state space modeling
varies depending on the application [2–6].

The possible modeling theory of modern drives is the quasi-linear parameter varying
(qLPV) modeling, where the difficulties arising from nonlinearity are eliminated with a
new, time-dependent linear parameter [7,8]. A representation of this is tensor product
modeling [9–11], where classical fuzzy logic is used to create independent linear systems,
which are taken into account with different weights. The advantage of this technique is that
no neglect is necessary, resulting in a more accurate description [12,13]. The mathematical
formalism of the LMI-type controller and observer can be considered to be a disadvantage,
but once successfully formalized and implemented, it can be used universally for any new
application [14–16].

Section 2 discusses the state space, TP, controller, and observer model formulation. From
this, the LMI-based controller and observer design have been introduced in Section 3. Section 4
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presents the implementation of the formulated equations into simulation environment.
Finally, Section 5 gives a detailed overview of the designed control system based solely
upon simulation results.

The main objective of this article is to present the mathematical formulation of the LMI-
based observer design, including its implementation in a MATLAB/Simulink environment.
Based on the simulation results, the designed observer can consistently provide data on the
values of the state variables. Further research aims to conduct uncertainty studies.

2. Model Formulations
2.1. State Space and qLPV Model of IM

Finding proper state variables for the induction machine state space model must be
the first task in the field of controller and observer design. Previous studies have already
discussed the possible solutions for different types of applications. Since the IM model is
highly nonlinear and will be handled with a qLPV modeling strategy, the minimization
of the state vector must always be kept in mind. Recent research has proven [12,13] that
an integrator must be implemented in order to achieve an accurate and robust control
algorithm. Based on these terms, the IM may be described as follows: [12,13,17]:

ẋ = A∗x + B∗v, A∗ =
[

A 0
C 0

]
, B∗ =

[
B
0

]
, (1)

where the state variables vector x is [ids; iqs; ψdr; ωr; sumid; sumomega], v =[vds; vqs]. The d
and q indexes are used for the direct and quadrature components of currents, flux, and
voltages; s and r are used for stator and rotor notation, respectively; ωr is the electrical speed;
and sumid and sumomega] are the sums of the feedback errors. A, B, and C matrices are

A =


− Rs

Lsσ −
Rr L2

m
Ls L2

r σ
Rr Lm

Lr
p1 p4

Rr Lm
Ls L2

r σ
p1

−p3 − Rr Lm
Lr

p1 p4 − Rs
Lsσ −

Rr L2
m

Ls L2
r σ
− Lm

Ls Lrσ p3 0
Rr Lm

Lr
0 − Rr

Lr
0

0 3
2

N2

J
Lm
Lr

p2 0 −D f
J

, B =


1

Lsσ 0
0 1

Lsσ

0 0
0 0

, (2)

A =


−2684 4.909p1 p4 1425 p1

−p3 − 4.909p1 p4 −2684 −49.07p3 0
4.909 0 −29.05 0

0 2360p2 0 −19.79

, (3)

B =


51.97 0

0 51.97
0 0
0 0

, C =

[
1 0 0 0
0 0 0 1

]
, (4)

where Rs = 4.7 Ω and Rr = 5.2 Ω are resistances; Ls = 178.8 mH, Lr = 179 mH, and
Lm = 169 mH are the inductances; σ = 0.1076, N = 2 is number of pole paars;
J = 10.8−4 kg ·m2 is the moment of inertia; Df = 4.75 · 10−3 Nm · s is the viscous fric-
tion coefficient; p1 = iqs, p2 = ψdr, p3 = ωr, and p4 = 1

ψdr
are the linear time dependent

variables.

