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Abstract: Binary convolutional neural networks (BCNN) have shown good accuracy for small to
medium neural network models. Their extreme quantization of weights and activations reduces
off-chip data transfer and greatly reduces the computational complexity of convolutions. Further
reduction in the complexity of a BCNN model for fast execution can be achieved with model size
reduction at the cost of network accuracy. In this paper, a multi-model inference technique is
proposed to reduce the execution time of the binarized inference process without accuracy reduction.
The technique considers a cascade of neural network models with different computation/accuracy
ratios. A parameterizable binarized neural network with different trade-offs between complexity and
accuracy is used to obtain multiple network models. We also propose a hardware accelerator to run
multi-model inference throughput in embedded systems. The multi-model inference accelerator is
demonstrated on low-density Zynq-7010 and Zynq-7020 FPGA devices, classifying images from the
CIFAR-10 dataset. The proposed accelerator improves the frame rate per number of LUTs by 7.2×
those of previous solutions on a ZYNQ7020 FPGA with similar accuracy. This shows the effectiveness
of the multi-model inference technique and the efficiency of the proposed hardware accelerator.

Keywords: deep learning; binary convolutional neural network; dual-model inference; FPGA

1. Introduction

Deep neural networks, in particular convolutional neural networks (CNN), are evolv-
ing continuously in complexity and their ability to perform a wide range of tasks such
as speech recognition [1], autonomous driving [2], image classification [3], and object
detection [4].

The widespread use of convolutional neural networks on low-cost embedded systems
is constrained by the high amount of memory and computational power required to run
the network. Fully binarized convolutional neural networks (BCNN) address this problem
by quantizing all internal values, such as weights and activations, to only one bit. As
such, memory consumption and computational complexity are significantly reduced, as
multiplication can be replaced by a XNOR logical operation. BCNN inference achieves
an accuracy close to that achieved by a non-binarized model with small to medium-sized
datasets [5] such as CIFAR-10 [6].

Previous works on the design of binary convolutional neural networks have focused
on improved training methods and efficient accelerators (see [7,8] for an extensive review of
binarized neural networks). Courbariaux et al. [5] showed that BCNNs can be implemented
with much fewer resources, because multiplications are replaced by XNORs and accumula-
tions by popcounts. Umuroglu et al. [9,10] proposed a framework to automatically map
BCNNs with reconfigurable logic. The work considered small networks mapped on em-
bedded reconfigurable computing devices. The framework supports dense layers, pooling
layers, and non-padded convolutional layers. The work was extended by Fraser et al. [11]
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with architectural modifications to improve scalability and implement padded convo-
lutional layers, which improves the accuracy of the models. To reduce the number of
parameters of a BCNN, Nakahara et al. [12] replaced the hidden fully connected layers with
an average pooling layer to reduce the number of weights in the classification layers by 3×
while maintaining the same accuracy. Zhao et al. [13] used high-level synthesis to design a
three-module accelerator for BCNNs. The binary convolutions use a variable-width line
buffer to support different sizes of feature maps. To avoid using a different module for the
first layer of the BCNN, whose inputs are not binarized, Guo et al. [14] proposed a uniform
implementation of all convolutional layers. The first layer is converted to a full binary
convolutional layer at the cost of extra processing. Fu et al. [15] explored input and kernel
similarity to reduce computation redundancy and accelerate BCNN inference. However,
the level of optimization of the method depends on the model and application. Recently,
Kim et al. [16] proposed a method to reduce the computational complexity by skipping
redundant operations. They skip multiplications of padded zeros and redundant opera-
tions associated with input elements of a pooling window which do not affect the pooling.
The results are for a single dot product calculation. The technique is less effective when
multiple feature maps are calculated in parallel, as the parallelism must be synchronized.

All these works accelerate the inference of a BCNN assuming a unique model. How-
ever, some images are easier to classify than others and a less complex BCNN can be
used in these cases. Therefore, a sequence of CNNs can be used to sequentially extract
important features at a particular level which are sent to the next CNN. Cascading CNNs
for improved accuracy of computer vision algorithms is a method explored by several
authors in different areas. For example, Angelova et al. [17] applied deep network cascades
for real-time pedestrian detection, Diba et al. [18] designed a cascade of CNNs for object
detection, and [19] proposed a cascade CNN for traffic sign recognition. In these two works,
using a CNN cascade to replace a single, more complex CNN achieved better accuracy.

Another line of research using multiple CNNs to solve a problem considers a sequence
of models with different accuracy levels. The underlying principle of this is based on the
fact that a small subset of features is enough to correctly classify some images, while other
images need more feature information. So, the full capacity of a CNN is required only
for a subset of complex images. The idea of using successively more complex classifiers
in a cascade was proposed in [20] for real-time face detection. In this case, classifiers
with different complexity are cascaded, focusing only on promising regions. A confidence
of the prediction of a classifier is used to determine if it stops or should proceed to the
next classifier.

Kouris et al. [21] proposed an automated toolflow to generate a two-stage cascade
CNN for image classification. The work generates a second lower precision model from a
higher precision CNN without retraining. All images are inferred using the lower precision
model. Only images not classified with high confidence by this model are sent to be
classified by the second model, which has a higher accuracy. This work was limited to a
single CNN model with different quantizations and a two-stage cascade was considered.

Following the idea of cascade classifiers, we propose a multi-model inference technique
that uses two or more BCNNs with different accuracy/complexity ratios. In this technique,
we start with a small network model to classify the image. After classification, a confidence
predictor is used to decide if the image should be considered well classified or not. If it is
considered to be well classified, the process stops. Otherwise, the image is forwarded to
a more accurate model. The process can be repeated with multiple levels of models. The
method allows us to perform inference with an accuracy close to that of the most accurate
model, but with a lower runtime than the single most accurate model.

In this work, we implement and test the multi-model inference technique and a
hardware accelerator to speed up its execution in FPGA. The multi-model is developed
with a parameterizable BCNN model with a single dense layer for classification. The
number of filters in the convolutional layers is parameterizable, which determines the
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accuracy of the model and the runtime. The accelerator has dedicated modules for the first
and last layers and a configurable module to run the hidden convolutional layers.

