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Abstract: The ambulance service is the main transport for diseased or injured people which suffers
the same acceleration forces as regular vehicles. These accelerations, caused by the movement of the
vehicle, impact the performance of tasks executed by sanitary personnel, which can affect patient
survival or recovery time. In this paper, we have trained, validated, and tested a system to assess
driving in ambulance services. The proposed system is composed of a sensor node which measures
the vehicle vibrations using an accelerometer. It also includes a GPS sensor, a battery, a display, and
a speaker. When two possible routes reach the same destination point, the system compares the
two routes based on previously classified data and calculates an index and a score. Thus, the index
balances the possible routes in terms of time to reach the destination and the vibrations suffered in
the patient cabin to recommend the route that minimises those vibrations. Three datasets are used to
train, validate, and test the system. Based on an Artificial Neural network (ANN), the classification
model is trained with tagged data classified as low, medium, and high vibrations, and 97% accuracy
is achieved. Then, the obtained model is validated using data from three routes of another region.
Finally, the system is tested in two new scenarios with two possible routes to reach the destination.
The results indicate that the route with less vibration is preferred when there are low time differences
(less than 6%) between the two possible routes. Nonetheless, with the current weighting factors, the
shortest route is preferred when time differences between routes are higher than 20%, regardless of
the higher vibrations in the shortest route.

Keywords: accelerometer; ANN; roads; z-axis; route recommendation; mobility; transport

1. Introduction

In cities, transport is critical, and many efforts are currently being made to improve
its efficiency and reach autonomous driving [1]. The transport of patients on ambulances
represents a minor percentage of the vehicle classes in urban and interurban mobility.
Most proposals for traffic efficiency are tailored for private cars or public transport but
do not include emergency vehicles such as ambulances. Nonetheless, the impacts of the
traffic, driving patterns, and the vibrations suffered in the patient’s cabin are crucial for the
patient’s well-being and survival.

Most of the proposals for ambulances and mobility are aimed at finding the most
suitable location of units to reduce the response time. Thus, the recurrent topics for am-
bulances and mobility are the forecasting of ambulances demand [2,3], air mobility [4–6],
and ambulance allocation [7,8]. Nonetheless, very few proposals are found for the mo-
bility of ambulances after they reach the patient and must bring him to a hospital. An
example of these proposals is the doctoral dissertation of J. Miles [9], in which he has
developed a decision-support model for transport decisions with respect to a wide variety
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of patients beyond the traditional time-critical accident and emergency patients. Nonethe-
less, the approach of this decision-support model is more focused on the patient than the
mobility areas.

Many studies demonstrate how vibration in ambulances affects patients. The vast
majority of studies are conducted on neonatal transport, which are very sensitive to vibra-
tion [10]. Other cases in which the effects of vibration during transport in the patient cabin
have been studied have focussed on cardiovascular resuscitation [11,12], ventilation [13],
and the intubation process [14]. A completely different study is focused on the effect of
ambulance acceleration and deceleration on the heart rate of the patient [15]. Proposals to
reduce these variations are concerned with mechanical aspects rather than mobility. Some
examples focus on using spinal immobilisation and spinal motion restriction to reduce the
head–neck kinematics in the ambulance patient cabin [16]. Other solutions are based on
using new hydro–pneumatic suspension [17], which significantly reduces the vibration in
the patient compartment of the ambulance.

The aim of this paper is to present a driving assistance system for ambulances based on
low-cost sensors, which proposes a recommended route to reach a destination when two or
more possible routes can be taken. As far as we are concerned, no similar system has been
proposed. The current efforts to improve driving in ambulances are based on simulator-
based training [18] or Self-Organising Maps [19]. The system uses acceleration and GPS
data to characterise the routes; generated data is tagged using Artificial Neural Network
(ANN) in the cloud. When the ambulance must reach a destination, the different available
routes are compared according to the time in which the vehicle remains in areas with
different vibration profiles. An index and a score to compare the routes are proposed in the
paper. Once the routes are compared, the one with the lowest index value is suggested and
displayed on the screen. To train, validate, and test the proposed system, three scenarios
and six routes have been driven to gather data. For the training dataset, three repetitions
were conducted. The gathered data were tagged into three groups according to the road
type. The validation and the test dataset are composed of different routes. All the included
routes have both urban and interurban mobility. Different options for data pre-treatment
are considered in this study. The main novelty of this proposal is the consideration of
vibration in the patient cabin (as the acceleration values) in the proposal of a route, which
minimises the discomfort and maximises the well-being of the patient, and facilitates the
practices of sanitary personnel. Existing solutions for minimising the vibrations are based
on the use of suspension or immobilisation elements [16,17]. In the following, we highlight
the contribution and novelty of this paper:

• The use of vibration data in the vehicle is used as input information for a decision-
support tool for ambulance drivers to select the most appropriate route. So far, no
other paper has analysed the effect of vibration in route planning for ambulances;

• The ANN is used to classify the points along a route according to the 3-axis acceleration
and velocity. The results of the ANN are used to calculate an index and a score,
which also considers the travel time, to compare different routes. As far as we are
concerned, no other publication has used this combination of an ANN and an index
for the decision;

• The proposed system is tested in real scenarios, including urban and interurban
mobility areas with 10 trips and more than 100 min of data registered. Most of the
current proposals are based on simulated data rather than gathered data.

The rest of the paper is structured as follows: Section 2 outlines the related work
highlighting the differences between existing proposals and the novelty of this paper. The
proposed system is detailed in Section 3, including the mobility areas characterisation,
the system description, the test bench, the proposed index and score, the ANN, and the
methodology. The results, training, validation, and testing of the proposed system are
presented and discussed in Section 4. Finally, Section 5 highlights how the results clearly
demonstrate the achievement of the aim of this paper.
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2. Related Work

In this section, the state of the literature related to the proposed system is outlined. The
current proposals for vibration monitoring in different types of vehicles are summarised.

On the one hand, we deal with papers aiming to measure the pavement roughness. J.
H. Jeong et al., in 2020 [20], proposed using Convolutional Neural Networks (CNNs) for
pavement roughness assessment. The data used in this paper was numerically simulated.
Their simulations include four types of vehicles and different speeds. They authors also
generated road profiles to train, validate, and test their CNN.

Although the data simulations can be very accurate, our system is based on data
gathered on roads using an actual vehicle, which is much more precise in its characterisation
of the pavement state and its impact on vehicle vibrations. In 2022, Z. Zhang et al. [21] used
a smartphone to gather data on three asphalt pavement segments. Using the smartphone
data, a genetic algorithm is applied to compute vehicle model parameters and recursive
equations for computing the system state variables from which the profile is estimated.
Their results estimated the International Roughness Index (IRI) with a relative error below
11%. In 2022, a similar approach was conducted by Y. I. Alatoom and T. I. Al-Suleiman [22].
The authors used a smartphone to gather data and study the impact of pavement age,
traffic loading, and traffic volume on the IRI values. Their results suggest that the ANN is a
promising tool for predicting the IRI with average errors below 10%. Even though both
papers [21,22] aimed to estimate the IRI with accurate results, they were focused on sensing
the vibrations to estimate the IRI, not on using the generated values to map and suggest
alternative routes intended to minimise those vibrations. More solutions based on the same
principle as [21,22] can be found in the review papers [23,24], published in 2022.

On the other hand, several papers measured the vibration sensed in the vehicle in
different circumstances to analyse the impact of the pavement or traffic structures on body
vibration. Concerning whole-body vibration, two contributions based on simulations
are detailed in [24,25]. In 2020, G. Wang et al. [25] studied the comfort of buses based
on numerical simulations of road surface roughnes5. Using the same approach, i.e., the
simulation of road surface roughness, P. Mucka, in 2021 [26], studied the IRI thresholds
based on whole-body vibration in passenger cars. Some simulations were carried out
specifically for ambulances [27,28]. These studies employed complex and comprehensive
simulations, but this paper aims to classify the roads based on actual data to establish a
recommended route. Other papers are found that base their results on actual measurements.
M. L. M. Duarte and G. C. de Melo, in 2018 [29], studied the effect of different pavements
on body vibration, such as stone paved road samples and asphalt roads. The authors
performed the trials with three cars and at five speeds, 20 to 60 km/h. The trials have a
duration of 30 to 43 s. Weighing factors from 1 to 1.4 are applied. The authors do not use the
3-axis acceleration independently; they used the most severe axis acceleration and represent
the power spectra density results for Ford Fusion as a function of pavement type, vehicle
type, and speed. Notwithstanding the efforts and complex test bench of the authors, the
paper was focused on urban mobility. For our purpose, the characterisation of both urban
and interurban mobility is necessary. In 2022, S. Bruno et al. [30] used low-cost sensors to
manage stone pavements with a GIS-based methodology. They gathered data in actual
streets with stone pavements in two types of vehicles, a car and a bicycle. The authors
established a series of thresholds to predict the comfortability levels for each acceleration.
As in the previous case, the provided results are aligned with the proposal of this paper, but
they are focused on urban mobility and stone-paved streets. Furthermore, the established
thresholds are for passenger comfortability, whereas our aim is to evaluate comfortability for
ambulance cabins, which must be much more restrictive. Finally, in 2022, P. Kehoe et al. [31]
measured the vibration profiles in a road ambulance using the equivalent acceleration. This
is the only study found in which the acceleration in ambulances is measured. The authors
measured the acceleration at different points of the patient cabin to find the most suitable
position for neonatal infants. Their results showed that the location barely factors when
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driving on a relatively smooth section of the road. For our purpose, more information is
needed for other road surfaces.

