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Abstract: There are some challenges involved in the design of a multicolor LED driver, such as the
precise control of color consistency, i.e., maintaining the correlated color temperature (CCT) and
luminous intensity. CCT deviation causes a color shift of composite light. This paper approaches the
method of nonlinear optimization of the LED currents of two LED sources to achieve the desired CCT.
A bicolor blended-shade white LED system is formed by using a warm color LED source of 1000 K
CCT and a cool color LED source of 6500 K CCT. By using a nonlinear optimization methodology,
the reduced deviation of the blended CCT and optimum LED currents are obtained. The optimized
currents in the two LED strings are maintained by the control circuit of the single-ended primary
inductor converter (SEPIC). The obtained reduced deviation of the CCT is 43 K, and the precision is
99.15%. Again, harmonics in the input current hamper power quality, i.e., reduce the power factor
and increase power loss. This paper proposes the harmonic reduction technique to achieve the lowest
value of total harmonic distortion (THD) through the nonlinear parametric optimization of the SEPIC.
Measured THD = 4.37%; PF = 0.96; and efficiency = 92.8%. The system stability was determined and
found to be satisfactory.

Keywords: LED; color consistency; CCT; THD; bicolor

1. Introduction

Multicolor LED lights can provide a large range of colors and quality lighting with
a high color rendering index (CRI), and they can be applied in many areas [1]. As red,
green, and blue LEDs have different thermal and luminous characteristics, variation in
one color can have a significant effect on the targeted color point (CCT). Color control
in LED systems is a multidisciplinary subject involving electric power, circuit topology,
thermal management, and optical performance [2,3]. There is a lack of measurement
results that describe the luminous and power parameters of multicolor LED systems. This
paper presents an LED driving system which describes essential luminous and power
measurements.

The color recognition of the LED light is a crucial research area in multicolor LED
systems [4,5]. For the smooth intensity control of an LED light, optical regulation can
be conducted either by changing the amplitude level or the duty cycle, or by changing
both of the currents flowing through the LEDs [6,7]. White and other different colors
can be generated using LED lights. Currently, LED-based white light is generated from
a blue or a near-ultraviolet emitting chip coated with yellow phosphor, or by mixing red,
green, and blue light [8]. Light from monochromatic red-green-blue (RGB) LEDs [9–12]
or red-green-blue-amber (RGBA) LEDs were blended to obtain different shades of white.
However, these types of LED systems require three or more pulse-width modulated (PWM)
output channels. The RGB [10,13] or RGBA [14] LED driver uses independent converters
for its power supply. These are redundant. The proposed bicolor LED driver uses a single
power converter to drive both LED strings.
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There are some challenges in obtaining a high-quality multicolor LED light source,
such as junction temperature variations caused by the self-heating of the LEDs and distur-
bances in ambient temperatures [10,15]. These factors affect the LED current and hamper
color consistency, i.e., CCT. The researchers proposed different feedback control structures
based on LED junction temperature [13,15] to stabilize the luminous intensity and color
consistency. However, the use of sensors not only increases the complexity but also increase
the expense of the system. The proposed LED driver does not require sensors.

Therefore, in the design of LED drivers for diversified applications, constituents such
as color consistency (CCT) and color intensity are needed along with other key requirements
such as low THD, high PF, and high efficiency. Several attempts have been made to achieve
low harmonics in the input current [16–19]. The resulting aim would be to achieve an
LED driver that can maintain a constant CCT with constant intensity along with low THD
and high luminous efficiency. High efficiency enables a low consumption of electrical
energy. However, in most cases, the efficiency of LED drivers is low [20–24], and they cause
harmonics in the input current and a low power factor [25–27]. The proposed LED driver
has overcome these THD and power factor issues. This paper has achieved a low THD
value by using a non-linear optimization methodology on SEPIC parameters. There was a
bit of a discrepancy between the measured results and the calculated results for the THD.
A high power factor was achieved by using a proper control circuit.