The system was implemented in two small Zynq-7 SoC-FPGAs (ZYNQ7010 and
ZYNQ7020) and evaluated using the CIFAR-10 dataset, achieving an overall speedup
of 15.5× over the best state-of-the-art accelerator with the same accuracy and the same
ZYNQ7020 FPGA device.

As far as we know, this is the first work that explores multi-model inference in the
context of binary neural networks and accelerates the inference of the model with a scalable
dedicated hardware architecture targeting low-density FPGAs.

2. Convolutional Neural Network

CNN image classifiers take an image as an input and classify that image into a certain
class. They output a classification score vector where the highest value corresponds to the
class predicted by the CNN.

The main layer within a CNN is the convolutional layer. Convolutional layers hold
a set of 3D tensors of weights, called filters, of size (nout, inz, kxy, kxy) and a bias vector
of size (1, nout), where nout is the number of different filters, inz is the depth of each filter
(equal to the depth of the input image), and kxy is the size of the 2D window of a filter.

Each 3D convolution between one filter and the input map (followed by an activation
function) generates a two-dimensional output map. After repeating the process for all
filters, the result is a 3D image of size (nout, nyin − kxy + 1, nxin − kxy + 1). This output is a
feature map that has higher values if certain features were detected on the input image.

CNNs can be equally applied to 1D signals. In this case, 1D CNNs using both 1D
convolutions that consist of inner products between activations and weights are used.

The behavior of each layer can be modified with two parameters: the stride and the
padding. Stride determines how the filter runs over the input map, that is, the number
of shifts that each kernel slides over the map. A stride of one means that the kernel runs
over the whole map. A stride above one reduces the size of the output map. Padding helps
preserve the output map size. When a non-unitary filter is applied to an input map, the
spatial dimension of the output map reduces. Padding the input map with, for example,
zeros allows preserving the dimension of the maps.

The kernel may be expanded to cover a broader area of the input map without
increasing the number of parameters with a technique known as dilated convolution. This
technique inserts holes inside the kernel between consecutive elements. The dilation factor
determines the kernel expansion. A normal convolution has a dilation factor of one.

Fully connected or dense layers have a matrix of weights w of size (nin, nout) and a bias
vector b with size (1, nout). Their output function is A(x.w + b), where A(·) is an activation
function.

Equation (1) illustrates the multiply and accumulate operation required to calculate
the nout outputs.

outj =
nin

∑
i=1

xi · wij + bj, out ∈ Rnout (1)

Batch normalization [22] is a method used for accelerating and improving the training
of neural networks. It normalizes the layer inputs to a mean of 0 and variance of 1, and
then scales and shifts the normalized inputs with learnable variables, γ and β.

In the training step, the image set is divided into batches of size M. Batch normalization
then uses each batch to estimate a vector of means, µ ∈ RN , and a vector of variances,
σ2 ∈ RN , for each channel of the input image. The input shape will be (M, C, Y, X), where
M is the batch size and C is the number of X×Y planes.

The mean and variance are used to normalize, scale, and shift the inputs according to
Equation (2), where γ and β are learnable variables obtained during the training process
and ε is a small constant value, commonly 10−5, used for numerical stability [22].
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Î =
I − µ√
σ2 + ε

IBN = γ · Î + β

(2)

The pooling layer downsamples the input channels, reducing the size of the next input
channels. A window of elements of an input channel is replaced by the maximum (max
pooling) or the mean (average pooling) of all elements of the window.

Binary Neural Network

Quantization is a CNN optimization to reduce the computational complexity and
memory storage required to run a CNN model. During training, weights, outputs, and gra-
dients are typically represented in a 32-bit floating-point format, but using lower precision
during inference does not critically affect the prediction performance [23].

Binarization is an extreme form of quantization where values are quantized to one bit
using Equation (3). Negative values are represented with a ‘0’ and positive values with a ‘1’.

XB =

{
+1 x ≥ 0
−1 x < 0

(3)

Binary neural networks can be placed in two main categories, binary weight networks,
where only the weights are binarized or fully binarized networks, where both the weights
and the layer outputs are binarized.

Binary weight networks remove the need for multiplications, and fully binarized
networks can replace the multiply–accumulate (MAC) operations used in the dot products
in fully connected and convolutional layers with XNOR and popcount operations. The
authors in [24] designated this merged operation xNorDotProduct (see Equation (4)).

xb ∈ {0, 1}n, wb ∈ {0, 1}n

x · w = xnorDotProduct(xb, wb)
(4)

It works by applying a XNOR operation between the binary representations of the
inputs and weights and then counting the number of set bits and subtracting that number
with the number of unset bits. This is equivalent to 2× the number of set bits minus the
total number of bits (see Equation (5)).

xnorDotProduct(x) =(number of bits set to one in x)× 2

−(total number of bits in x)
(5)

3. Multi-Model Binarized Neural Network

This section describes the proposed parameterizable binarized convolutional neural
network and the multi-model inference technique based on the configurable binarized
neural network. However, the proposed multi-model inference technique and the hardware
accelerator are independent of the architecture of the BCNN.

3.1. Configurable Binarized Neural Network

The network architecture considered in this work has six convolutional layers and a
single final dense layer for classification.

The network design step started with a neural network model similar to those in [13,14]
and explored different combinations of the number of convolutional, dense, and pooling
layers. It was concluded that a single dense layer achieves results very close to those
obtained with three dense layers used, for example, in [14]. It was also concluded that
pooling can be applied multiple times without a reduction in accuracy and a reduction
in operations and weights. From this model design exploration, the configuration that
achieved a slightly better accuracy than previous works was chosen, allowing a margin for
further optimization with the multi-model inference technique.
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Three convolutional layers are followed by pooling, and batch normalization is applied
to the output of all convolutional layers. The number of filters in each convolutional layer
is configurable using a multiplicative factor, N. This permits model space exploration
and generates models with different trade-offs between accuracy and complexity (see the
architecture of the configurable BCNN in Table 1).