The main novelty of the present proposal is that it is based on actual data from both
urban and interurban roads gathered during regular driving. The duration of routes is
higher than any other presented in the related work, and the wide range of accelerations
and speeds are much closer to the actual operation of an ambulance. Moreover, this is the
only proposal that recommended a route as part of the driving assistance to ambulance
drivers based on the use of an ANN to classify the data, and the calculation of an index and
a score for each route. As far as we are concerned, no other paper has dealt with this issue.

3. Assumptions of the Proposed Driving Assistance System for Ambulances

In this section, the proposed system is presented. First, we detail the characterisation
of mobility areas assumed for this paper. Then, the system proposal in terms of hardware
elements is described. In the third subsection, we identify and characterise the different
routes included for system evaluation. Next, the AAN and index proposal are shown.
Finally, the methodology to test the proposal performance is described.

3.1. Mobility Areas Characterisation for Ambulances

Three different mobility areas are identified for the ambulance’s movement both in
urban and interurban areas attending to the vibrations in the x-, y-, and z-axes. The first
mobility area identified for this proposal includes general interurban roads with good
pavement. This is the area with lower variation in all axes. On these roads, there is almost
no interference with driving.

The second mobility area includes both urban avenues and conventional interurban
roads with regular pavement. In this case, more interferences occur in the z-axis; there are
few road bumps, a general absence of manhole covers, and we might find plastic transverse
rumble strips. Regarding the y-axis, few variations in the direction are found in these types
of roads. Finally, for the x-axis, there are more changes in the velocity than in the first
mobility area.

The third mobility area, the streets in urban areas, is characterised by the highest
vibration in the z-axis due to pedestrian walkways with road bumps and manhole covers.
Moreover, there is a lot of variation in the y-axis due to the rotation of the vehicles in both
roundabouts and cornering over blocks. The variation of the x-axis is mainly caused by the
changes in velocity due to stops, traffic lights, and other elements. Another example of this
third zone is the interurban areas with lousy pavement, which causes much perturbation
in the z-axis.

The summary of mobility areas included in this proposal, their nomenclature, and
their main characteristics can be seen in Table 1. Note that highways are not included since
we propose our system for ambulances moving locally. Thus, we do not expect the use of
highways. Moreover, if the highway is used, we assume there is no similar route in terms
of km and duration.

Table 1. Types of mobility areas in this proposal.

Name of Mobility Area Acronym Example

Mobility area 1 A1 Interurban roads with good pavement
Mobility area 2 A2 Interurban roads with regular pavement; urban avenues
Mobility area 3 A3 General urban streets; interurban roads with bad pavement

3.2. System Description

The hardware of the proposed system is the same as that proposed in [32]. It is based
on two sensors (G-sensor [33] and a GPS sensor [34]) and a node [35]. Moreover, the
sensor node contains a battery, a Liquid Crystal Display (LCD), an SD card, a speaker,
and a keyboard. The novelty of the proposal is in operation mode. It has two operation
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modes. In the first, the node gathers data about the acceleration, velocity, and location of
the vehicle. The user includes an origin and destination in the second operation mode, and
the node proposes the most suitable route. The node operates with the cloud in which data
is uploaded, and maps from Google Maps are loaded to consult the roads.

Operation mode 1 is further described in Figure 1. In this operation mode, the user
indicates the operation mode using the keyboard. After entering information into operation
mode 1, the sensors start gathering data every second. The values of acceleration (in Fax,
Fay, and Faz (m/s2)), location (latitude and longitude), and time and velocity in Km/h are
automatically stored in the SD card. The LCD displays the values of acceleration during
driving. After the driving, the stored data is sent to the cloud and automatically tagged.
In addition, the starting and destination points are used to create the new route, which is
included in the cloud database over Google Maps public maps. The use of the cloud in
vehicular networks is described and analysed in many papers [36,37].
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Figure 1. Operation mode 1 of the proposed system.