The precise color control of the multicolor LED system is still a challenging task for
the chromaticity (CCT) shift due to the junction temperature variation and aging [28–33].
Efforts are ongoing to maintain CCT control. Papers [34–38] used the linear method for the
CCT control of bicolor LEDs, and they considered the CCT constant, which is inaccurate.
The CCT assumption fails to account for the temperature-dependent color temperature
of LEDs and the nonlinearity of LEDs. It employs duty cycle control to mix color. The
proposed LED driver is based on the use of nonlinear optimization to find the least CCT
deviation. CCT and dimming control are performed in [39] using a microcontroller, where
CCT deviation varies from 145 K to 510 K for a CCT range 2700 K to 6500 K. This large
CCT deviation will cause color shifts. Using a microcontroller enhances complexity and
cost. An open-loop system is used in [40] for CCT control, and the deviation of CCT is
relatively higher. In [39,41,42], the authors focus on color control based on PWM switched
systems. Refs. [39,41] uses one AC–DC converter and two LED drivers. The closed-loop
control system is highly dependent on color sensors. MCU is used to generate PWM. All
these increase complexity and cost. Paper [42] worked on CRI optimization with CCT, but
there was no option to mitigate junction temperature and aging. They worked only on
the color control of LEDs. The papers did not mention anything about the power source,
power quality, and power related issues, etc. On the other hand, our proposed LED driver
gives the full driver circuit design while considering color and power issues. The proposed
driver has mitigated the current rising with the junction temperature and the aging effect
by using a proper color feedback circuit. The driver shows a CCT deviation range of 43 K
to 234 K, which cannot be seen by the naked eye. A microcontroller is not required in the
proposed driver, and this reduces cost and complexity.

In previous studies [40,41] of bicolor LEDs, researchers have worked with only bicolor
LEDs, whereas we have not only worked with bicolor LEDs but we have also designed a
bicolor composite LED driver. In [43], the authors propose a general-purpose LED driver,
and in [44], the authors describe a bicolor LED driver. In both cases, the power parameters
are good. In [45], the authors worked with a bicolor LED driver based on luminous flux
as a function of the LED voltages, but luminous flux is a function of LED current, which
is more accurate. They did not mention the power quality parameters. In the proposed
paper, we designed a bicolor LED driver for which the CCT was maintained at two color
temperatures, namely, 1000 K and 6500 K, with a blended-shade white composite LED light
through controlling the LED string current. At the same time, we achieved the least THD
and a high power factor by optimizing the SEPIC parameters and using a proper control
circuit, respectively.
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In the proposed LED driver, the bicolor LED string’s current is regulated by a single
power converter. The combined CCT of the composite LED light is determined. CCT
deviation is minimized through the constrained nonlinear optimization of the LED currents
of the two LED strings. A nonlinear constrained parametric optimization methodology is
also applied to refine the parameters of the SEPIC to obtain the lowest THD value. The
proposed driver also boosts the efficiency and power factor. The SEPIC is operated in DCM
and hence a control circuit improves the power factor. Thus, the LED driver maintains
the desired CCT with minimal THD. Nowadays, people prefer a diversity of light color,
e.g., shopping centers, garden lights, and spotlights where colors change with different
control techniques. The nonlinear optimization model can be simplified to achieve practical
solutions which are then transformed into real life applications. The result is more accurate
than those obtained with linear approaches. The idea can be applied to LED systems with
multiple color temperatures and is not limited to white LEDs.

The remainder of the paper is organized as follows: the basic configuration and
driver topology are described in Section 2, the nonlinear optimization approach is laid
out in Section 3, the nonlinear optimization of the reduction in CCT deviation is shown in
Section 4, the analysis of the color-control scheme is described in Section 5, the proposed
parametric optimization methodology for harmonic reduction is detailed in Section 6,
the stability studies are listed in Section 7, the results are discussed in Section 8, and a
conclusion is provided in Section 9.

2. Basic Configuration and Driver Topology

The bicolor LED driver circuit consists of two parts. The first is the power stage, and
the second is the color management stage. The power stage comprises a bridge rectifier
and a SEPIC to regulate the LED outputs. The SEPIC is chosen for PFC due to its superior
characteristics: positive DC output, high–low output level, low switching stress, and low
output ripple current. The total LED current regulation is carried out using the control
circuit of the SEPIC. The block diagram in Figure 1 shows the power stage. The color
controller controls the LED current in each of the LED strings.
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Figure 1. Power stage (basic SEPIC) and color control system.

The CCT and THD are controlled in the bicolor LED driver circuit simultaneously. The
composite CCT is obtained by blending the colors of the LEDs of two parallel branches. By
maintaining optimized LED currents in both branches, the minimization of CCT deviation
can be obtained. In the color control scheme, the required current in each LED string flows
individually through each color control feedback loop to achieve the target CCT with color
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stability. Reduced THD can be obtained by using optimized SEPIC parameters with the
LED driver. The circuit parameters are achieved by performing constrained nonlinear
optimization within the workable boundary.

