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Abstract: The notion of predictive maintenance is perceived as a breakthrough in the manufacturing
and other industrial sectors. The recent developments in this field can be attributed to the amalgama-
tion of Artificial Intelligence- and Machine Learning (ML)-based solutions in predicting the health
state of the machines. Most of the existing machine learning models are a hybridization of common
ML algorithms that require extensive feature engineering. However, the real time deployment of
these models demands a lower computational effort with higher accuracy. The proposed Multi-
labeled Context-based Multilayered Bayesian Inferential (M-CMBI) predictive analytic classification
framework is a novel approach that uses a cognitive approach by mimicking the brain’s activity,
termed MisMatch Negativity (MMN), to classify the faults. This adaptive model aims to classify
the faults into multiple classes based on the estimated fault magnitude. This model is tested for
efficacy on the Pump dataset which contains 52 items of raw sensor data to predict the class into
normal, broken and recovering. Not all sensor data will contribute to the quality of prediction. Hence,
the nature of the sensor data is analyzed using Exploratory Data Analysis (EDA) to prioritize the
significance of the sensors and the faults are classified based on their fault magnitude. The results of
the classification are validated on metrics such as accuracy, F1-Score, Precision and Recall against state
of art techniques. Thus, the proposed model can yield promising results without time-consuming
feature engineering and complex signal processing tasks, making it highly favorable to be deployed
in real-time applications.

Keywords: MisMatch Negativity; condition monitoring; fault diagnosis; centrifugal pumps;
health state

1. Introduction

The health assessment of any type of equipment holds a profound place in the indus-
trial sector. The terminologies such as condition monitoring, fault prediction and fault
diagnosis are closely interrelated. The course of Condition Monitoring (CM) is shown in
Figure 1. CM is the unceasing process of system surveillance, which can be decomposed
into system monitoring, failure detection, failure diagnostics and failure prognostics. The
real-time deployment of CM in industries is executed through monitoring critical variables
that characterize the health state of the system under observation. Isolating the critical vari-
ables in any system can be completed by domain experts. The notion of CM is bifurcated
into reactive and proactive strategies; the reactive strategies initiate the recovery actions
after the occurrence of faults while the proactive strategies predict the faults before their
occurrence [1]. The proactive fault diagnosis in industries is reinforced by exploring the
domain of predictive analytics [2] that integrates the CM data and Artificial Intelligence
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algorithms to predict the health status of the machine to carry out equipment maintenance
activities [3]. The reactive strategies are simple but are not cost-effective; they demand
the scheduling of unnecessary maintenance activities. Nevertheless, the proactive CM
strategies are initiated only when there is a demand, thus saving the maintenance costs.

Condition Monitoring - Fault Detection - Fault
“ - Identification
A\ 4
Fault
Diagnosis
N
Prognostics

Figure 1. Steps in the process of Condition Monitoring.

Equipment maintenance is crucial for any organization. Nonadherence to proper
maintenance policies can lead to adverse effects such as a decrease in production, a loss of
equipment, labor overtime, an insufficient knowledge of machine life cycles, rescheduling
work and a decline in overall performance. Industrial equipment maintenance strategies
are classified into reactive and proactive strategies which are similar to the CM process. The
proactive strategies are categorized into predictive and preventive maintenance. Preventive
maintenance can be (1) usage-based in which the maintenance activities are performed
after predefined running time of the equipment or (2) time-based in which the maintenance
is completed after a specified duration from the time of equipment purchase [4]. Both
strategies are the classical maintenance strategies adopted in most of industries because
of their simplicity. On the other hand, Predictive maintenance uses Al-based learning
algorithms and other computing technologies to predict the equipment failures so as to
schedule the maintenance activities before the down time of the equipment. The complete
taxonomy of equipment maintenance policies is provided in Figure 2.