Figure 2 portrays operation mode 2. After selecting the operation mode, the starting
and destination points are established in this case. Then, the node connects to the cloud
and searches the available routes. After downloading the scores and indexes, the node
selects the recommended route, which is displayed on the LCD. Once the route starts, the
sensors start to gather data and store it in the SD card. Before the vehicle enters A2 or A3
zones, a speaker alerts the driver to pay attention to the possible elements such as corners,
roundabouts, or pedestrian walkways with road bumps.
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Figure 2. Operation mode 2 of the proposed system.

3.3. Test Bench

This subsection describes the different routes by which the proposed system has
been tested. The proposed system was tested on 11 trips, including different departures,
destination points, and routes.

The first scenario starts and finishes in urban areas. There are two alternative routes
to reach the destination; both routes have a common part, including A1, A2, and A3,
represented as a black and grey line in Figure 3. There is a bifurcation in the route where
two options appear: both cross different urban and interurban areas. The first option is
shorter than the second option in terms of Km and time (see the dark blue line in Figure 3).
This option crosses a town longitudinally, and the pavement of interurban areas is lousy.
The second option (see the light blue line in Figure 3) is longer than option 1, but it has
fewer parts in urban areas, and the pavement of interurban areas is regular. We use portions
of the common parts of the route, the grey lines, to train our ANN. The rest of the route,
dark blue and light blue, is used for other purposes, detailed in subsequent paragraphs.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 2. Operation mode 2 of the proposed system. 

3.3. Test Bench 
This subsection describes the different routes by which the proposed system has been 

tested. The proposed system was tested on 11 trips, including different departures, desti-
nation points, and routes. 

The first scenario starts and finishes in urban areas. There are two alternative routes 
to reach the destination; both routes have a common part, including A1, A2, and A3, rep-
resented as a black and grey line in Figure 3. There is a bifurcation in the route where two 
options appear: both cross different urban and interurban areas. The first option is shorter 
than the second option in terms of Km and time (see the dark blue line in Figure 3). This 
option crosses a town longitudinally, and the pavement of interurban areas is lousy. The 
second option (see the light blue line in Figure 3) is longer than option 1, but it has fewer 
parts in urban areas, and the pavement of interurban areas is regular. We use portions of 
the common parts of the route, the grey lines, to train our ANN. The rest of the route, dark 
blue and light blue, is used for other purposes, detailed in subsequent paragraphs. 

 
Figure 3. The first scenario with two possible routes to reach the same destination. 

The second scenario comprises three different routes, including different urban and 
interurban areas in different proportions (see Figure 4). The routes have different lengths 

Figure 3. The first scenario with two possible routes to reach the same destination.



Electronics 2022, 11, 3965 7 of 19

The second scenario comprises three different routes, including different urban and
interurban areas in different proportions (see Figure 4). The routes have different lengths
and are generated to test different types of pavements and areas of the region in which the
system is proposed. We use these routes to verify the ANN model.
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The last scenario comprises two alternative routes with the same starting and destina-
tion points (see Figure 5). As in the first scenario, both routes share part of the transect. It is
a similar case to the first scenario. The light blue line represents a longer transect, but it
is composed of interurban roads with excellent pavement, regular pavement, and small
urban streets. The second option, the dark blue line, comprises a portion of interurban
roads with excellent and regular pavement, urban avenues, and a larger portion of urban
streets. The different routes of the third scenario, as well as the different routes of the first
scenario, will be used to test the proposed index to decide the most efficient route which
minimises the vibrations along the path.

3.4. Index, Score, and ANN Proposal

In this subsection, we define the index and the score to include the vibrations suffered
in the patient cabin in each route selection. On the one hand, the index is based on weighing
the time the ambulance remains on each type of road. The values included in the index are
defined to penalise the time remaining in MA3 since the abrupt vibrations which occur in
this area might cause a series of problems for patients. This index can be used to compare
two routes to decide which one is more suitable in emergencies since the time consumed to
travel from departure to destination is considered.