2.2. TP Model of IM

The configuration of the IM TP model has previously been discussed in detail [12].
Here, the following ranges have been defined for p, according to the nominal and maximum
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values of the motor: Ω = [−5, 5]× [0, 0.75]× [−1000, 1000]× [0, 100000], where 25 grid
points are applied to all parameters. The core tensor S(p(t)) can be written as

S =

[
A∗ B∗

C 0

]
∈ R25×25×25×25×8×8. (5)

Executing higher-order singular value decomposition (HOSVD) [18,19] results in the
following first three singular values (SV) for p1: 7.61·108, 1.85·107, and 4.91·10−5; SVs for
p2: 7.61·108, 7.39·105, and 3.67·10−6; SVs for p3: 7.61·108, 1.84·107, and 4.52·10−6; and SVs
for p4: 7.61·108, 9.53·106, and 4.62·10−6. After the second SV for p, all the values are lower
with at least 13 decades; however, for further studies only the first two SVs have been used .
Including further SVs would increase the number of subsystems, which would increase the
model set-up time, with no effect to the accuracy or robustness. With this simplification, the
closed to normalized (CNO) weighting function seems to be linear, as shown in Figure 1.
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Figure 1. CNO type weighting function of TP model.

Based on the SV configurations, the linear time invariant (LTI) system description can
be introduced.

In this case, (1) is formulated by the R = 16 linear subsystem with different wr(p) ∈
[0, 1] weighting functions as [10]

ẋ =
R

∑
r=1

wr(p)(Arx + Brv)

y =
R

∑
r=1

wr(p)Crx,

(6)

where
R

∑
r=1

wr(p) = 1. (7)
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Moreover, v can be formulated, where Fr is the feedback gain

v = −
R

∑
r=1

wr(p)Frx. (8)

Inserting (8) into (6) leads to

ẋ =
R

∑
r=1

wr(p)

(
Arx− Br

R

∑
r=1

wr(p)Frx

)
,

y =
R

∑
r=1

wr(p)Crx.

(9)

In order to visualize the next moves, expand the sums in (9).

ẋ =w1(A1x− B1[w1F1 + w2F2 + ... + wrFr]x)+

w2(A2x− B2[w1F1 + w2F2 + ... + wrFr]x)+

...+

wr(Arx− Br[w1F1 + w2F2 + ... + wrFr]x).

(10)

Integrating (7) into (10) gives

ẋ =w1(w1 + w2 + ... + wr)(A1x− B1[w1F1 + w2F2 + ... + wrFr]x)+

w2(w1 + w2 + ... + wr)(A2x− B2[w1F1 + w2F2 + ... + wrFr]x)+

...+

wr(w1 + w2 + ... + wr)(Arx− Br[w1F1 + w2F2 + ... + wrFr]x).

(11)

Breaking the parentheses by multiplying by w1...wr

ẋ =
(

w2
1 + w1w2 + ... + w1wr

)
A1x− B1

[
w2

1F1 + w1w2F2 + ... + w1wrFr

]
x+(

w1w2 + w2
2 + ... + w2wr

)
A2x− B2

[
w1w2F1 + w2

2F2 + ... + w2wrFr

]
x+

...+(
w1wr + w2wr + ... + w2

r

)
Arx− Br

[
w1wrF1 + w2wrF2 + ... + w2

r Fr

]
x.

(12)

As it can be seen in (12), w2
r appears in the main diagonals, which leads to a more

compact form:

ẋ =

[
R

∑
r=1

w2
r (p)(Ar − BrFr) + 2

R

∑
r=1

R

∑
s=r+1

wr(p)ws(p)
(Ar − BrFs) + (As − BsFr)

2

]
x. (13)

By introducing Gr,s = Ar − BrFs, the final form of the LTI system is achieved, where
ACL denotes the closed loop system as

ẋ =

[
R

∑
r=1

w2
r (p)Gr,r + 2

R

∑
r=1

R

∑
s=r+1

wr(p)ws(p)
Gr,s + Gs,r

2

]
x = ACLx. (14)

2.3. Observer Design

Nowadays, the use of observers for devices in real environments is an essential part of
model formulation. Most models calculate with internal values that have no basis; they are
only abstract mathematics, or physical values that are very difficult to measure or cannot
be measured at all. All of this can be eliminated by using observers, which receive the same
input signal. Based on the output difference between the real and observed system, it can
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draw a conclusion about the accuracy of the intervention. By analogy with (9), the same
equation can be formulated for the observer as [14]