Equipment Maintenance

Reactive Strategies Proactive Strategies
Preventive Maintenance Predictive Maintenance
Time-Based Maintenance Usage-Based Maintenance

Figure 2. Taxonomy of equipment maintenance policies in industrial maintenance.
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Implementation of a complete predictive maintenance framework in industries will
substantiate uninterrupted equipment operation by learning the system characteristics
through the critical parameters. Any deviation from the normal profile can be an early sign
of the occurrence of faults. Thus, the Al-based systems will be able to forewarn the failures
based on the past and present data that emanate from the system to facilitate the scheduling
of maintenance activities. Techniques such as sensor technologies, intelligent robotic probes,
commissioning of automatic plant monitoring, remote monitoring, telecommunication
technologies, Big Data Analytics, Fuzzy logic [5], Predictive Analytics, Expert Systems [6]
and other cutting-edge techniques are widely used in maintenance sectors with predictive
maintenance as their foundation.

Industrial machineries are comprised of a multitude of small and large components
for their operation. The condition monitoring of these components is vital for their proper
functioning. Centrifugal Pumps are indispensable components that transfer liquids by
exploring the rotational energy in a moving fluid. The fact that liquids are easy to contain
but hard to control or manipulate compels the deployment of predictive maintenance of
pumps in industries. Pump failures may occur due to a variety of reasons such as fatigue,
lack of lubrication, contamination, corrosion, fouling, hydraulic imbalance and faulty
installation. The pump failures may reduce the effective production time and may become
a reason for unanticipated maintenance. Sometimes this failure may cause devastating
effects such as the shutdown of an entire plant. A detailed analysis of the cause and effect
of failures in Primary Loop Recirculating (PLR) in boiling water reactors can be found
in [7]. The common parameters that are monitored in centrifugal pumps are vibration,
temperature, fluid level and motor current. Any early sign of deviations from the normal
operating profiles of these parameters is a warning of failure.

Modern condition monitoring through sensors has led to streaming online data, which
are abundant and rich in features. The classical methods of extracting useful information
from the data such as constructing physical models, statistical methods, etc., have become
obsolete [8] because of their inherent limitations such as the inability to handle a greater
number of parameters and assumptions made based on the physics of failure. This naturally
led to the resurgence of data-driven models which extract useful knowledge from the
voluminous sensor data, which are used to predict the occurrence of failures from early
signs of deviant values. The existing models are supported by Artificial Intelligence (AI),
Extreme Learning Machines (ELM), Machine Learning (ML) and Deep Learning (DL)
techniques augmented by signal processing and feature engineering methodologies [9].
The literature in the domain of fault diagnosis and condition monitoring using these
learning techniques highlight the fact that a considerable amount of time and effort are
expedited in deriving information from the signals and figuring out the right features from
the data. The proposed methodology labels the health state of the machine (centrifugal
pumps) by learning the trends and patterns from the raw signals without tiresome feature
engineering and signal processing tasks. The motivation for the proposed methodology is
derived from MisMatch Negativity (MMN), a physiological phenomenon that makes the
brain respond faster to the negative stimulus than the positive one [10].

The primary contributions of this article are:

e A Multi-labeled Context-based Multilayered Bayesian Inferential (M-CMBI) predictive
analytic classification framework which leverages the MMN, a physiological activity
happening in the human brain;

e  The proposed framework is deployed in classifying surface-level defects in industrial
steel plates;

e  The work presents extensive Exploratory Data Analysis to learn about the sensors that
contribute to faults apart from investigating the recovery time of industrial pumps.

The organization of the article is presented here. Section 2 briefs on the state-of-the-art
in Al-based condition monitoring in pumps. Section 3 explains the proposed context-
based multilayered Bayesian inferential predictive analytic framework for multi class fault
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classification of pumps. The experimental setup and significant results are discussed in
Section 4. Section 5 concludes the work with the scope for future research.

2. Literature Survey

The domain of Al-based data-driven predictive maintenance has a very rich literature.
It envisions all of the recent advancements such as the Internet of Things (IoT), Internet
of Everything (IoE) and quantum computing to implement predictive maintenance in
industrial components.