IndexTOTAL TIME (s) = A1 TIME (s) + A2 TIME(s)× 1.5 + A3 TIME(s)× 2 (1)

where IndexTOTAL TIME is the total time calculated by the index after weighing the time in
the route by the mobility areas, A1 TIME is the time (in seconds) that the vehicle remains in
A1, A2 TIME is the time (in seconds) that the vehicle remains in A2, A3 TIME is the time (in
seconds) that the vehicle remains in A3, 1.5 and 2 are the weighing coefficients proposed.
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On the other hand, the score is proposed to compare the effect of vibration in different
routes without considering the time. This score is used as a tool by which knowledgeable
professionals can improve the system in the future. The score considers the % of route time
under each one of the mobility areas and can have values between 1 and 2; the lower the
values, the better the route in terms of diminished vibration.

Score (nu) =
1 × A1 TIME (s) + 1.5 × A2 TIME (s) + 2 × A3 TIME (s)

Total time (s)
(2)

where Score is the value for the punctuation of the route calculated by the equation accord-
ing to the time spent in each mobility area during the route.

Concerning the ANN, the input layer is composed of the neurons representing the
velocity and acceleration parameters. Since different combinations of parameters will be
tested, the number of input neurons might change from three to four. The output layer is
composed of three neurons, the mobility areas: A1, A2, and A3. The structure of the ANN
is depicted in Figure 6. There are two hidden layers. The established previous probabilities
and error cost are the same for all the groups. The sphere of influence was trained using
jackknifing; the values of the sphere of influence are presented in the results. The use of
ANNs and Convolutional Neural Networks (CNN) are widely used in vehicular networks
for preventing accidents [38] and traffic congestion detection [39].

3.5. Methodology

In this subsection, the methodology followed to train, validate, and test the system is
fully described. The mentioned test bench in Section 3.3 provided a total of 4606 gathered
registers. Each data register is composed of the velocity, acceleration in the 3-axis, time,
and location.
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Figure 6. Used ANN for data classification.

First, data in the grey colour of Figure 3, with the three repetitions, is used to train the
ANN. A total of 1398 registers are used for this purpose. Data is manually tagged according
to the pavement, type of area, and presence of elements that produce vibrations. In the
ANN training, we tested the effect of data pre-treatment and the necessity of including the
3-axis data. The results of these training tests are illustrated in Section 4.1.

Then, the ANN for data classification is validated with three routes composed of
urban and interurban mobility areas. The routes of the second scenario are selected for
validating the ANN; they are composed of 2183 registers. The validation is evaluated based
on a qualitative approach by checking the assigned class and the real state of the road.
Correctly identifying elements such as pedestrian walkways with road bumps, corners,
and roundabouts is crucial for the validation success. The results of the validation process
are presented in Section 4.2.

Finally, the whole system, including the score and index, is tested in two new scenarios
with two available routes for reaching the same destination. The first and third scenarios
are used for the final test, comprising a total of 2423 registers. The scenarios include urban
and interurban areas and the three possible mobility areas. The results of the complete test
of the system are fully described in Section 4.3.

4. Results

In this section, we detail the results of testing the proposed system. First, the classifi-
cation accuracy with different pre-treatment methods before its inclusion in the ANN is
presented. After attaining an adequate classification performance of the ANN, the system
is validated by classifying different routes. Finally, and to test the operation of the complete
system, two routes will be included in the system to allow the ANN to assist driving by
offering the best option according to the proposed index.

4.1. Data Pre-Treatment and ANN Training Performance

First of all, raw data of the 3-axis and the velocity are tagged as A1, A2, and A3
and included in the ANN. A total of 1736 cases are used for the first ANN training. The
performance of this initial ANN model was 77.42% (see the confusion matrix in Table 2).
Intending to simplify the system and reduce the possible influence of noise, the vibration
of the x and y axes, which are less prejudicial for the patient in the cabin, are different
configurations of the ANN. Table 3 summarises the confusion matrix when the x- and z-axis
raw data and velocity are used. In this case, the % of cases correctly assigned decreases
1% to 76.04%.
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Table 2. Confusion matrix using 3-axis raw data and velocity.

Tagged Mobility Area
Assigned Mobility Area

% Correctly Assigned
A1 A2 A3

A1
(779)

623
(79.97%)

144
(18.49%)

12
(1.54%)

A2
(443)

78
(17.61%)

322
(72.69%)

43
(9.71%)

A3
(314)

6
(1.17%)

109
(21.21%)

199
(77.63%)

77.42%
Sphere of influence equal to 0.0492188.

Table 3. Confusion matrix using x- and z-axis raw data and velocity.

Tagged Mobility Area
Assigned Mobility Area

% Correctly Assigned
A1 A2 A3

A1
(779)

614
(78.82%)

162
(20.80%)

3
(0.39%)

A2
(443)

80
(18.06%)

314
(70.88%)

49
(11.06%)

A3
(314)

2
(0.39%)

120
(23.35%)

192
(76.26%)

76.04%
Sphere of influence equal to 0.0507813.