The SEPIC provides a constant current, which is equal to the sum of the desired
currents in the two LED strings, i.e., the SEPIC output current is divided into two LED
strings according to the equivalent resistor of each branch. For the proposed converter
topology, bicolor LED strings with string voltages (V1 and V2) act as the load. The sensed
voltages of the two LED strings are summed and then passed through a voltage error
amplifier. This generates an error signal, which is the reference current of the current error
amplifier. The inductor current (IL) is sensed and compared with the reference. It performs
a proportional and integral function. The output of the current error amplifier Verror2 is
multiplied by the input sinusoidal voltage template, and the resulting signal forms the
reference to generate the PWM signal. This helps to improve the power factor and reduce
the harmonics in the input current. The PWM signal is generated by comparing a sawtooth
carrier signal of 20 kHz with the output of a multiplier. The LED currents are as follows:

From ref. [43], the average SEPIC output current is:

I0 =
DD1Vg

2 f Leq
(1)

I0 has been divided into R01 and R02 (R01 and R02 are the equivalent resistances of
string1 and string2).

The average LED currents are now:

Iav1 =
R02

R01 + R02

DD1Vg

2 f Leq
, Iav2 =

R01

R01 + R02

DD1Vg

2 f Leq
(2)

Ipeak1 =
Iav1

DM1
, Ipeak2 =

Iav2

DM2
(3)

DM1 and DM2 are the duty cycles of MOSFETs M1 and M2.
Finally, the PWM signal is fed into the gate of SEPIC MOSFET M3, and thus the LED

current is maintained. An RC circuit is incorporated before the bridge rectifier to suppress
the inrush current and voltage spike. The RC circuit is also shown in Figure 1. The details
of the color control scheme are provided later.

3. Nonlinear Optimization Approach

Problem-based nonlinear constrained optimization methods are effective for fixing the
parameters of analogue circuits. This optimization method is applied to find the optimum
value of the LED current to achieve the desired CCT, and to find the lowest THD value with
the optimum parameters for SEPIC L1, L2, and C1 and the optimum filter parameters for Lf
and Cf. Minimized CCT deviation and minimal THD are both desirable for maintaining
color consistency and power quality in a multicolor LED driver, respectively. Figure 2
shows a functional block diagram of the CCT optimization process.

Non-linear optimization can be conceptually divided into the following distinct parts:
(i) define the objective function or cost function, (ii) create constraints, and (iii) solve the
problem iteratively within these constraints. The objective function is a mathematical
model quantitatively describing the desired behavior of the circuit. We chose to define the
circuit performance metric in order to minimize the cost function. The solution of the cost
function achieves the lowest value among all the combinations of possible variables.
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Constraints of optimization constitute a hard boundary placed on the value of a vari-
able, which prevents transition to unrealistic values. In nonlinear constrained optimization,
the error function is calculated and then the parameters are adjusted to minimize the error
function, causing the actual circuit behavior to approach the target function as closely as
possible within the boundary limit.

4. Nonlinear Optimization for Reduction of CCT Deviation

Color temperature is a characteristic of visible light. Changing the color consistency
causes adverse effects on human perception and comfort. Therefore, it is important to
choose the right color temperature based on the desired mood. The International Com-
mission for Illumination (CIE) has regulated and evolved multiple color spaces for the
computation, assessment, and demonstration of visualizable colors [8]. In this paper, the
system is configured based on two different color temperatures. The combined CCT of the
composite LED light is determined. The CCT deviation is minimized through the nonlinear
optimization of the LED currents of the two LED strings.

Creation of Optimization Problem

For the two LED modules with color temperatures of 1000 K and 6500 K, the chro-
maticity coordinates of the emitted light according to CIE 1931 are, respectively, (x1, y1)
and (x2, y2) with luminous fluxes ϕ1 and ϕ2. Referring to Figure 1, the currents that flow
through the mentioned LED strings are ILED1 and ILED2, and their corresponding voltages
are VLED1 and VLED2, respectively. In order to find the desired CCT within the infinite
number of possible solutions, an objective function is introduced to the system of equations.
Equations (4) and (5) illustrate the mathematical model of the CCT. The CCT deviation is:

∆CCT = CCTtarget − CCTest (4)

According to McCamy’s approx. algorithm [1], the estimated CCT of synthesized light
is:

CCTest = 449n3
est + 3525n2

est + 6823.3nest + 5520.33 (5)

where nest =
x−0.3320
0.1858−y .