Fault diagnosis of ground-source heat pumps from multisource sensors was performed
by Baoping Cai et al. [11]. This model was based on the cause-effect relationship that was
implemented in two layers, namely, the fault layer and the fault symptom layer. The
complete model was built by integrating the two Bayesian layers to achieve a higher fault
classification accuracy. This model was able to diagnose multiple faults simultaneously
by fusing the information from multiple data sources. This work focuses on only limited
symptoms. Hence, there is room for expanding the set of symptoms from which faults
could be identified.

Muralidharan et al. conceived the idea of detecting multiple faults such as impeller
faults, bearing faults and cavitation in centrifugal pumps by using stationary wavelet trans-
form to extract useful features form the vibration signals [12]. J48, a top-down inductive
decision tree algorithm was used to classify the faults. This proved to have a decent classifi-
cation accuracy but suffered with the limitation of model overfitting. The advent of ELMs
reduced the intensity of tiresome feature engineering. Ye Tian et al. designed an ELM which
processed the data extracted through Singular Value and Local Mean Decomposition [13].
A significant amount of accuracy has been improved by using ELM in classifying the pump
fault state within a shorter time. This method demands extensive signal processing, which
is very expensive. Another interesting application of ELMs is the diagnosis of slipper
abrasion defects in axial piston pumps [12]. This method uses Wavelet Packet Transform
(WPT), Empirical Mode and Local Mean Decomposition along with Local Tangent Space
Alignment as signal processing techniques. ELM is used to recognize the fault patterns
from the data extracted through the above-mentioned signal processing methods.

Rapur, J.S. et al. built an SVM-based model that could determine the severity of multi-
ple faults occurring in centrifugal pumps from the motor current and vibration data [14].
The hyper parameters were chosen through fivefold cross validation, and a wrapper model
was used to select the features. Though this methodology could isolate multiple faults with
their severity, it suffered from tiresome parameter tuning. An amalgamation of wavelet
transforms, fuzzy and neural networks for fault diagnosis was proposed by Fansen Kong
et al. [15]. A more robust algorithm for fault classification in centrifugal pumps by hy-
bridizing Artificial Neural Networks, SVM with genetic algorithms and Particle Swarm
Optimization (PSO) proved to be more accurate than the state-of-the-art techniques [16].
This algorithm exhibited enhanced classification even with noisy data, thus making it more
deployable in a real-time industrial scenario. The major limitation of this work is that
integrating the algorithms increases the computational complexity.

Decision Trees (DT) attempt to select the significant features from the underlying
data based on Gini index or entropy. This work leveraged Top-Down Inductive Decision
Tree (TDIDT) to predict faults in monoblock centrifugal pumps. The purity of the class is
preserved by pessimistic pruning of redundant and nonprominent sub trees [17]. Myeong-
Seok Lee et al. examined the vibration signals, fluid pressure and flow rate, and deployed
them to design a fault prognosis framework for gear pumps [11]. The notable feature of
this work was the construction of a degradation index by augmenting the variance of data,
predictability and stochastic significance of the statistical features extracted from the dataset
through Kalman filters. These temporal data are tapped by Bidirectional Long Short-Term
Memory to obtain accurate fault prediction.
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A popular method of using an Inverse Gaussian (IG) process in the health manage-
ment of hydraulic piston pumps is proposed by Bo Sun et al. [18]. This model considers
the measurement errors as well as other random forces in the prediction process. The
proposed model used the Expectation Maximization algorithm augmented with Monte
Carlo integration to estimate the parameters. Industry 4.0 has witnessed the deployment
of advanced manufacturing and computing technologies to improve productivity and
reliability. One such concept is digital twin, which is gaining momentum in the creation of
Electric Submersible Pump (ESP) systems [19]. The dynamics of physics, designing of ESP
subsystems along with Al-based solutions are extensively used in pump-failure monitoring
and prediction in industries.