On the other hand, when the data included is from the y- and z-axis raw data and
velocity, the performance of the ANN is 77.76%. These results, displayed in Table 4, suppose
an improvement compared to using all the data. The improvement confirms that the data
of the x-axis imposes noise on the system, and it is better to avoid using it. Considering
that we aim to monitor the vibrations in the patient cabin, the most relevant vibrations are
due to the z-axis and the y-axis. This principle is aligned with the observed results.

Table 4. Confusion matrix using y- and z-axis raw data and velocity.

Tagged Mobility Area
Assigned Mobility Area

% Correctly Assigned
A1 A2 A3

A1
(779)

623
(79.97%)

144
(18.49%)

12
(1.54%)

A2
(443)

78
(17.61%)

322
(72.69%)

43
(9.71%)

A3
(314)

6
(1.17%)

109
(21.21%)

399
(77.63%)

77.76%
Sphere of influence equal to 0.0492188.

The high heterogeneity of acceleration data probably causes the relatively low perfor-
mance of the ANN on the previous paragraph. To improve the performance of the ANN,
a pre-treatment technique is performed to integrate the variability of the data. Instead
of using the raw data, we propose to use the standard deviation of the raw data. The
main reason for doing this pre-treatment is that the vibration is represented by both the
acceleration and its variation over time. Thus, the standard deviation of the acceleration of
the y and z axes is calculated. Four buffers of time, 5, 9, 15 and 29 s, are selected to calculate
the standard deviation. The performance of the ANN increases with the increment of the
time buffer. The results of the ANN for buffers of 5, 9, 15, and 29 s can be seen in Tables 5–8,
respectively. The number of cases is reduced due to the use of buffers. For the buffer of 5 s
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(see Table 5) the number of cases is 1645, and the % of correctly assigned cases is 81.95%.
The accuracy is maximum for the A3 and minimum for the A2.

Table 5. Confusion matrix using y- and z-axis time buffer = 5 s and velocity.

Tagged Mobility Area
Assigned Mobility Area

% Correctly Assigned
A1 A2 A3

A1
(697)

570
(81.78%)

123
(17.65%)

4
(0.57%)

A2
(466)

83
(17.81%)

363
(77.90%)

20
(4.29%)

A3
(482)

3
(0.62%)

64
(13.28%)

415
(86.10%)

81.95%
Sphere of influence equal to 0.0492188.

Table 6. Confusion matrix using y- and z-axis time buffer = 9 s and velocity.

Tagged Mobility Area
Assigned Mobility Area

% Correctly Assigned
A1 A2 A3

A1
(661)

585
(88.50%)

76
(11.50%)

0
(0.00%)

A2
(446)

54
(12.11%)

372
(83.41%)

20
(4.48%)

A3
(454)

4
(0.88%)

26
(5.73%)

424
(93.93%)

88.47%
Sphere of influence equal to 0.01875.

Table 7. Confusion matrix using y- and z-axis time buffer = 15 s and velocity.

Tagged Mobility Area
Assigned Mobility Area

% Correctly Assigned
A1 A2 A3

A1
(597)

540
(90.45%)

56
(9.38%)

1
(0.17%)

A2
(416)

46
(11.06%)

359
(86.30%)

11
(2.64%)

A3
(402)

2
(0.5%)

10
(2.49%)

390
(97.01%)

91.10%
Sphere of influence equal to 0.0125.

Table 8. Confusion matrix using y- and z-axis time buffer = 29 s and velocity.

Tagged Mobility Area
Assigned Mobility Area

% Correctly Assigned
A1 A2 A3

A1
(455)

411
(96.92%)

14
(3.08%)

0
(0.00%)

A2
(344)

13
(3.78%)

330
(95.93%)

1
(0.29%)

A3
(289)

0
(0.00%)

1
(0.35%)

288
(99.65%)

97.33%
Sphere of influence equal to 0.0125.

Regarding the buffer of 10 s, the number of cases is 1561 and the % of correctly assigned
cases is 88.47% (see Table 6). As in the previous time buffer, the maximum accuracies are
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reached for A3 and the minimum for A2. For the time buffer of 19 s with 1415 cases (see
Table 7) the % of correctly assigned cases is 91.10%; again, the maximum accuracy was
obtained for A3. Finally, for the time buffer of 29 s, the number of cases is 1088 and the %
of cases correctly classified is 94.34% (see Table 8). Even with the increase in accuracy, we
have decided not to use larger time buffers since, in heterogeneous regions, it is common to
change from one mobility area to another in short periods.