The chromaticity coordinate of the light synthesized by the two LED channels is based
on [1]. Each color LED features a different spectral distribution and luminous output. If P
is the consumed electrical power of each LED string and εi is the luminous efficacy of the
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LED light source, then ϕi = εiPeleci = εiVLEDi ILEDi, where I = 1,2 for the bicolor LED string.
By calculating the values of x, y, and ϕi, n is estimated as follows:

nest =

x1
y1

ε1VLED1 ILED1+
x2
y2

ε2VLED2 ILED2
1

y1
ε1VLED1 ILED1+

1
y2

ε2VLED2 ILED2
− 0.3320

0.1858 − ε1VLED1 ILED1+ε2VLED2 ILED2
1

y1
ε1VLED1 ILED1+

1
y2

ε2VLED2 ILED2

(6)

The target CCT is obtained from the (x, y) coordinate of the blackbody curve. This
CCTest model is used in order to obtain the least CCT deviation.

Formation of Constraint with boundary—LEDs are current-driven devices with low
equivalent dynamic resistance. The LED model is shown in Equation (7). Figure 3 represents
the graph of LED load model. The constraint equation represents the I-V relationships of
the LEDs.
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The LED current is:

ILED = I0

(
e

VLED
nVT − 1

)
(7)

Rearranging

e
VLED
nVT =

ILED
IO

+ 1

The reverse saturation current Io can be practically considered as 10 µA. The ideality
factor n = 2 denotes the direct semiconductor (GaAs and InP). The room temperature
thermal voltage VT is considered to be 0.025 V.

The reduction in CCT deviation reduces color shift. Theoretically, various combi-
nations are possible for CCT minimization. However, CCT deviations, i.e., color shifts,
will only be minimized if the LED currents are within the specified ranges and the other
parameters are meaningful. We measured the I-V characteristics of LEDs of 1000 K (LED1)
and 6500 K (LED2), which were confined, according to their observed I-V characteristics.
We considered the current limit of ILED1 to be from 220 mA to 320 mA when the LED1
voltage varies between 23 volts and 25 volts, and the current ILED2 rises from 510 mA to
610 mA when the LED2 voltage varied from 23 volts to 25 volts. For the change in the AC
input voltage, the SEPIC output changed within the limit for feedback control.

Luminous efficacy differs with color variation. The efficacy of the LED was measured
at 10 lm/watt and 33.7 lm/watt for LED1 and LED2, respectively. The minimized CCT
deviation was obtained by solving the nonlinear optimization problem in MATLAB. We ob-
tained ∆CCT = 87.7 K for two optimized LED currents, ILED1 = 290 mA and ILED2 = 610 mA.
In the bicolor LED driver, the color control circuit should be designed in such a way that the
290 mA and 610 mA currents will flow through the LED1 and LED2 strings, respectively, to
ensure minimal CCT deviation.
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Some other constraints are the luminous intensity, efficacy, temperature, and electrical
power of LEDs. All these depend upon LED currents. Since LED sources have a narrow
spectral range in comparison with the visible spectrum, composite LED systems are highly
sensitive to variations in temperature and peak wavelengths. As the junction temperature
is not controllable, we can compensate for its effect with a color feedback circuit. Again,
variations in circumambient luminosity and LED lifetime will lead to even more significant
deviations in the real flux and CCT.

5. Proposed Color Control Scheme

Luminous output changes with temperature, and it changes over time in a way that
cannot be accurately prognosticated. These factors influence the CCT, light intensity, and
color point. This problem can be solved by applying a proper current control scheme.

The CCT and luminance set points are provided to the system in a convenient form
using two series resistors, R1 and R2,, connected with both LED strings, respectively. The
bicolor LED driver with a color controller is shown in Figure 4. The LED string current
is sensed from series resistors R1 and R2. The current error amplifier maintains the LED
current according to the reference value. This reference value is tuned to achieve the value
of the current obtained from the MATLAB optimization program. It maintains the CCT
of the corresponding color point. The control voltage is the output of the current error
amplifier. The PWM signal is generated by comparing the control voltage with the sawtooth
wave of the same clock frequency (20 kHz). The PWM signal generated from each color
control loop is fed into the gate of the MOSFET of both LED strings and maintains the
desired LED current individually. Thus, the corresponding color point and CCT of the
respective LED currents remain stable. The switching state transition times of M1 and M2
are very short (a few ns), so it is undetectable to humans. The dimming capability can be
achieved by changing the reference voltage. For the color controller, if one LED current is
controlled instead of two, under the premise of controlling the sum of the two LED currents,
one LED current will be discontinuous, and the other will be continuous. For currents of
a different nature, smooth color control becomes difficult. This is why two-color control
loops are used.
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6. Proposed Parametric Optimization Method for Harmonic Reduction

The parameters that influence harmonics in the input current are the value of the input
inductor L1, input capacitor C1, and output inductor L2, and the filter components Lf and
Cf. The nonlinear optimization method is applied in order to minimize the THD, where the
parameters of the SEPIC and input filter parameters are optimized.