The brief literature on fault classification in pumps shows that a wide range of signal
processing, feature engineering, machine learning and deep learning techniques are used in
classifying its health state. The challenges confronted during the study included expensive
feature selection, complex computations in extracting information from the signals, overfit-
ting, tuning hyper parameters and too much specificity of the models. Hence, the proposed
model classifies the health state of pumps by learning the trends and patterns from the
raw signals collected from multiple heterogeneous sources. In addition, this methodology
highlights the duration in which the pumps were under a recovering stage to facilitate the
maintenance engineers in gaining more insight.

3. Context-Based Multilayered Bayesian Inferential Predictive Analytic Framework

The proposed framework is a cognitive approach that mimics the human brain’s
potential to detect surprising or abnormal events. This phenomenon is called MisMatch
Negativity (MMN) through which brains learn faster from abnormal elicited sensory
signals. The theory of MMN is supported by Bayesian Brain (BB), which exhibits dynamic
generative predictive coding to catalyze the convergence of the internal state of the brain.

3.1. MisMatch Negativity

MMN is based on Newton’s free energy principle, which states that all biological
systems maintain their equilibrium condition by suppressing their internal variation in
free energy [17]. This postulate is confirmed by the Helmholtz agenda which aligns to the
fact that this variational free energy is converted into work completed (momentum) by
the biological system. This physiological process of the brain can be explored to detect
the abnormal changes happening in the health state of the machine [20]. As given in
Equation (1), the MMN can be quantified as the measure of variational free energy with
error E:

MMN = Free_Energy + E’ (1)

3.2. Bayesian Brain (BB)

BB is perceived as an implementation of MMN with a cause—effect relationship. The
probable causes for the elicited sensory signals are derived through BB [21]. The measure
of elicited signals is a direct implication for the change in the internal state of the brain
because of the deviation caused due to internal free energy. The steady state of the brain
could be achieved only if there is no deviation in the internal free energy, which means
that there is no change in the level of sensory inputs [22]. The entire process is shown in
Figure 3.
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Figure 3. Relationship between Hierarchical BB and free energy principle.

3.3. Dynamic Hierarchical Predictive Coding

Dynamic Hierarchical Predictive Coding is the technique used to accumulate the
causes of the sensor inputs and transfer them to the next level of neurons in a hierarchical
fashion. The predictions are also passed in the same way. This is a faster method to
aggregate the signals among various neuronal levels. Unlike the ANNSs, the predictive
coding communicates the prediction errors to the next level, thus hastening the process
of convergence of the state. The brain adaptively learns the abnormal sensory signals and
changes its state accordingly. There should be an inhibiting factor that controls the proposed
model from learning the abnormal signals. In this view, a novel hyperparameter called
Context (C) is introduced that mitigates the model from adaptively learning the abnormal
signals. The input vector f;, with the present state s;, is treated as given in Equation (2) with
the Context that helps in convergence:

g(fi,si;C) = Si%exp(—fz’/z)z 2)

vi < 8(fisiC) + By Ei € [0,m(A71)] 3)

The fault magnitude (y;) is estimated by Equation (3). The machine health state is
classified into three classes through Equation (4). The threshold and context values are
determined experimentally and E; is the error component that is propagated hierarchically:

Normal, y; < iy
h(fi,si;C) = Faulty y; = 1y 4)
Recovering, p; < y; < Wy

The next state information (s;;1) is predicted from the Equation (5):

siv1 < §(fi,si;C) +E;, E; € [0,71()\_1)] (5)

Thus, the proposed methodology classifies machine states into normal, faulty and
recovering based on the fault magnitude. The threshold values can be modified based on
the equipment under study.
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4. Experimental Procedure

The proposed methodology was used to classify the health status of 7 centrifugal
pumps numbered from 0 to 6. The real-time temporal data were collected from multiple
centrifugal pumps by installing 52 sensors at various locations. The parameters monitored
were vibration, temperature and pressure at the site of the pump. The distribution of the
data is given in Figure 4. The recovering status of the sensor is the duration in which the
pumps are reported to be faulty but still under faulty state only.

55 -
50 -
=
£
o 945 1
-
2
£
E 40
<I
= NORMAL
3 BROKEN
= RECOVERING
0 50000 100000 150000 200000

Time (s)

Figure 4. Distribution of sensor values of sensor 2.