ˆ̇x =
R

∑
r=1

wr(p)(Arx̂ + Brv + Kr(y− ŷ)),

ŷ =
R

∑
r=1

wr(p)Crx̂,

(15)

where Kr is the observer gain; x̂, ŷ are the observer state and output vectors; and the input
signal introduced in (8) is rewritten as

v = −
R

∑
s=1

ws(p)Fsx̂, (16)

which makes it necessary to modify (9) as

ẋ =
R

∑
r=1

wr(p)

(
Arx− Br

R

∑
s=1

ws(p)Fsx̂

)
. (17)

A basic expectation of observers is that the error signal e = x − x̂ tends toward
zero as quickly as possible. Executing (10)–(12) operations on (17) gives the final form of
the system.

ẋ =
R

∑
r=1

R

∑
s=1

wr(p)ws(p)[(Ar − BrFs)x + BrFse] (18)

The same differential equation is formulated for the error signal.

ė =
R

∑
r=1

wr(p)

(
Ar(x− x̂)−Kr

R

∑
s=1

ws(p)Cs(x− x̂)

)
(19)

ė =
R

∑
r=1

R

∑
s=1

wr(p)ws(p)(Ar −KrCs)e (20)

Introducing the augmented system xT
a = [x e] to handle parts (18) and (20) of one

closed system ACL as

ẋa =

[
R

∑
r=1

w2
r (p)Gr,r + 2

R

∑
r=1

R

∑
s=r+1

wr(p)ws(p)
Gr,s + Gs,r

2

]
xa = ACLxa, (21)

where

Gr,s =

[
Ar − BrFs BrFs

0 Ar −KrCs

]
, (22)

the final descreption of the model has been achieved.

3. State Feedback Controller and Observer Design

Following the description of the augmented system, the next step is the controller
and observer design. The state feedback control scheme is shown in Figure 2 [17]. As
can be seen, the control scheme includes an integrator to improve the robustness of the
controller. Further work was required to adapt the system description to the integrator
such as separate F = [FT

IM; FI] feedback gain for the separated feedback loops.
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Figure 2. State feedback control scheme with observer for LMI-based control.

A possible solution for the LTI system controller design aims to apply the Ljapunov sta-
bility theorem [20], i.e., AT

CLP + PACL < 0 if there exists a common positive definite matrix
such as

P =

[
P1 0
0 P2

]
. (23)

To apply the Ljapunov stability theorem to (21), two separated in-equations must be
formulated and solved to achieve an asymptotically stable system, i.e.,

GT
r,rP + PGr,r < 0, (24)(

Gr,s + Gs,r

2

)T
P + P

(
Gr,s + Gs,r

2

)
≤ 0. (25)

Substituting (22) into (24) and (25) leads to[
AT

r − FT
r BT

r 0
FT

r BT
r AT

r −CT
r KT

r

]
P + P

[
Ar − BrFr BrFr

0 Ar −KrCr

]
< 0, (26)

[
AT

r + AT
s − FT

s BT
r − FT

r BT
s 0

FT
s BT

r + FT
r BT

s AT
r + AT

s −CT
s KT

r −CT
r KT

s

]
P+

P
[

Ar + As − BrFs − BsFr BrFs + BsFr
0 Ar + As −KrCs −KsCr

]
≤ 0.