6.1. Expression for the Optimization Problem

We have applied the problem-based nonlinear constrained optimization methodology
by using MATLAB. For this purpose, the SEPIC parameter optimization problem is formu-
lated first. THD is defined in the optimization problem. Next, the necessary constraints are
set and then the nonlinear optimization algorithm is executed iteratively to minimize the
cost function by varying the parameters within the range set by the constraints.

To minimize the THD, the objective functions is obtained from Equations (9) and (10)
of reference [43].

THD =

√
1

32I1rms
2

(DD1L f C f

f L1L2C1

)4

R2Vm2 − 1 (8)

6.2. Formation of Constraint with Boundary

To achieve minimal THD, the SEPIC parameters L1, L2, and C1 and the filter parame-
ters Lf and Cf are optimized using nonlinear optimization in MATLAB, and the constraint
boundary limit is defined in the practical domain. Here, we first consider the limit of L1.
The value of L1 is defined in Equation (9):

L1 =
Vin.D
∆IL1. fs

(9)

Here, L1 depends upon ∆IL1. L1 must be high enough for ∆IL1 to be significantly
minimized. In the practical circuit, L1 has some limitations, such as size, cost, and the
availability of component values. It should also be cost effective. Considering the above, L1
is varied from 1 mH to 10 mH. L2 is defined as the equivalent resistance of Leq and L1. Leq
is dependent on the dynamic resistance, voltage conversion ratio, and switching frequency.
Considering the transfer of energy in the SEPIC, it is feasible to restrict L2 to a moderate
range, i.e., to the micro-henry range.

It is confined in the range of 1 µH to 100 µH. Now, the constraint parameter C1
depends upon the resonance frequency fr,,which should be within the line frequency and
switching frequency. The resonance frequency is considered to be 3 kHz. C1 is the input
energy transfer capacitor. Therefore, it should be a small value for the smooth transfer of
energy from the input to the output, and for maintaining proper circuit operation according
to the constraint of Equation (10).

fr =
1

2π
√

C1(L1 + L2)
(10)

For convenience, the range for C1 is from 0.001 µF to 0.01 µF. For the input filter, high
impedance is used to restrict the unwanted frequency in the input terminal. It should also
be noted that to restrict the high starting current and voltage spike, an RC soft-start is
incorporated in the circuit after the LC filter in the input. The effect of these RC components
is also considered while calculating Lf and Cf. Thus, undesired signals, especially high
frequency signals, will be blocked from the power grid.

L f eq = L f +
Rs1

ω2Rs1Cs + ω
+

Rs2

ω
(11)

fr =
1

2π
√

C f L f eq

(12)
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Here, Lfeq is the equivalent inductance of the filter components. By evaluating a
realistic situation, Cf is restricted in the range of 0.1 µF to 1.0 µF and Lf is restricted in the
range of 1 mH to 10 mH, according to the constraints (12). The minimized THD is obtained
from the solution of the nonlinear optimization by using MATLAB. THD = 2.1% is obtained
for the SEPIC parameters L1 = 10.0 mH, L2 = 40.0 µH, C1 = 0.01 µF, Lf = 10.0 mH, and
Cf = 1 µF. The measured values are provided in Section 8.

7. Stability Studies

A state space-averaged model for the SEPIC-based LED driver during different modes
of operation has been developed [43]. Following this methodology, the factors of the bicolor
LED system are considered, and the overall open-loop transfer function of the System is
obtained as follows:

Trg =
6.761s4 + 250.4s3 − 1.287s2 − 3.206e−5s + 4.322e−14

s5 + 0.05135s4 + 3.739e−6s3 + 4.77e−14s2 + 1.634e−18s
(13)

From the step response shown in Figure 5, it is found that for the compensated model,
the system reaches the steady state within only 1 ms.
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8. Results

We have designed a nonlinear optimization scheme in MATLAB for bicolor LED
combinations. For both cases, CCT and THD, to achieve the lowest value, nonlinear opti-
mization was performed by refining the boundary limits to obtain optimum performance.
In the bicolor system, both the LED strings were of 24 volts, and LED1 (2 × 12 V) and
LED2 (3 × 8 V) were mounted on the heatsink. The experimental setup consisted of the
SEPIC circuit and a control circuit. The control circuit consisted of a summing amplifier,
voltage error amplifier, current error amplifier, and multiplier, and PWM generators were
constructed using the OPAMP, diode, capacitor, and resistors. We determined the different
luminous and electrical characteristics of 1000 K and 6500 K LEDs.