The Exploratory Data Analysis (EDA) of the sensors is given in Figure 5. The EDA
was conducted to find the sensors which had a deviation in the sensor values in due course
of time. The number of units of a particular deviant value is given in the Y axis, and the
exact sensor value is given in the X axis. From the EDA, it was evident that sensor 15
had null values, hence it was discarded. The time-based analysis of the pump dataset
contained signals from pumps at three different health conditions, namely, normal, broken
and recovering. The broken status indicated that the pump deviated from the normal range
of signals. The recovering status indicated that the pump was still in a broken state and
will remain in the recovering state until its signals fall under the normal operational range.
The dataset contained values from heterogeneous sensors, namely, temperature, vibration
and pressure. The Fused Input Vector (F_IV) was formed by the weighted variances (V;) of

Sensor values (S;):

FIV = SiVi+ SV +...+5,V, ©)
Vi T+ 14, 4V, 1

The sensor values were fused together to form a distinct metric, F_IV, which was used
as the input vector. This metric considered the variances of the sensor values to decide
the weight of the data. Hence, a sensor with a greater variance in data is the one with the
potential to decide the occurrence of faults. This can be associated with the fact that the
faults in machinery are sensed from the deviation or variance in sensor values. Table 1
shows the duration of pumps in the recovering stage with the time in hours. The occurrence
of pump failures is shown in Figure 6. The comparative chart of the recovering time of the
pumps is given in Figure 7. The pump failure at pump number 5 and 6 was recovered faster
than the others. The Mean Time to Failure is an important metric that was be estimated
from Figure 6, and was an important parameter in manual Failure mode and Effect analysis.
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Figure 5. Exploratory data analysis.
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Table 1. Pump recovery status.
Row Number with Row Number in Which Duration of ‘'RECOVERY’
‘BROKEN’ Status Pump Recovered (in hrs.)
17155 945 15.8
24510 3111 51.9
69318 1313 21.9
77790 606 10.1
128040 8391 139.8
141131 42 0.7
166440 76 1.3
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Figure 6. Pump failure status.
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Pump Number

Figure 7. Duration of recovery phase for the 7 pump failures.

Analysis of the Health State Classification

The pump dataset with disproportionate data was taken from Kaggle. This dataset
contains vibration data from 52 pumps across various time periods. This is a labeled
dataset with three classes, namely broken, normal and recovering. The failure data are very
scarce. Hence, the machine is considered to be in recovering state until it resumes normal
operation. This is a measure to balance the distribution of data among multiple labels. The
performance analysis of the classification using M-CBMI was validated using precision,

recall, F-measure, AUC and accuracy.
The value of Context, the novel hyperparameter, was determined by empirical analysis

as shown in Figure 8. The value of Context varied between 2 and 22. The best results of
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accuracy both in testing and training was 18, after which there was a decline in the results.
This is due to the fact that the model started learning much of its previous value and began
to overfit. Both the testing and training phases confirmed that the pump dataset overfit
when the context value increased beyond 18.

100 Tra'mingAccurecy

/ [ Testing Accuracy
)
99 i/

/l

n/

SN

Accuracy

2 4 6 8 10 12 14 16 18 20 22
Context values

Figure 8. Determining the Context value.

The dataset comprises data from about 7 pumps with 52 sensors. The contribution of
each sensor value is given in Figure 9. The vibration sensor labeled sensor_00 held higher
prominence in the classification task. The Extreme Gradient Boost (XGBoost) was deployed
to rank the features.

(i) Precision:

This is a measure of correctly classified samples in the right class, which corresponds
to positive samples belonging to a positive class. Precision is an important metric, especially
in critical tasks such as fault diagnosis where the False Positives have a greater impact on
the classification.