(27)

The following notation has been introduced in order to apply the Schur complement
method [21]

G =

[
M11 M12
M21 M22

]
, G/M22 = M11 −M12M−1

22 M21, G/M11 = M22 −M21M11M12, (28)

where M11 and M22 are invertible block matrices. Breaking the parenthesis
in (26) and (27) results[

AT
r P1 − FT

r BT
r P1 0

FT
r BT

r P1 AT
r P2 −CT

r KT
r P2

]
+

[
P1Ar − P1BrFr P1BrFr

0 P2Ar − P2KrCr

]
< 0, (29)

[
AT

r P1 + AT
s P1 − FT

s BT
r P1 − FT

r BT
s P1 0

FT
s BT

r P1 + FT
r BT

s P1 AT
r P2 + AT

s P2 −CT
s KT

r P2 −CT
r KT

s P2

]
+[

P1Ar + P1As − P1BrFs − P1BsFr P1BrFs + P1BsFr
0 P2Ar + P2As − P2KrCs − P2KsCr

]
≤ 0.

(30)
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Applying (28) notation to (29) and (30) leads to

GT
r,rP/M22 + PGr,r/M22 = P1Ar + AT

r P1 − P1BrFr − FT
r BT

r P1 < 0,

GT
r,rP/M11 + PGr,r/M11 = P2Ar + AT

r P2 − P2KrCr −CT
r KT

r P2 < 0,
(31)

((
Gr,s + Gs,r

2

)T
P

)
/M22 +

(
P
(

Gr,s + Gs,r

2

))
/M22 =

P1Ar + P1As − P1BrFs − P1BsFr + AT
r P1 + AT

s P1 − FT
s BT

r P1 − FT
r BT

s P1 ≤ 0,((
Gr,s + Gs,r

2

)T
P

)
/M11 +

(
P
(

Gr,s + Gs,r

2

))
/M11 =

P2Ar + P2As − P2KrCs − P2KsCr + AT
r P2 + AT

s P2 −CT
s KT

r P2 −CT
r KT

s P2 ≤ 0.

(32)

Multiplying the equations containing P1 with /P−1
1 ()P−1

1 and introducing
X1 > 0, X2 > 0 as P−1

1 = X1, P2 = X2 gives

ArX1 + X1AT
r − BrFrX1 − X1FT

r BT
r < 0,

X2Ar + AT
r X2 − X2KrCr −CT

r KT
r X2 < 0,

ArX1 + AsX1 + X1AT
r + X1AT

s − BsFrX1 − BrFsX1 − X1FT
s BT

r − X1FT
r BT

s ≤ 0,

X2Ar + X2As + AT
r X2 + AT

s X2 − X2KrCs − X2KsCr −CT
s KT

r X2 −CT
r KT

s X2 ≤ 0.

(33)

Finally, introducing Mr and Nr and applying them to (33) leads to the implementable
form of the LMI, such as

M1r = FrX1, MT
1r = X1FT

r ,
N2r = X2Kr, NT

1r = KT
r X2,

(34)

ArX1 + X1AT
r − BrM1r −MT

1rBT
r < 0,

X2Ar + AT
r X2 −N2rCr −CT

r NT
2r < 0,

ArX1 + AsX1 + X1AT
r + X1AT

s − BsM1r − BrM1s −MT
1sB

T
r −MT

1rBT
s ≤ 0,

X2Ar + X2As + AT
r X2 + AT

s X2 −N2rCs −N2sCr −CT
s NT

2r −CT
r NT

2s ≤ 0.

(35)

For a more sophisticated and detailed controller design, the decay rate and input
signal limitation can be implemented with the following LMIs instead of (35)

ArX1 + X1AT
r − BrM1r −MT

1rBT
r + 2αX1 < 0,

X2Ar + AT
r X2 −N2rCr −CT

r NT
2r − 2αX2 < 0,

ArX1 + AsX1 + X1AT
r + X1AT

s − BsM1r − BrM1s −MT
1sB

T
r −MT

1rBT
s + 4αX1 ≤ 0,

X2Ar + X2As + AT
r X2 + AT

s X2 −N2rCs −N2sCr −CT
s NT

2r −CT
r NT

2s + 4αX2 ≤ 0.

(36)

φ2I < X1,
[

X1 MT
1r

M1r u2
maxI

]
< 0.

φ2I < X2,
[

X2 NT
2r

N2r u2
maxI

]
< 0.