Table 1. Network architecture.

i Layeri No Filters Input Output

0 Conv (3× 3) N × 32 (32, 32, 3) (32, 32, N × 32)

1 Conv (3× 3) N × 32 (32, 32, N × 32) (32, 32, N × 32)

Pooling (32, 32, N × 32) (16, 16, N × 32)

2 Conv (3× 3) N × 64 (16, 16, N × 32) (16, 16, N × 64)

3 Conv (3× 3) N × 64 (16, 16, N × 64) (16, 16, N × 64)

Pooling (16, 16, N × 64) (8, 8, N × 64)

4 Conv (3× 3) N × 128 (8, 8, N × 64) (8, 8, N × 128)

5 Conv (3× 3) 128 (8, 8, N × 128) (8, 8, 128)

Pooling (8, 8, 128) (4, 4, 128)

6 Dense Nc (4, 4, 128) (1, Nc)

As can be seen in Table 1, all convolutional layers have a number of filters that is a
multiple of N, except the last convolutional layer that has a fixed number of filers, 128. The
fully connected layer has Nc filters, equal to the number of classes.

The binarized neural network has both weights and activations represented with a
single bit, as explained in the previous section. The only inputs that are not binarized are
the inputs to the first layer. In this case, weights are binary but the inputs are 8 bit.

Batch normalization is placed between layers and the real-valued weights are kept
for the parameter update when performing forward and backward propagation during
training. The main difference in this work is that the layer outputs are also binarized. Bias
is removed from fully connected and convolutional layers.

The binarization function, Equation (3), is non-differentiable, making it difficult to use
with stochastic gradient descendant (SGD). To solve this issue, Equation (6) was chosen
by [24] as a good gradient approximation.

dsign(x)
dx

=

{
1 |x| < 1
0 otherwise

(6)

This approach has shown very good accuracy for image classification with the MNIST,
CIFAR10, and SVHN datasets [5].

A standard implementation of batch normalization follows Equation (7) applied
directly to the outputs. However, because the normalized values are going to be binarized,
it is possible to achieve the same binarized result without the arithmetic operations. When
the training is complete, the four parameters become fixed, and so batch normalization
becomes a linear transformation.

As [9] demonstrates, because the results of the batch normalization are to be binarized,
then it is possible to pre-calculate a value τ that functions as a binarization threshold. The
value of τ is obtained by solving batchnorm(τ, Θ) = 0, where Θ = (µ, σ, γ, β), and
batchnorm represents the batch normalization Equation (7). The solution for the value of τ
can then be seen in Equation (8).
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batchnorm(x, Θ) =
x− µ√
σ2 + ε

· γ + β (7)

τ = µ−
√

σ2 + ε

γ
β (8)

With the value of τ, the binarization of the results from the batch normalization can be
calculated without having to perform arithmetic operations using Equation (9).

xb = binarize(batchnorm(x, Θ)) =

{
+1 x ≥ τ

−1 x < τ
(9)

To reduce the number of operations of inference, batch normalization is merged with
Equation (5), where the output of the xNorDotProduct(x) is batch normalized by subtracting
τ (see Equation (10)).

xb =sign[(number of bits set to one in x)× 2

−(total number of bits in x)− τ]
(10)

The total number of bits in x is constant for each convolutional layer and τ is constant
for each filter. Therefore, the accumulator of the number of ‘1’ bits is initialized with
[−(total number of bits in x)− τ] and the binarization is the inverse of the sign of the final
value of the accumulator.

Max pooling is implemented with a simple logical OR between all elements of the
pooling window. This is possible because max pooling can be implemented after batch
normalization [9].

3.2. Multi-Model Inference with the Configurable Binarized Neural Network

In a dataset of images, some samples are easier to classify than others because the
number of features necessary to classify them is smaller. Therefore, a simpler model could
be used in these cases. A more feature-rich neural network model is required only for a
subset of the images that is not well classified with a simpler model. An implementation that
uses a single high-accuracy model for all images is inefficient when performing inference
of “easier” inputs.

The utilization of a cascade of classifiers with increased accuracy and complexity was
proposed in [20,25] for real-time face detection. Classifiers with increasing complexity are
cascaded, focusing only on promising regions. Sub-windows not rejected by a classifier
are processed by a sequence of more complex classifiers. The algorithm uses a confidence
predictor to determine if the classification should stop or proceed to the next better classifier.

The work proposed in this paper applies the concept of cascaded classifiers with our
configurable binarized neural network. The network has a variable number of filters given
by the parameter N. The accuracy of the model increases with the number of filters and
also the complexity. Initially, the inference is executed with a low number of filters. Then,
a confidence predictor is used to determine if the image was well classified or needs to
proceed to a model with more filters. The sequence of models to be considered depends on
the accuracy of each model and its complexity, and it is determined a priori before inference.

The confidence predictor determines if the image was well classified or should proceed
to a better classifier. A few works have considered the difference between the highest
probability and the accumulation of one or more of the remaining probabilities to assess
the confidence of the model outcome [21]. However, this metric is relatively weak for
determining the robustness of the model. Some authors have considered entropy to be a
more robust metric [26]. Both methods were tested and the entropy metric provided better
results. Therefore, we adopted entropy.

In this work, we consider a top-one confidence predictor (a top-five confidence predic-
tor should be used for a top-five classification). The top-one confidence value, con ftop1, is
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determined as the absolute value of the entropy of the probability output array of the final
dense layer as follows:

Con ftop1 = | −∑
i

pi × log(pi)| (11)

where pi are the probabilities associated with each class. One classification is considered
confident if Con ftop1 ≤ thentropy, where thentropy is the entropy threshold of the confidence
measurement determined after training.

The thresholds establish the trade-off between accuracy and average inference runtime.
The lower the threshold, the higher the accuracy, because more images are reanalyzed
with the next more confident model. However, the average runtime of inference reduces
because the more accurate model requires more time to execute. Multi-model cascading
introduces an accuracy error associated with false positives (images erroneously classified
by the lowest accuracy model with high confidence). False negatives (images correctly
classified by the lowest accuracy model, but with low confidence and therefore also sent to
the more accurate model) increase the average inference time because images that were
already well classified are still sent to the more complex models for reclassification.