The expression is given in Equation (7):

i1 TruePositives;

@)

Precision = — oy
", TruePositives; + FalsePositives;

(i) Recall:

This is a measure of positive class samples out of all the samples classified as true
positives and false negatives. Recall is the metric that gives more weight to False Negatives.
In the domain of fault diagnosis, this holds higher importance, as a fault should not be
left unpredicted. This could cause severe devastation to the industrial equipment and
machinery. The expression is given in Equation (8):

i1 TruePositives;

Recall = 8)

i, TruePositives; + FalseNegatives;

(iii) F1-Score:

Neither precision nor the recall can precisely define the purity of the class. Hence,
the F1-Score is the harmonic mean of precision and recall and is given by the formula in
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Equation (9). This measure integrates the costs of False Negatives and False Positives, as
both would affect the reliability of the systems:

2 * Precision * Recall
_ — 9
Fl-Score Precision + Recall ©)

(iv) Classification Accuracy:

This is the classical metric which determines how many samples are rightly classified
among the entire dataset. The expression is given in Equation (10). This is a very generic
metric that considers only the correctly classified samples:

TruePositives + FalseNegatives
Total number of samples

Accuracy = (10)

(v) Areaunder the Curve:

This is an indication of the potential of the developed model to distinguish between
examples of different classes. In other words, it is a measure of inseparability.
The result of the proposed framework is given in Table 2.

sensor DO
sensor 01
sensor D4

sensor 10
sensor 02
sensor 05
sensor_49
sensor 38
sensor 11
sensor 06
sensor 48

sensor 07

feature
3
=
2
s
an
"'""“"llIIIIII|||||||||||”|”HH|I||

i1 ] 00é ooa 010
relative importance

0

(=
(=]
(=1
(=]
P

Figure 9. Ranking the features using XGBOOST.
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Table 2. Results of classification.

Metric Value (in %)
Accuracy 99.67
F1-Score 98.02
Recall 97.5
Precision 98.56
AUC 97

Figure 10 shows the comparison of the state-of-the-art techniques with the proposed
methodology in terms of their accuracy [22-24]. The proposed M-CBMI showed improved
accuracy of 99.67% because the Context hyperparameter augmented the previously clas-
sified health states, thus enhancing the model’s performance. The other models were
also competent enough with the proposed model in terms of accuracy. The Generative
Adversarial Network with Sparse Auto Encoders (GAN-SAE) is a more popular algorithm
for classification. The relatively low performance of this model is such that it could not
effectively learn the data space.

101
100
99

98
97
96
95
9

9

92

XGBoost ITD-SVM GAN-SAE Proposed model

w P

Figure 10. Comparison of Accuracy of some state-of-the-art techniques.

The precision and recall measures of the proposed model is better than its peers.
The model can mitigate the rate of false positives and true negatives as any time-critical
application would demand. Figure 11 illustrates the results of this comparison. The F1-score
of the model also showed promising results. It is evident that the model’s misclassification
costs were lower than other state-of-the-art techniques. The comparative study of F1-scores
of different models is portrayed in Figure 12. The AUC value of the model also confirmed
that the proposed model outperformed others, which can be seen from Figure 13.
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Figure 11. Comparison of Precision and Recall of some state-of-the-art techniques.
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Figure 12. Comparison of F1-Score of some state-of-the-art techniques.
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Figure 13. Comparison of AUC some state-of-the-art techniques.
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5. Conclusions and Future Work

The domain of predictive maintenance demands the classification of the health state
of machines to gain insight into scheduling maintenance activity. The proposed framework
M-CBMLl is a novel cognitive approach that eliminates the tiresome feature engineering
and complex signal processing task. This method is very robust in that it can combine the
multifaceted data by using the weighted variances method and then apply the proposed
algorithm. This algorithm is one of the first of its kind to explore the MMN phenomenon in
the human brain. The proposed methodology outshines some of the classical techniques
such as SVM, GAN with SAE, XGBOOST and KNN. The proposed work assesses the
performance of the model using the sensor values obtained from 52 sensors. However,
the computational complexity of the model must be greatly reduced by deploying sensor
fusion technology, which has not been examined in this work. The work can be extended
by using more powerful ensemble classifiers. This work is competitive in the context of
predicting the exact time of failure of the equipment under study.
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