By applying the proposed closed-loop control scheme, we regulated the specified
currents, 290 mA and 610 mA, found in the nonlinear optimization algorithm to flow
through the two LED strings at an input voltage of 220 V. The CCT, CRI, and luminous
flux of the composite LED light were measured with an LED current from the Lab-sphere
Photometric Measurement System PM-105-16 at different input voltages. Figure 6 shows
the CCT and flux vs. the LED current curve for both LEDs. The CCT was almost constant,
but the flux increased with the increase in LED current. The measured composite CCT was
5043 K, which was very close to the desired CCT of 5000 K. The CCT deviation was 43 K
at an operating voltage of 220 V, which is within the non-perceivable (+/−283 K) color
limit [26]. The measured and target CCT values with the flux of the bicolor LED light are
shown in Figure 7. The experimental results show that, despite variations in light intensity,
the bicolor LED lamp with a closed-loop control remained stable with the strict control of
the CCT.
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Figure 6. Measured CCT and luminous flux vs. LED current for CCT 1000 K and 6500 K LEDs.
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Figure 7. Variation in CCT with the change in luminosity of the composite LED light.

Table 1 compares the target CCT with the corresponding measured CCT for the
blended LED system. The minimum and maximum percentage errors are 0.86% and 5.08%,
respectively. This shows that the measured CCT values from the color sphere conform
closely with the corresponding target values. Figure 8a shows the spectral distribution of
the composite color LED light with the wavelength. This allows us to determine the nature
of the composite light at different wavelengths. The spectral flux vs. the wavelength of
the composite LED light (LED2, wavelength of 500–565 nm with a CCT of 6500 K; LED1,
wavelength of 625–740 nm with a CCT of 1000 K) is shown in the curve. In the wavelengths
of the spectrum, only certain wavelengths (the spikes) are strongly present. From the SPD
curve, it can be seen that the peaks of the green (LED2) region are greater than those of the
red (LED1) region. These spikes indicate the dominance of the rendering of color for objects
illuminated by the light source. The measured CCT of 5043 K leads to a CRI value of 57.32%
in this region. It produces a light similar to daylight (5000 K). Its ability to render color
across the spectrum is not bad, but it is certainly much worse than daylight. We found from
the measured data that the CCT varies from around 4967 K to 5228 K with the variation in
the LED current.
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Table 1. CCT measurements.

LED
Current (mA)

CCT
Target

CCT
Meas.

CCT
Dev.

%
Error CRI

ILED1 ILED2

220 512 5100 5228 128 2.50 61.34
250 520 4900 5134 234 4.78 62.17
270 543 4900 5149 149 5.08 60.46
278 563 4900 4967 67 1.36 61.14
282 610 5000 5107 107 2.14 59.73
290 610 5000 5043 43 0.86 57.32
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Figure 8b shows that the luminous flux changes (increases and decreases) very little
with the increase in CCT. The luminous flux is proportional to the LED current. However,
when the LED voltage and efficacy change, the flux no longer remains proportional. The
CRI is independent of the CCT.
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The duty cycle of the SEPIC is defined as:

Dmax =
Voutput

Voutput + Vinput(min)

where Vinput(min) = 90 V.
It is found that an increase or decrease in the duty cycle will result in an increase

or decrease in the flux value. Thus, the overall CCT value increases or decreases. For
instance, a larger D1 value will cause a decrease in the CCT value, i.e., it will become more
reddish white. Similarly, a larger D2 value will increase the CCT value, i.e., it will become
more bluish white. Because the duty ratio changes, the LED current changes from the
optimized values, and the CCT also changes. The composite CCT vs. duty ratios (D1, D2)
are graphically illustrated in Figure 9. We find that the CCT deviation shown in Table 1
is within the allowable CCT tolerance. Therefore, it is experimentally verified that the
CCT values continue to track closely with the target values, regardless of the variations in
the luminous flux. This prevents a color shift in the composite color LED driver. Table 2
represents the optimized parameters of prototype of LED driver.
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Table 2. Optimized parameters used in prototype.

Parameters Values

Input inductor, L1 10 mH
Output inductor, L2 100 µH
Input capacitor, C1 0.01 µF/600 V

Input Filter Inductor, Lf 10 mH
Input Filter Capacitor, Cf 0.94 µF

Duty Cycle, Dmax 0.21
Power Diode 1000 V/10 A

Power MOS, M3 12 N60 (600 V/12 A)
Operating Voltage 220 V

MOS Switch, M1, M2 K2098

The measured power loss shown is 7.2%, the efficiency is 92.8%, and the THD is
4.37% at 220 V. The measured power losses are distributed component-wise, as shown in
Figure 10. Here, R-sense stands for the sense resistor, V-divider denotes the resistance for
the template of the input voltage, and R-diode and S-diode denote the rectifier and SEPIC
diode, respectively.
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Figure 10. Power loss components in LED driver.