4.2. Classified Routes for ANN Validation Performance

The three routes of the second scenario are used to validate the performance of the
ANN proposed in the previous subsection. The validation performance is conducted
qualitatively. The comparison of classified points over the routes and the detailed results of
urban areas are used to identify the most accurate ANN. We will compare the validation
of the ANN using two time buffers, the time buffer of 15 s and the one for 29 s. Those
time buffers achieve performances above 90% in cases correctly classified in the previous
subsection. The tagged data of the three routes can be seen in Figure 7, when a time buffer
of 15 s is used, and in Figure 8, when a time buffer 29 s is used.
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The first visible differences in classified data with the different ANN models are found
for the A3 and A2 classes. In general terms, the A1 is similar to both models. The route
indicated in the black line does not include any point classified as A1. According to data
classified with the first model, no point is classified as A1. Nonetheless, for the second
model (with a time buffer of 15 s), four points are classified as A1.

The second route, the one with a dark blue line in Figure 7, comprises A1, A2, and
A3 areas. The classification of the points with the first model (ANN with a 15 s of buffer)
is 21.0% of A1, 47.5% of A2. and 31.5% of A3. The ANN, with a buffer of 29 s, classified
the points as 19.2% of A1, 62.5% of A2, and 12.3% of A3. The main difference between the
models is the classification of points from A2 to A3. The classification of A1 points is very
similar in both models.

Regarding the differences between A2 and A3 points in urban areas, only avenues
are included in this route. The main points which can be considered A3 areas are the
surroundings of roundabouts and the areas affected by pedestrian walkways with road
bumps. A detail of some of the pedestrian walkways with road bumps, marked with black
squares, and the classification of A3 points as big red dots, is portrayed in Figures 9 and 10.
Figure 10a,b shows the classified points in two urban areas of the second route using the
ANN with the 29 s buffer. The detail of the classified points using the ANN with the 15 s
buffer is depicted in Figure 9a,b. The results with the ANN and the buffer of 15 s indicate
that more regions are classified as A3 when they should be considered as A2 since the
effect of pedestrian walkways is extended to adjacent points. This effect is strongly reduced
when the buffer of 29 s is used due to the lower weight of the affected point over adjacent
points. Thus, the results in the urban areas of this route indicate that using the 29 s buffer
has higher accuracy than using the 15 s buffer.
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Finally, the third route includes a high percentage of urban areas and A1 roads.
Contrary to the second route, which mainly passes over urban avenues, the third route
includes urban streets and a typical urban driving style. The classification of the points
with the first model (ANN with 15 s of buffer) is 10.7% of A1, 29.9% of A2, and 59.4% of
A3. The ANN, with a buffer of 29 s, classified the points as 10.6% of A1, 11.7% of A2, and
77.7% of A3. The classification of A1 points is almost equal for both models. Concerning the
differences between the A2 and A3 points, detailed cases are provided in Figures 10 and 11.
Figure 11a,b shows the classification of points using the ANN with a buffer of 29 s, while
Figure 10a,b represents the results of using the ANN with a 15 s buffer. We identify
in red the points classified as A3. It is possible to identify the same effect observed in
Figures 8 and 9 in the pedestrian walkways with road bumps, indicated as black squares.
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In blue squares, we have marked in Figures 11a and 12 the presence of plastic transverse
rumble strips, which apparently have no apparently on the classification. Regarding urban
driving and turning a street corner, representing A3 areas, the ANN with the 30 s buffer is
much more accurate than the second option. When 15 s are used as a buffer, most avenues
are classified as A3 instead of as A2. Again, the ANN with a buffer of 29 s offered the most
accurate results in the validation.
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Considering the pieces of evidence presented in the validation, we have concluded
that using 29 s as a time buffer is the most accurate option. Thus, the validation results
indicated that the ANN model with the 29 s buffer should be used to calculate the score
and index for comparing routes.
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4.3. Classified Routes for Index and Score Testing

The last step is to evaluate the performance of the index and score over two classified
routes to recommend the route that minimises the vibration in the patient cabin. The two
routes of the first and third scenarios are used for this purpose. First, the data is classified
according to the ANN with a buffer time of 29 s. Then, the total travel time and the time
over A1, A2, and A3 are estimated to calculate the index and the score. Finally, the index of
two available routes is matched to decide which is the recommended route.