Let us consider a case with two models, M0 and M1 (the most accurate, but more
computationally complex), with accuracy values A0 = 0.7 and A1 = 0.9 and computational
complexities C0 and C1, respectively. The relative computational complexity, C1/C0, is
assumed as 4. The inference with the most accurate model has a complexity C1 = 4× C0
and an accuracy of 90%. A cascade of the two models would generate an inference with
computational complexity of CC1, given by Equation (12).

CC1 = C0 + C1× (1− A0− f pe + f ne)

= C0× (1 + 4× (1− A0− f pe + f ne))
(12)

where f pe and f ne are the errors of the confidence predictor given by the false positives and
false negatives. Assuming, for example, f pe = f ne = 1%, the computational complexity of
the dual model is 2.2× C0. So, the dual model is about 4/2.2 = 1.8× faster.

In this example, an estimation of the accuracy of the dual model is given by A1− f pe,
where f pe is the error associated with false positives. For example, with f pe = 1%, the
accuracy of the dual model of the example is equal 0.9− 0.01 = 0.89%.

Multiple models can be considered in the cascade of classifiers by changing the number
of filters. However, in this work, we only consider cascades of two and three models. The
number of false positives after applying each successive model introduces a cumulative
error that reduces the efficacy of multi-model inference with more than three models.

A design flow was developed to find solutions with different accuracy levels and
inference runtimes by testing combinations of models. This allowed the designer to find
a multi-model combination to replace a single model with an accuracy within an error
threshold Eth and a lower inference runtime. In all cases, it obtained a multi-model solution
with an accuracy close to that of the single model but with a faster inference runtime.

The application receives a set of trained models with different accuracy levels, an error
threshold, Eth, and a target accuracy (equal to one of the single models). It then finds the
fastest multi-model configuration with an accuracy within the error threshold relative to
the target accuracy. It exhaustively explores the multi-model inference with all sets with
two and three models. For each set of models, it runs the design flow illustrated in Figure 1.

The design flow consists of the following steps:

1. Model training—Train the models to be considered in the multi-model. These can be
trained or obtained from a zoo of trained models;

2. Setting the entropy threshold—Set the initial entropy threshold and entropy increment.
The entropy threshold determines the inputs that are considered to be correct, that is,
an input sample with an entropy lower than the entropy threshold is considered to
be correct. The lower the entropy, the higher the probability of a correct positive, but
more input samples are sent to the next model. Both parameters were set to 0.1;
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3. Multi-model inference—The multi-model inference is run, starting with the lowest
entropy threshold;

4. Accuracy—Determination of the accuracy and comparison with the accuracy of the
more accurate model. If the difference is lower than the error threshold, it increases
the entropy threshold and repeats the process. Otherwise, it stops the iterative process.
The best accuracy was achieved with values of the threshold close to 1.0;

5. Runtime—Estimate the speedup as follows:

M3OPS
M1OPS + M2OPS × S2 + M3OPS × S3

where MXOPS is the number of operations of the model, and SX is the percentage of
inputs executed by model X.

Train models

Set minimum 

entropy threshold

Run incremental 

inference

Determine 

accuracy error

< Eth
Increase entropy 

threshold

Estimate Multi-

model runtime

Finish

Trained 

Model Zoo

Figure 1. Design flow with the multi-model inference technique.

The data flow was developed in python and integrated in the Pytorch platform. It
receives two or three models as inputs, an error threshold, an initial and a final entropy
threshold, and the output file. The output includes the best results for all entropy thresholds
and the best configuration, that is, the configuration that accomplishes the error requirement
and has the best accuracy.

The application was utilized to generate different classifications solutions with a
variable trade-off between accuracy and runtime. Basically, a lower entropy threshold
improves the accuracy but increases the execution time.

4. Architecture of the Hardware Accelerator for Multi-Model Binarized Neural
Network Inference

The architecture of the hardware accelerator for binarized neural networks consists of
three main modules, one for the first layer, one for the last dense layer, and a third one for
the hidden convolutional layers. This subdivision allows us to optimize each module to
the particular features of the first, the last, and the hidden layers.

4.1. Organization of the Architecture

All three modules have a similar structure with an input and an output buffer, dis-
tributed weight buffer, and an array of processing cores (see Figure 2).
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Core0 Core1 Core2 Coren

Weight

memory

Weight

memory

Weight

memory

Weight

memory

Input 

Buffer

Weights

Input

Map

Output

Buffer

Output

Map

Figure 2. Architectural structure of the main modules of the hardware accelerator.

The output buffer of the module for the first layer is shared with the input buffer of
the module for the hidden layers. Furthermore, the input buffer of the module for the last
layer is shared with the output buffer of the module for hidden layers (see Figure 3).

Last Layer

Cores

Weight

memory

Input 

Buffer

Weights

Image Classification

Ping-

Pong

Buffer

Cores

Weight

memory

Ping-

Pong

Buffer

Cores
Output

Buffer

Weight

memory

DMA

First  Layer Hidden Layers

Figure 3. Architecture of the accelerator with the three modules.

The inner module processes several hidden layers. Therefore, the input buffer is also
used to store intermediate feature maps. Weights, image, and classification results are
transferred from and to the external memory using a direct memory access (DMA) module.
The weight memory stores one (wz, wx, wy) filter while having enough room to receive the
next filter. Input and output memory buffers are configured as dual port memories, which
allows simultaneous reading and writing in a ping-pong configuration.