(37)

4. Creating a Simulation Environment

After the successful formulation of the controller, the equations must be implemented
in a simulation environment. In this case, MATLAB and Simulink have been used. TP
toolbox [22], SeDuMi 1.3 [23], and Yalmip [24] have been used for modeling and LMI
solving. Observer design is not included in these tool-kits; the existing functions have been
modified as shown in in Algorithm 1 for asymptotic stabilization with a decay rate [14].
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Algorithm 1 Asymptotically stable LMI-based controller and observer design with decay
rate.
function lmi = lmi_asym_obs(lmi, alpha)
R = size(lmi.A, 1);
A = lmi.A;
B = lmi.B;
C = lmi.C;
X1 = lmi.X1;
X2 = lmi.X2;
M = lmi.M;
N = lmi.N;
n = lmi.n;
m = lmi.m;
for r = 1 : R do

Ar = reshape(A(r,:,:), [n n])
Br = reshape(B(r,:,:), [n m]);
Cr = reshape(C(r,:,:), [m n]);
lmi.F = lmi.F + [X1 ∗ Ar′ + Ar ∗ X1− Br ∗Mr−Mr′ ∗ Br′ + 2 ∗ alpha ∗ X1 < 0];
lmi.K = lmi.K + [Ar′ ∗ X2 + X2 ∗ Ar− Nr ∗ Cr− Cr′ ∗ Nr′ + 2 ∗ alpha ∗ X2 < 0];

end for
for 1 = 1 : R do

for s = r + 1 : R do
Ar = reshape(A(r,:,:), [n n]);
As = reshape(A(s,:,:), [n n]);
Br = reshape(B(r,:,:), [n m]);
Bs = reshape(B(s,:,:), [n m]);
Cr = reshape(C(r,:,:), [m n]);
Cs = reshape(C(s,:,:), [m n]);
lmi.F = lmi.F + [X1 ∗ Ar′ + Ar ∗ X1 + X1 ∗ As′ + As ∗ X1− Br ∗Ms−Ms′ ∗ Br′ −

Bs ∗Mr−Mr′ ∗ Bs′ + 4 ∗ alpha ∗ X1 <= 0];
lmi.K = lmi.K + [Ar′ ∗ X2 + X2 ∗ Ar + As′ ∗ X2 + X2 ∗ As− Nr ∗ Cs− Ns ∗ Cr −

Cs′ ∗ Nr′ − Cr′ ∗ Ns′ + 4 ∗ alpha ∗ X2 <= 0];
end for

end for

The implementation of (37) is also required, which is made as shown in Algorithm 2 [14].

Algorithm 2 Applying input contraint to LMI-based controller and observer design.

function lmi = lmi_input_obs(lmi, umax,phi)
R = size(lmi.A, 1);
X1 = lmi.X1;
X2 = lmi.X2;
M = lmi.M;
N = lmi.N;
lmi.F = lmi.F + [phi2 * eye(lmi.n) < X1];
lmi.K = lmi.K + [phi2 * eye(lmi.n) < X2];
for r = 1 : R do

lmi.F = lmi.F + [X1 Mr′; Mr umax2∗eye(lmi.m) > 0];
lmi.K = lmi.K + [X2 Nr; Nr′ umax2∗eye(lmi.m) > 0];

end for

The primary goal of the simulations is to create an application that can also be used in
a real physical system in the future. This is why it is necessary to ensure that the simulation
environment contains the best possible representation of the real environment. For this
reason, Simulink is used, where an environment closer to reality was created, while in
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MATLAB, the simulation environment is initialized, the TP model is set up, the LMIs are
solved, and data are post-processed. The following cases have been examined in Simulink:

• Load-torque investigation,
• Parameter-uncertainties studies,
• Noise-signal implementation.

5. Simulation Results

The behavior of the designed control algorithm has been tested separately under
different conditions while also applying the distractions. A detailed investigation can be
performed by using Simulink, where Clark and Park transformations have been imple-
mented to check the robustness of the controller with loads in different directions, while
measurement noise has been applied and the model nominal values have been modified.
The reference value for all the simulations are Ψdr = 0.4 Wb for the direct rotor flux
component and ωm = 100 rad/s for the mechanical speed, respectively.