The power consumed in the DC bias circuit is PDCbias = 0.30 watt. It can be seen that
the largest power loss occurs in the MOSFETs, accounting for approximately 2.37% of the
total power consumption. The proposed LED driver shows low THD (4.37%) and high
PF (0.96) at 220 V due to the optimization of the SEPIC parameters and the well-designed
feedback control circuit. A crest factor of 1.4 is obtained.

The average measured LED voltage and LED current of the two branches are 24 V,
290 mA and 24.4 V, 610 mA, respectively. Figure 11 shows the waveforms of the input
voltage (vs) and the input current (is) in the steady state condition. From the results, we
find that the input current follows the input voltage, and therefore the P.F is high.
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Figure 11. The measured input voltage: 220 V rms (50 V/division); the input current: 112 mA rms
(7 mA/division). THD = 4.37% and P.F = 0.96.

The currents of both LED strings were measured by varying the respective duty cycles
(D1 and D2) of MOSFETs M1 and M2. Figure 12a,b shows the PWM and corresponding
LED voltage and LED current at Vs = 220 V in a steady-state condition at a duty cycle
D1 of 42.55% and 63% for LED1. The same curves are shown in Figure 13a,b for LED2 by
varying the duty cycle D2 to 11.61% and 36.65%. For Figure 12a,b and Figure 13a,b, we find
that with dimming, the LED voltages and LED currents vary. The pulse width of the LED
current changes with the change in duty cycle. However, the obtained LED voltages are
smooth and constant due to the use of a capacitor of 1000 µF (ref. Figure 1) parallel to both
LED strings. The effect of dimming on the luminosity data are shown in Table 3.
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Figure 13. LED voltage and current with duty cycles (D2) of (a) 11.61% and (b) 36.65% in LED string 2.

Table 3. Current, voltage, and luminosity data variation with dimming.

No. of String Duty Cycle
(%)

LED Current
(mA)

LED Voltage
(V) CCT % CCT

Deviation
Luminous

Flux CRI

1
42.55 236 23.4 4955 0.90 381.69 58.21

63 330 24.4 5104 2.08 401.69 49.81

2
11.61 264 24.6 4719 5.62 379.63 62.64
36.65 460 24.6 4790 4.20 300.07 63.21

Table 3 shows the LED current, voltage, and luminosity data variations with dimming.
Here, we see that, in spite of the variation in the duty cycle, the CCT deviates only from
0.90% to 5.62%, i.e., from 45 K to 281 K, a change which cannot be recognized by the human
eye.

Table 4 shows the measured power parameters of the designed bicolor LED driver.
By the nonlinear optimization of the parameters of the SEPIC, a minimized THD was
obtained. For efficiency enhancement, we have chosen circuit components with loss-related
parameters of minimum values. Figure 14a shows the efficiency, THD, and P.F. variation of
the LED driver with the variation in the duty cycle. From the curve, it can be seen that the
efficiency and the THD decrease and that the power factor increases with the increase in
the duty cycle. Figure 14b shows the efficiency, THD, and P.F. variation of the LED driver
with the variation in input voltage.
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Table 4. The measured power parameters of the proposed bicolor LED drivers.

Vs
(Volt)

Is
(mA) P.F. THD VLED1

(Volt)
ILED1
(mA)

VLED2
(Volts)

ILED2
(mA)

Efficiency
%

90 206 0.988 1.27 23.1 220 23.8 512 91.6
110 190 0.981 2.40 23.8 250 24.0 520 90.7
150 150 0.980 5.40 24.0 270 24.5 543 88.5
180 125 0.977 4.36 24.0 278 24.5 563 91.8
200 115 0.960 4.15 24.6 282 24.8 580 95.3
220 110 0.960 4.37 24.0 290 24.4 610 92.8
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Figure 14. (a) THD, P.F., and efficiency vs. duty cycle graph; (b) THD, P.F., and efficiency vs. input
voltage graph.