The hardware accelerator explores different forms of parallelism available in convolu-
tional neural networks and binarized neural networks, in particular:

• Intra-convolution parallelism—multiple multiplications and additions for a convolu-
tion are performed in parallel. This is greatly explored in the proposed architecture.
The number of parallel multiplications is configurable as 64, 128, or 256;

• Inter-feature map parallelism—Each resulting channel of an output feature map
is independent of the other channels. So, several output channels are computed
in parallel. This is implemented with multiple cores, where each operates with a
single filter, producing an independent output channel. The number of cores is also
configurable as 16, 32, or 64;

• Inter-layer parallelism—Layers are executed in a pipeline. The three main modules op-
erate in a pipelined data flow using ping-pong buffers to allow continuous processing
of images;

• Batch parallelism—Multiple images from a batch are processed in parallel, providing
a significant acceleration when implementing batch processing. The batch size is also
configurable as 1, 2, 3, or 4.

Batch parallelism is optimized using shared weights among all batches (see Figure 4).
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Figure 4. Architecture with a batch configuration.

Several images are processed in parallel. Therefore, weights are shared among the
modules. This reduces the required weight memories and reduces external memory
accesses, as the same weights are used for a batch of images.

4.2. Implementation of Convolutions

Most works implement 3D convolutions by adding the results from 2D convolutions
from each channel. As such, input feature maps and weights are usually ordered as
(x× y× z). This approach complicates the calculation of parallel 2D convolutions because
it requires buffers and reading multiples of nine weights from memory. Furthermore, to
run models with multiple kernel sizes, it requires some extra buffering and logic to adapt
the 2D convolution to different kernel sizes.

Instead, we consider inputs and weights ordered as (z× x× y) and directly execute
3D convolutions. With this ordering, a convolution is performed by streaming the input
and weight values into the core starting with the z coordinate, then the x coordinate, then
jumping to the next y when a line has finished streaming.

This allows a core to receive a full block of pixels instead of a plane and process the
3D convolution as several dot products. It also allows a core to receive z pixels x× y times,
making the approach independent of the window size of the kernel. To guarantee the flow
of layer executions without further data manipulation in the intermediate feature maps,
the output feature map from a 3D convolution is stored in the same (z× x× y) order.

The correct sequence of readings and writings of feature maps is guaranteed by
configurable address generators associated with the weight and map memories.

Initial calculations, shown in Equations (13) and (14), are performed at the start of
each convolution to determine the output dimensions. (IXsize, IYsize) are the input image
dimensions, (WXsize, WYsize) are the filters dimension, pad is either 0 or 1, and pool is either
1 or 2.

OXsize =
IXsize −WXsize + 2 ∗ pad + 1

pool
(13)

OYsize =
IYsize −WYsize + 2 ∗ pad + 1

pool
(14)

The following counters are used by the address generators to calculate all addresses, in-
put, weight and output, where OXsize and OYsize are calculated with Equations (13) and (14),
respectively:

• IZ counter ∈ [0,
Zsize
Ni
− 1]
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• WX counter ∈ [0, WXsize − 1]
• WY counter ∈ [0, WYsize − 1]
• Xpool counter ∈ [0, pool − 1]
• Ypool counter ∈ [0, pool − 1]
• OX counter ∈ [0, OXsize − 1]
• OY counter ∈ [0, OYsize − 1]
• WN counter ∈ [0, WNsize − 1]

Using the counters together with the image and weight dimensions, the addresses are
calculated using the following equations.

IZ + (OX ∗ pool + Xpool + WX − padding) ∗ IZsize
Ni

+

(OY ∗ pool + Ypool + WY − padding) ∗ IZsize
Ni
∗ IXsize

(15)

IZ + WX ∗
IZsize

Ni
+ WY ∗

IZsize
Ni
∗WXsize (16)

WN +
OX ∗WNsize + OY ∗WNsize ∗OXsize

No
(17)

Equation (15) is used for the input image address, Equation (16) is used for the weight
address, and Equation (17) is used for the output image address.

These equations are simplified in the first and last layers. The first layer does not have
pooling and the last layer does not have pooling or padding.

Compared to the traditional 2D convolution method, the method considered in
this work also offers a better way to explore parallelism, not constrained by the kernel
window size.

4.3. Architecture of Cores

Each module has cores optimized for the execution of the associated layers (see
Figure 5).
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Figure 5. Architecture of cores. (a) Core of the module for the first layer; (b) core of the module for
the hidden layer; (c) core of the module for the last layer.
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In the first layer, the cores implement the inner product between 1 bit weights and
8-bit pixels. The intra-convolution parallelism, Ni, is configurable. The result of the inner
product is then accumulated.

The core of the module for hidden layers implements the inner product between 1 and
bit weights and 1-bit activations using XNOR for multiplication and popcount for addition.
Similar to the first layer module, the intra-convolution parallelism, Ni, is also configurable.
Additionally, this module supports pooling. Max pooling is implemented with a simple
boolean OR between all elements of the pooling window, as explained in Section 3.1. Once
it receives the last pool signal, the register is reinitialized, and the last registered output is
validated to the final stage for binarization.

The core of the last layer module is similar to the one used in the hidden layers, except
that pooling is not used in dense layers.

The accumulators of the modules are initialized with [−(total number of bits in x)− τ],
(τ is the binarization threshold, as explained in Section 3.1) so that the signal of the final
accumulation determines the binarization.

4.4. Execution Data Flow of the Binarized Neural Network

The runtime execution of the architecture is configured and controlled by a host
processor in a pipelined data flow.

The first- and last-layer modules are configured according to the sizes of these layers.
These configurations stay fixed for the whole execution of the model. The module for
hidden layers is configured for each different hidden layer. The configuration step includes
the configuration of the address generators and the optional execution of pooling.

The first module loads the input image and filters and then starts the execution of
convolutions. After finishing the convolution and writing the output result in the buffer
of the next module, it is ready for the next image. As long as the output buffer is free to
receive a new map, the module restarts the execution.

The module for hidden layers has a similar execution, except that the module is used
sequentially for all hidden layers. After executing one layer, the module is reconfigured for
the next layer. After the execution of the last hidden layer, the output feature map is sent to
the last module.

The last module has a similar execution running the dense layer. The result of the
layer is sent back to external memory.

When an output feature map is larger than the size of the output buffers, the image is
partitioned in the y direction. In these cases, the last layer is only executed when the full
feature map is available.