5.1. Applying Load Torque

One of the most common investigations of the controller behavior is to apply an
external torque for a rotating machine model in the course of the speed control mode. The
motor nominal torque is 2 Nm; therefore, the absolute value of TL varies under that limit.
The step response function can be seen in Figure 3. The biggest overshoot of the controller
happens after t = 3.5 as 4.47 rad/s (4.47%), where ∆TL = 3.5 Nm.
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Figure 3. Dynamic behavior with applied torque.

From the observer point of view, the observed state variables have been initialized as
x̂(0) = [1; 1; 0.001; 10]. As expected, the transient error of the observer goes to zero very
quickly; it takes around 2 ms, as shown in Figure 4. Applying TL does not cause an error
between the motor and the observer variables. The same TL profile has been applied in
further simulations.

0 0.002 0.004 0.006 0.008 0.01

Time[s]

-10

-8

-6

-4

-2

0

2

E
rr

o
r

i
ds

[A]

i
gs

[A]

dr
[Wb]

r
[rad/s]

Figure 4. Initial observer error.

5.2. Applying Measurement Noise

In order to prepare the controller for a real environment operation, it is necessary to
investigate the phenomenon of measurement noise. In this case, first the Gaussian noise
signal has been added to the current signals; then, it has been applied to the feedback speed
signal as well. Two different noise variances have been set and quantified: 0.001 and 0.005.
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While 0.001 provides a more realistic environment, 0.005 can only occur in a very noisy
environment. The noise signals are shown in Figure 5.
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Figure 5. Noise signals with a variance of 0.001 (upper) and 0.005 (bottom).

It must be noted that no filter has been used because it would make it more difficult
to investigate the limitation of the controller. The output of a well applied filter would be
less noisy than that of the implemented ones. Let us first apply the noise signal only to the
measured currents. The simulation results are shown in Figure 6, where the orange signal
is the absolute error value of the observed speed and the blue curves are the step responses
of the speed controller.

Figure 6. Speed control with noise signals with a variance of 0.001 (upper) and 0.005 (bottom).

Even if the error scales up with the noise signal, the speed controller remains stable
and reliable. The signals ids and iqs associated with Figure 6 can be seen in Figure 7.

Investigating the second case, where noise has been applied to the feedback speed sig-
nal, with the amplitude of 20 times as shown in Figure 5. Other parameters are unchanged;
the results can be seen in Figures 8 and 9.
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Figure 7. Current curves with noise signals with a variance of 0.001 (upper) and 0.005 (bottom).
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Figure 8. Speed control with noise signals with a variance of 0.001 (upper) and 0.005 (bottom).
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Figure 9. Current curves with noise signals with a variance of 0.001 (upper) and 0.005 (bottom).

From the current point of view, the noise amplitudes have slightly increased, but this
has no effect on the control ability. The biggest difference can be observed in the error
amplitudes, which are shown in Table 1. With noise signal variance of 0.001, the mean
of the error increased by 0.5034 rad/s (2721%), with a variance of 0.005 the increase is
1.125 rad/s (2698%). The percentage increase may mean that applying noise to the speed
signal would cause a fatal error; however, this is not the case. The error percentage
compared to the full scale of the signal remains under 6% as the maximum column shows,
which is fully acceptable in this case.

Table 1. Observed speed signal error comparison.