The first case in evaluating the index and score is the two possible routes of the first
scenario. The first route, dark black in Figure 13, has a total time of 3 min and 40 s (220 s).
The vehicle remains 32 s in A1, 95 s in A2, and 135 s in A3. The index calculated for this
route is 394 s, and the score 1.8. Regarding the second route, light blue has a total time
of 4 min and 22 s (262 s). The time the vehicle remains in A1, A2, and A3 is 21, 50, and
149 s, respectively. The index calculated for the second route is 444.5 s, and the score
1.7. In this case, even though a lower score characterises the first route, it is the preferred
route according to the calculated index. The big relative difference in time (42 over 220 s,
20%) and the low difference in the percentage of A3 points (less than 10%) are too high
to be compensated with the current weighing factors included in (1). The information is
summarised in Table 9.
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Table 9. Results of application of proposed index and scores for the first scenario.

Route Total Time (s) No. A1 No. A2 No. A3 Index (s) Shorten Route Preferred Route Score

Light blue 262 32 95 135 444.5 1.70
Dark blue 220 21 50 149 394 X X 1.80

The two possible routes of the third scenario are now used as a second case to evaluate
the index and score. The first route, dark black in Figure 14, has a total time of 7 min
and 45 s (465 s). The vehicle remains 104 s in A1, 164 s in A2, and 197 s in A3. The index
calculated for this route is 744 s, and the score 1.49. Regarding the second route, light blue
has a total time of 8 min and 13 s (493 s). The time that the vehicle remains in A1, A2, and
A3 is 173, 200, and 120 s, respectively. The index calculated for the second route is 444.5 s,
and the score 1.43. In this case, although the first route is characterised by a lower total
time, the index indicates that the second route is the preferred one. The second route is
the one that has the lowest score too. The slight relative difference in time (28 over 465 s,
a difference of 6%) and the big difference in the percentage of A3 points over the routes
(almost 40%) is high enough to compensate for these 28 s more and make the second route
the preferred one, see Table 10.
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Table 10. Results of application of proposed index and scores for the first scenario.

Route Total time (s) No. A1 No. A2 No. A3 Index (s) Shorten Route Preferred Route Score

Light blue 493 173 200 120 713 X 1.43
Dark blue 465 104 164 197 744 X 1.49

5. Conclusions

In this paper, we have proposed a system to assess driving in ambulances to minimise
the vibrations in the patient cabin. This proposal aims to reduce the uncomfortability of the
patient and facilitate the labour of sanitary personnel if any assistance should be carried
out during the travel. The proposed system is based on a node with two operation modes.
In the first operation mode, it gathers data from the vibrations during driving, which are
later sent to the cloud to tag the points of the route. In the second, the node indicates the
destination point and the cloud, using the previous data, Google Maps, and the proposed
index and score to suggest a route to the driver.

We can affirm that the proposed system achieved our expectations based on the results.
We can highlight the following contributions of this proposal:
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• The data of vibration in the x-axis is not useful for data classification with ANN;
• Time buffers are needed for the y-axis and z-axis data to improve the performance of

the classification, the 29 s buffer being the best one;
• The ANN to tag the data was trained and validated, achieving a percentage of correctly

classified cases up to 97%;
• The proposed ANN, score, and index have been validated over two different scenarios

in which two available routes are offered to reach the same destination.
• The following conclusion can be drawn from the obtained results:
• In cases with slight differences in time (less than 6%) over two routes and high

differences in pavement typology, the faster route is not always the preferred one;
• The proposed Driving Assistance System for Ambulances can be a promising support-

decision tool;
• The impact of this tool includes the (i) assistance of sanitary managers and drivers

to make the most appropriate decision, (ii) a safer service for patients, and (iii) an
increase in the comfort of work of medical staff.

In future work, the system will evaluate the effect of different drivers and driver
patterns on the classification of data with the ANN and on the results of the index and
score. In the same vein, future work will evaluate the impact of different vehicles or the
state of the wheels and damper on the gathered data. To improve the performance of the
system when additional data is included, the ANN will be compared with other methods
such as a kernel extreme learning machine [40], a deep adversarial transfer network [41],
and a competitive swarm optimiser [42]. In addition, as pointed out in [43], the problem
of black-box models for motion prediction systems will be evaluated. The possibility of
including the proposed system in vehicular ad hoc networks [44] will also be considered.
In addition, the possible inclusion of information about traffic and weather conditions for
longer routes is being studied at the present moment.
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