When the architecture is designed with parallel data paths to explore batch parallelism,
the weights are shared by all paths. Therefore, all data paths must run the same model. To
run multi-model inference in a batch processing architecture, a model with higher accuracy
is only executed when there are enough images to fully utilize all parallel data paths of
the architecture.

Running the multi-model inference is straightforward. It first runs the model with the
lowest accuracy. Then, it determines the entropy and decides which model to run next. The
entropy calculation is performed in software but could also be implemented in hardware.
When using the architecture with multiple batches, all models are executed in batches.

4.5. Accelerator Analysis

The proposed architecture is configurable and consists of three modules working
independently in a data flow. Therefore, it is important to balance their execution times
to reduce the idle times of the modules. We have developed a performance model of the
architecture to estimate its execution time. This model is used to optimize the architecture
for a specific model configuration.

Each layeri processes the convolution of the input image by a set of Wi
n filters,

(wi
z, wi

x, wi
y). The number of cycles required to process each filter is determined from
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the number of input pixels that are given to the core, Ni. The more cores we have, the
more filters can be processed simultaneously, which reduces the total number of cycles
required to calculate the final output image by No. However, each core requires one set
of (wi

z, wi
x, wi

y) filters. This introduces a communication bound bottleneck as more cores
require more filters to be retrieved from memory.

The number of total cycles required to process each layer can be calculated through
Equation (18), where Ni

layer is the total number of cycles required for the hardware to

process all outputs corresponding to layer i, Ni
f etch is the number of cycles required to

download No filters from the stream, Ni
f ilter is the number of cycles required to process one

output feature map, and Oi
z is the number of feature maps of the output image. The MAX

operation considers the longer time taken between the communication and computation.
Because a new set of filters is downloaded while the current set of filters is being processed,
if the download takes more time, the operation will have to wait for the download to finish.

Ni
layer = MAX(Ni

f etch, Ni
f ilter) ∗

Oi
z

No
(18)

The number of cycles required to fetch each set of filters, Ni
f etch, is shown in Equation (19),

where (wx, wy, wz) represent the dimensions of each filter and Nt is the number of bits
fetched per cycle plus one cycle for the τ value for the batch normalization.

Ni
f etch = No ∗ (

wi
x ∗ wi

y ∗ wi
z

Nt
+ 1) (19)

The number of cycles needed to process each filter, Ni
f ilter, is shown in Equation (20).

(Ox, Oy) represent the output image’s dimensions, calculated through Equations (13) and (14),
respectively. pool is 1 if no max pooling is used and 2 otherwise, and (wx, wy, wz) represent
the dimensions of each filter.

Ni
f ilter = Oi

x ∗Oi
y ∗ (pooli)2 ∗

wi
x ∗ wi

y ∗ wi
z

Ni
(20)

These two equations present a scaling limit for the overall throughput where Ni
f ilter

needs to be higher than Ni
f etch. Higher values for Ni reduce the number of cycles necessary

to process the current filter, Equation (20), and higher values for No make the fetching
process take more cycles, Equation (19). The only way to increase this limit is to increase
the number of bits fetched per cycle, Nt.

Ni
f etch can be compared with Ni

f ilter, resulting in condition (21), which needs to be true;
otherwise, the fetching takes longer than the operations.

No ∗ (
wi

x ∗ wi
y ∗ wi

z

Nt
+ 1) < Oi

x ∗Oi
y ∗ (pooli)2 ∗

wi
x ∗ wi

y ∗ wi
z

Ni
'

' No < Ox ∗Oy ∗ pool2 ∗ Nt

Ni

(21)

These equations allow us to determine the number of cores in each module so that
they have a similar runtime execution. It also determines the maximum number of cores as
a function of the memory bandwidth.

The data size determines the number of BRAM. A single-port BRAM has a maximum
port size of 64 bits. Therefore, data sizes of 128 and 256 bits require at least two and four
BRAMs, respectively. Each core is associated with a local weight memory. So, the number
of cores also establishes the number of required BRAM. The number of batch data flows
only determines the number of BRAMs required to implement the input and output buffers,
because the weight memories are shared by all batch data flows.
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5. Results

This section presents and discusses the accuracy results obtained with the configurable
binarized neural network, the execution throughput of the proposed hardware accelerator,
and the improvements achieved with the multi-model inference.

5.1. Binarized Neural Network Accuracy

We considered Brevitas [27] for binary quantization of the neural network model.
Brevitas is a PyTorch (https://pytorch.org/, accessed on 10 October 2022) library used for
quantization-aware training that implements a set of building blocks at different levels of
abstraction to model a reduced precision hardware data path at training time. This library
provides several quantized versions of the standard PyTorch layers that can be replaced
with the original PyTorch model.

The CIFAR-10 (https://www.cs.toronto.edu/~kriz/cifar.html, accessed on 10 October
2022) dataset, used in many previous works, was used to test and compare the proposed
BCNN. CIFAR-10 has ten distinct classes, namely airplane, automobile, bird, cat, deer, dog,
frog, horse, ship, and truck. This dataset is used as a standard benchmark in many state-of-
the-art works and serves as a guide to verify if binary neural networks can achieve similar
accuracy levels. The data set consists of 60,000 3× 32× 32 colored images: 50,000 training
images and 10,000 evaluation images.

The configurable binarized neural network described in Section 3.1 was successfully
trained using PyTorch/Brevitas. The training program follows the same structure used
to train a standard network. The first inputs are 8-bit integers normalized in the range
[−127, 127]. The outputs of each layer are normalized using batch normalization. The last
layer has 10 filters equal to the number of classes of the CIFAR-10 dataset.

From the training results, a set of weight values for each layer plus a set of 16-bit
signed τ values used for the binary batch normalization are obtained. The number of bits
for τ was evaluated at the end of the training, and observing that the trained values were
lower than 215 − 1, 16 bits was chosen as the smallest possible size to help save hardware
resources without sacrificing precision.