Variance Speed Noise Mean Max

0.001 Not applied 0.0185 0.1209
0.005 Not applied 0.0417 0.2697
0.001 Applied 0.5219 2.6639
0.005 Applied 1.1667 5.9619

5.3. Examining Parameter Uncertainties

Investigating the behavior and stability of the controller with the tuned parameter
is important, if thermal management is also taken into account. The nominal motor
parameters are defined at 20 ◦C, while modern motors with a high power density can
operate up to 180 ◦C. This amount of ∆Ttemp = 160 ◦C causes a 163% copper resistance rise.
The temperature change also affects the bearing; hence, the inertia and the coefficient of the
friction modification is also considerable. In order to push the controller to its limits, the
following modifications have been performed in further simulations: 163% for Rs and Rr;
90% for Ls, Lr, and Lm; and 130% for θ. Let us investigate the following setups:

1. The ideal condition compared with tuned parameters, applied at t = 0 (see Figure 10),
2. The ideal condition compared with tuned parameters and measurement noise with a

variance of 0.005 on currents, applied at t = 0 (see Figure 11),
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3. The ideal condition compared with tuned parameters and measurement noise with a
variance of 0.001 on currents and speed, applied at t = 0 (see Figure 12),

4. The ideal condition compared with tuned parameters and measurement noise with
variance of 0.005 on currents and speed, applied at t = 0 (see Figure 13).
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Figure 10. Case 1, parameter uncertainty test compared to ideal condition. Red curves with nominal
parameters, blue ones with tuned.
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Figure 11. Case 2, parameter uncertainty test compared to ideal condition. Red curves with nominal
parameters, blue ones with tuned.
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Figure 12. Case 3, parameter uncertainty test compared to ideal condition. Red curves with nominal
parameters, blue ones with tuned.
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Figure 13. Case 4, parameter uncertainty test compared to ideal condition. Red curves with nominal
parameters, blue ones with tuned.

Analyzing the similarities among the four cases, it is obvious that there is a significant
difference in flux control. The explanation for the discrepancy is to be found in the determi-
nation of the flux ref, namely, ψdrref

= Lmids, where ids is a feedback value. If Lm has been
modified to 90% its nominal value, the controller cannot compensate for this difference
because ψdr is not measurable or observable accurately. The main goal of the controller
is to provide precise speed control. The flux difference has been compensated for with
increased iqs current. The error of the speed control has been investigated in Figure 14. The
average absolute errors of the four cases are 1.1293, 1.1787, 1.1688, and 1.2979, respectively,
while the maximum errors are 3.9037, 4.3555, 4.5747, and 5.6725. The growing amount
of the noise level increases the error of the speed controller, which is acceptable. As a
reminder, the real-time application must contain noise filters, which results in less noisy
signal than investigated in this section. Examining the Uq voltage signals, it can be stated
that the limitation of the speed regulation will be on the side of the power electronics. As
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the control algorithm always finds a proper Ud and Uq excitation signal, the real question
during real-time testing will be feasibility from the point of view of the electronics side.
These results seem to justify the implementation of the appropriate filter algorithm.
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Figure 14. Speed controller error comparison for the parameter uncertainty cases.

6. Conclusions

The first part of the article has discussed the TP modeling of induction machines and its
description in the form of LMI. The main section has examined the mathematical formalism
of the LMI-based observer design and its implementation in a simulation environment. The
primary objective in tuning the controller was to ensure robust operation, which in all cases
results in a certain level of degradation of the dynamic characteristics. Consequently, it is
possible to find a controller with better dynamic behavior in the literature where robustness
was not considered as a criterion.

The designed controller ensures stable and accurate operation over the full operating
range of the machine, taking into account the wide range of temperature values, and
possible variations in inductances, which are outside the range of the parameters under
consideration. The simulation results have been presented in detail, and the behavior of
the nonlinear controller has been analyzed using external perturbations and measurement
noises. The results of the parameter-uncertainty studies have shown that the designed
controller may be suitable for testing in a real-time application. Compared to the commonly
used PI current regulators, the nonlinear controller provides a more robust, accurate, and
faster operation. The results presented here are difficult to compare with similar Takagi-
Sugenou or LPV technics. The description of induction machines in different papers with
different state-space models does not allow for a numerical comparison of the controllers. A
future plan is to develop a sensorless controller algorithm by replacing the angular velocity
in the feedback loop. With this condition, a comparison between the presented LMI-based
observer and other model-based observers will be comparative.
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