The curve shows that efficiency and THD increase and that the power factor decreases
with the increase in input voltage. The performance in Figure 14a,b justifies the electrical
characteristics of an LED driver. Table 5 shows comparisons between the luminous flux
and CCT of the proposed system and those of the bicolor LED systems presented in [39]
and [41]. The proposed LED driver shows luminous bicolor LED system features that are
comparable with those obtained using the more accurate nonlinear approach, but exhibits
better features than those obtained using the linear approach [39]. Ref. [41] presents an
LED driver which shows a CCT less than 50 K, but nothing is said about the luminous flux.
Neither of these papers mention anything about the power quality parameters.

Table 6 shows the comparison of the power parameters with those of [44,45]. Our
designed LED driver shows better performance in THD and efficiency than [41], but on the
other hand it shows comparable performance in P.F. The author of [45] has worked with
bicolor LED drivers that show CCT variations of 0.73% to 2.58%, but they do not mention
power quality parameters. In the proposed bicolor LED driver, the CCT varies from 0.86%
to 5.08%. The result is comparable. Ref. [45] uses a single-inductor dual-output converter
with a 12 V DC input, whereas the proposed LED driver is SEPIC based and has a 220 V
AC input. Figure 15 shows the prototype of the bicolor LED driver with the experimental
setup.
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Table 5. Comparison of luminosity parameters with those of prior art [39,41].

Bicolor
White LED

Light

Luminous
Flux
(lm)

CCT
Measured

CCT
Desired

CCT
Deviation

CCTC = 5000 K 100 2754 3300 546
CCTw = 2700 K 289 3814 4000 186

(Linear approach)
[39] 455 2798 3300 502

CCTC = 6500 K 274.57 4713 4900 187
CCTw = 1000 K 354.86 5070 5000 70

(Proposed) 401.69 5404 5300 104
CCTC = 5000 K
CCTw = 2700 K 95 3250 3300 50

(Non-linear approach) 296 5515 5400 115
[39] 562 3392 3300 92

CCTC = 7500 K - 3050 3000 50
CCTw = 2700 K - 3410 3400 10

[41] - 3505 3500 05

Table 6. Comparison of power quality parameters with those of [44,45].

Item LED Driver
in [44]

Designed
LED Driver

LED Driver
in [45]

Input Voltage (V) 220 220 12 V(DC)
MOS Switches 3 3 3

Converter SIMO SEPIC SIDO
Total Current (mA)

(ILED1 + ILED2) 411.9 810 800

Transformer 1 No need No need
Frequency (kHz) 50 20 200

Power Factor 0.982 0.96 -
THD 7.15% 4.37% -

Efficiency 85.56% 92.8% Not mentioned
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9. Conclusions

In this paper, a bicolor composite LED driver is designed based on nonlinear optimiza-
tion for maintaining color consistency and regulating THD. Though the empirical model of
the CCT depends upon junction temperature, ambient temperature, ambient luminance
and aging for a proper color feedback circuit, the CCT deviation remains within the limit.
The experimental results are: CCT deviation = 43 K, error = 0.86%, and CRI = 57.32%. Thus,
the proposed approach is accurate and tightly controls CCT. By determining the proper
THD model, choosing the constraints accounting for the appropriate functionality and
availability of components, and applying nonlinear optimization, the simulated THD was
2.1% and the experimentally obtained THD was 4.37%. The Power factor was increased
by using a proper feedback circuit (reference current generation block). The nonlinear
optimization method was also appropriate for achieving lower THD. The other obtained
power quality parameters were: CF = 1.41%, P.F. = 0.96, and efficiency = 92.8%. These are
satisfactory. The cost of our proposed AC–DC bicolor LED driver is BDT 750 (USD 7.14),
whereas a traditional 22-watt AC–DC driver costs BDT 440 (USD 4.2). The traditional
driver’s efficiency is 86%, whereas we have designed 22-watt driver with 92% efficiency.
The simplicity of the generation of precise and consistent light output from the proposed
bicolor LED system makes it an attractive solution.
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Abbreviations

CCT Corelate color temperature
CRI Color rendering index
THD Total harmonic distortion
P.F. Power factor
IO Output current
D Duty cycle
Vg Rectified input voltage
εi Luminous efficacy
ϕ1, ϕ2 Luminous flux of LED 1 and 2
R01, R02 Equivalent resistance of strings 1 and 2
SEPIC Single-ended primary inductor converter
DM1, DM2 Duty cycle of MOS of 1st and 2nd LED strings
CCTtarget CCT of target point
CCTest Estimated CCT
∆CCT Deviation between target and estimated CCT
R1, R2 Sense resistor of LED strings 1 and 2
PWM Pulse width modulation
∆IL1 Inductor current increment
Rs1, Rs2 Series resistors 1 and 2 of RC circuit
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