The number of filters in the first five convolutional layers was varied with (32 ∗ N) to
study the relation between the number of convolutions, accuracy, and model complexity.
The results for CIFAR-10 are shown in Figure 6, where accuracy is measured.
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Figure 6. Accuracy results obtained by varying the number of filters by N with the CIFAR-10 dataset.
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From the figure, it is evident that a higher computational effort is required to achieve
the same accuracy increase. For example, N = 3 has an accuracy of 87.59% and N = 5 has
an accuracy around 2.4 p.p higher. This accuracy improvement was obtained with a 2.6×
increase in model complexity. A close accuracy improvement can be achieved from N = 5 to
N = 12. However, this time, the accuracy improvement was obtained with a 5.5× increase
in model complexity.

5.2. Hardware/Software Evaluation

The accelerator was integrated in a hardware/software system and implemented
in two low-density ZYNQ devices from Xilinx: Zynq7010 and Zynq7020. The Zynq
architecture consists of two major parts, the processing system (PS), which contains two
ARM A9 cores, and programmable logic (PL), which contains the FPGA subsystem.

The binarized neural network HW/SW architecture was implemented executing
the software component in one ARM processor and the accelerator implemented in the
programmable logic.

The PL accesses the external memory directly using a direct memory access (DMA)
component controlled by the software. The DMA’s access to the external memory is facili-
tated through a 64-bit high-performance (HP) port. The configuration of the accelerator
and the DMA is executed by the processor through a 32-bit general-purpose (GP) port.

The module for the first layer has a fixed configuration with eight cores and the module
for the last layer has a single core configured with a data size of 64 bits. Different configura-
tions of the module for the hidden layers were implemented by varying the data size, the
number of cores, and the number of channels (see results in Table 2), limited by the maximum
number of resources of the ZYNQ7020. The accelerator is scalable and can be configured
with a higher number of cores, limited only by the available resources of the FPGA.

The number of BRAMs depends on the number of cores, the data size, and the number
of filters. The number of BRAMs shown in the table are for N = 8.

From the table, it is possible to identify solutions with the same peak performance (data
size × core × batch) but different numbers of resources. For example, the configuration
64× 32× 4 uses 21,805 LUTs and 91 BRAMs, while the configuration 128× 16× 4 uses
20,173 LUTs and 91 BRAMs. Another observation is that architectures with higher data
sizes are more efficient, that is, considering architectures with the same peak performance,
the one with a larger data size consumes a lower number of LUTs.

We have executed the inference of the binarized neural network with different values
of N using an accelerator with a data size of 128 bits, 32 cores, and a batch of four on a
ZYNQ7020. The circuit consumes 42,859 LUTs and 135 BRAM (see results in Figure 7)
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Figure 7. Average execution time of the inference of the proposed model for a variable number of
filters with the CIFAR-10 dataset on a ZYNQ7020.
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Table 2. Resource utilization for different configurations of the accelerator.

Data Size Core Batch LUT BRAM (N = 8)

64 64 1 12,329 84

64 64 2 22,155 97

64 64 3 31,981 110

64 64 4 41,807 123

64 32 1 6793 52

64 32 2 11,797 65

64 32 3 16,801 78

64 32 4 21,805 91

64 16 1 3961 36

64 16 2 6479 49

64 16 3 8997 62

64 16 4 11,515 75

128 32 1 11,057 81

128 32 2 20,333 97

128 32 3 29,609 110

128 32 4 38,885 123

128 16 1 6099 52

128 16 2 10,801 65

128 16 3 15,487 78

128 16 4 20,173 91

256 16 1 10,281 84

256 16 2 19,143 97

256 16 3 28,005 110

256 16 4 36,867 123

As expected, the average execution time follows the complexity of the network. The
average frames per second (FPS) varies from 559 (N = 12) up to 62,066 (for N = 1).

The same test was performed on a ZYNQ7010 to show that the proposed architecture
is also scalable to very-small-density FPGAs. In this case, the architecture was configured
with a data size of 128, 16 cores, and a batch of 1. The hardware/software architecture
consumes 14,775 LUTs and 58 BRAMs (see results in Figure 8). In the ZYNQ7010, an
average frame rate from 140 up to 15,625 was achieved.

Because the proposed accelerator is configurable, it can be optimized for a specific
target frame rate. As a test case, we configured the accelerator for a frame rate around 550
with different values of N and determined the resources (see Figure 9).
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Figure 8. Average execution time of the inference of the proposed model for a variable number of
filters with the CIFAR-10 dataset on a ZYNQ7010.
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Figure 9. Resource occupation of the accelerator for the inference of the proposed model with a
variable number of filters with the CIFAR-10 dataset on a ZYNQ7020 with a frame rate around 550.

As can be seen from the figure, the proposed accelerator achieves high accuracy levels
with very small solutions. For example, an accuracy close to 85% of CIFAR-10 inference is
achieved with less than 2000 LUTs and 22 BRAMs.

5.3. Multi-Model Inference Results

The multi-model with two (2M) and three (3M) different BCNN models was applied
to the binarized neural network. After training the models for different N, the design flow
of the multi-model inference technique was applied to find the best set of models and
threshold with an accuracy close (within 0.1%) to the accuracy of the single models (SM). A
full design space exploration was considered with all combinations of models to find the
combinations with the best speedup for a particular accuracy (see results in Table 3).
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Table 3. Speedup achieved with incremental inference against inference with a single model. The
results include the number of frames per second (FPS), total size of weights in KB, and the speedup
compared to the solution of a single model.

Acc. FPS SM Weights FPS 2M Speedup Weights 3M Speedup Weights

84.85% 17,699 106.2 21,858 1.23 143.7 23,529 1.33 352.4

87.59% 8282 208.7 10,782 1.30 314.9 12,739 1.54 488.6

89.13% 4773 344.9 6515 1.36 382.4 8097 1.70 659.8

89.97% 3103 514.9 5579 1.80 723.6 6410 2.07 966.0

90.70% 2214 781.6 4474 2.02 927.3 4884 2.21 1272.3

91.14% 1612 956.1 3623 2.25 1164.8 4154 2.58 1679.7

91.34% 1241 1227.3 3008 2.42 1436.0 3613 2.91 2154.7

91.64% 962 1532.3 2616 2.72 1741.0 3077 3.20 2459.7

91.85% 801 1871.1 2100 2.62 1741.0 2394 2.99 3172.1

92.11% 664 2243.5 1612 2.43 3368.4 1803 2.72 3544.6

92.43% 559 2649.8 1282 2.30 3368.4 1366 2.44 4120.8

92.86% — — 859 1.54 4182.1 1071 1.91 4900.7

As can be seen from the results in Table 3, the method achieves speedups from 1 to
3.2 times those of a single model with the same accuracy. However, the speedup with the
multi-model inference is not constant. The model with N = 2 has an accuracy of 84.85%.
This accuracy is achieved with the multi-model incremental inference at around the same
execution time (speedup close to 1). The speedup achieved with the two-model case
improves with an accuracy up to 2.72× that of the single model (with N = 8). From here,
the speedup begins to decrease. The three-model case has a similar behavior.

Comparing both two- and three-model inferences, it can be observed that the three-
model case is faster, with a maximum speedup of 3.2 versus 2.7 for the two-model case.
The cost of increasing the number of cascade models is the increase in memory to store
the weights of all models. This is an important aspect, because it determines the viability
and applicability of the method. The increase in memory size when using a dual model
instead of a single model is on average around 1.2×. In the three-model case, as expected,
the increase is higher, but the speedup also improves. With only 20% more memory,
the speedup can go up to 2.7×. Achieving the same speedup would require an increase
in hardware resources of at least the same factor. Therefore, the method is viable and
applicable as a speedup technique of the inference of deep neural models.

Another interesting achievement of the multi-model inferences is that they not only
improve the frame rate but also improve on the highest accuracy obtained with the single
model, from 92.43% to 92.86%.

5.4. Comparison with Previous Works

The proposed accelerator with the three-model inference technique was compared
with previous works in terms of accuracy, frame throughput, and resource utilization (see
Table 4).

The proposed accelerator was compared with previous works considering a solu-
tion with an accuracy 89.06%, above the accuracy of previous works. As can be seen,
the proposed solution achieves the highest frame rate and the highest frame rate per
kLUT efficiency.

Compared to the work with the highest frame rate and a close accuracy ([28]), our
accelerator still has a higher frame rate (1.35×) and a 10.4× better frame rate efficiency. The
work in [9] has less than half of the frame rate efficiency of the proposed work. However,
all layers are implemented in a pipeline where all the weight values are stored in internal
FPGA memory, removing any communication bottleneck, but requires 50% more BRAM
than ours and is not feasible for very-low-density devices, such as the devices considered
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in this work. Additionally, it achieves a lower accuracy (80.1%). The work from [12]
successfully reduced the number of BRAMs by only storing the input and output feature
maps. The weight values were kept in external memory and streamed into buffers when
used for the convolutions. With high memory bandwidth, this work was capable of having
256 cores with 3× 3 inputs. The lack of fully connected layers also helped with the overall
execution time but decreased the accuracy significantly to only 81.8%.

Table 4. Comparison with previous works for BCNN inference of CIFAR-10.

[9] [13] [12] [14] [28] [15] [16] Ours Ours

Device Z7045 Z7020 Z7020 Z7020 V7-VX690 ZU7EV Cyclone V Z7020 Z7010

LUT 46,200 46,900 14,509 29,600 342,100 45,000 2000 38,885 11,057

BRAM 186 94 16 103 1007 126 73 123 58

Peak GMACS 473 208 329 257 7663 411 83 2343 585

Model GMAC 134 1.425 0.78 1.764 1.396 1.425 1.425 0.378 0.378

Acc. (%) 80.1 88.18 81.80 88.61 87.80 88.81 88.88 89.09 89.09

FPS 3534 168 422 521 6017 288 58 8097 2024

FPS/kLUT 76.5 3.6 29.1 17.6 17.6 6.4 29 208 183

The scalability of the proposed architecture for small-density FPGAs is shown with
the implementation on the ZYNQ7010. The architecture achieves a frame rate of 2024 FPS
with a lower frame rate efficiency compared to the solution on the ZYNQ7020, but still
higher than any of the previous works.

The promising results obtained with the ZYNQ7010 show that the proposed model and
architecture can be deployed in very-low-density FPGAs. As shown in Table 2, the scalabil-
ity of the accelerator allows for the design of very small architectures with a proportional
reduction in the image processing throughput.

6. Conclusions

This work proposes a configurable binarized neural network model, a configurable
hardware accelerator, and a multi-model inference technique. The architecture is scalable
and can be implemented in FPGAs of any density. Its scalability permits an increase in
the number of cores so that the performance can also be improved when implemented in
higher-density FPGAs.

The accelerator was implemented in a ZYNQ7020 FPGA and a ZYNQ7010 FPGA. The
accelerator was integrated in a hardware/software system-on-chip solution programmed to
run the binarized neural network, and the two- and three-model inference techniques were
tested with CIFAR-10 dataset.

The results show improvements of up to 7.2× the frame rate efficiency compared
to previous works with the same accuracy. The multi-model inference technique also
improves execution time of the single model inference up to 3.2×.

The utilization of multiple models in the inference process has been scarcely explored.
There are many ways to achieve CNN cascades, and some of them can only be explored
with dedicated accelerators. We have considered multiple configurations of a single model,
which has not been considered before, but there are others way to achieve it that deserve
deep research. Furthermore, we have considered the method in the context of binarized
neural networks, because we were looking for very-low-cost solutions, but it can also be
used in non-binarized models.

It considerably improves previous binarized solutions not only by using the multi-
model inference but also with a very efficient hardware accelerator with dedicated units
for the input layer, the dense layer, and the hidden layers.

The multi-model technique can be applied to any network model, for example, ResNet-
based models [29] and to other applications, such as object detection. Other important
aspects of this method include sharing model structures and parameters to reduce the
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number and size of parameters of the multi-model and hardware-friendly design. These
aspects are already undergoing research by the authors of this paper.
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