
Citation: Rossi, R.; Vincenti Gatti, R.

An H-Plane Groove Gap Waveguide

Magic-T for X-Band Applications.

Electronics 2022, 11, 4075. https://

doi.org/10.3390/electronics11244075

Academic Editor: Alejandro

Melcón Alvarez

Received: 16 November 2022

Accepted: 5 December 2022

Published: 8 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An H-Plane Groove Gap Waveguide Magic-T for
X-Band Applications
Riccardo Rossi and Roberto Vincenti Gatti *

Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy
* Correspondence: roberto.vincentigatti@unipg.it

Abstract: An X-band H-plane groove gap waveguide magic-T is presented as a combination of an
H-plane and an E-plane T-junction. Two architectures can be derived by orientating the sum and
difference ports to the same or opposite directions, respectively. Slot coupling allows the reduction of
the device dimensions along the E-plane, and such a low profile can be attractive in all groove gap
waveguide applications where compactness is required. A proof-of-concept prototype is fabricated
with standard low-cost CNC milling machine manufacturing techniques. Good agreement between
simulations and measurements is observed.
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1. Introduction

The magic-T is an essential component in a wide range of applications, such as radar
and communication systems, microwave circuits and measurement setups. When the sum
port is excited, no power flows to the difference port due to even symmetry, while there
is an in-phase and equal-split power division at the co-linear ports. In contrast, when the
difference port is excited, no power flows to the sum port due to odd symmetry, while
power is equally divided at the co-linear ports, this time with a 180◦ phase shift. When two
signals arrive at the co-linear ports, their sum and their difference are obtained at the sum
port and at the difference port, respectively. Matching at all ports is obtained by means of
proper tuning elements. These features make the device appealing for those applications
where power dividing/combining with high output port isolation is required [1].

The magic-T has been presented in different technologies over the years, such as
microstrip [2,3], substrate-integrated waveguide (SIW) [4–8] and low-temperature co-
fired ceramics (LTCC) [9,10]. Despite being lightweight and low-cost, these devices are
limited by dielectric losses and low power-handling capabilities. For these reasons, hollow
waveguide implementations have been introduced and preferred in high-power and high-
performance systems [11–24]. Nevertheless, the majority of waveguide magic-Ts presents
output ports pointing in different directions, and this could represent a drawback in all
cases where compactness is desired. In addition to this, hollow waveguide components are
manufactured using split blocks and joined together by screwing, deep-brazing or diffusion
bonding. Severe leakage can be caused by small gaps on the blocks’ contact surfaces, thus a
very reliable electrical contact between the fabricated parts as well as good alignment are
mandatory. High-precision manufacturing and assembling are required as the operating
frequency is increased, thus leading to a higher cost. The gap waveguide technology has
recently been proposed to overcome these problems.

The ideal gap waveguide derives from separating two parallel plates, in particular a
perfect magnetic conductor (PMC) and a perfect electric conductor (PEC), with an air gap
smaller than a quarter wavelength [25,26]. In this way, no wave can propagate between the
plates. Since a PMC cannot be found in nature, its condition is emulated by an artificial
magnetic conductor (AMC) in the form of periodic textured structures, among which the
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most known is the bed of nails realized by periodic metal pins. This high-impedance surface
creates a stopband over which parallel-plate modes propagation is forbidden. The groove
gap waveguide (GGW) and the ridge gap waveguide (RGW) originate from incorporating
in the bed of nails two guiding structures in the form of a groove or a ridge, respectively.
In this way, as a consequence of the stopband, the electromagnetic wave is confined in
the groove or above the ridge without leaking in lateral directions. The GGW and RGW
are very similar to the traditional rectangular waveguide and ridge waveguide, with the
exception that a good electrical contact between the upper and lower metal surfaces is no
longer necessary, thus relaxing mechanical requirements with a consequent cost reduction.
Moreover, the absence of a dielectric makes this technology suitable for the design of
low-loss components with high power-handling capabilities.

The literature on magic-Ts in gap waveguide technology is not vast. A Ka-band design
is presented in Ref. [27] for millimeter-wave applications. The device adopts a GGW T-
junction for the sum and the co-linear ports and a standard rectangular waveguide (RW)
for the difference port. Matching is primarily achieved through a five-step conducting
cone. The difference port is perpendicular to the bottom layer, as in traditional hollow
waveguide designs, thus entailing a bulky volume. For this reason, slot coupling or same-
layer architectures are preferred for size reduction. A W-band prototype is proposed in
Refs. [28,29] for monopulse tracking radars. The component uses a RGW T-junction as a
lower layer, coupled to a GGW upper layer through a slot. A tapered ridge and a small
step serve as matching elements. The Ka-band magic-T in Ref. [30] for monopulse radar
applications uses a RGW T-junction for the sum port and an E-plane GGW for the difference
port on the same layer. Three metal windows and a metal step are inserted for impedance
matching and act as capacitive and inductive loads, respectively. However, in all works
referenced so far, a hybrid architecture is always described, i.e., the sum and difference
ports are realized in two different technologies, be they RGW, GGW or RW. A full E-plane
GGW magic-T is illustrated in Ref. [31] for Ka-band monopulse antenna systems. The four
ports are arranged in the same layer and the difference port is coupled to the remaining
ones through a thin metal ridge.

In this paper, an H-plane T-junction and an E-plane T-junction in H-plane GGW tech-
nology are presented and combined in the design of an H-plane GGW magic-T operating
at X band. To the best of the authors’ knowledge, this is the first time that this technology is
employed for all the four ports of the device. Two configurations are proposed, namely
T-shaped and cross-shaped (or X-shaped), depending on the sum and difference ports lying
on the same side or on opposite sides, respectively. An X-shaped magic-T is manufactured
and tested and experimental results validate the design procedure. All simulations are
performed using the commercial 3D full-wave software CST Microwave Studio.

2. Groove Gap Waveguide Design

The gap waveguide stopband is defined as the frequency interval for which parallel-
plate modes cannot propagate. This interval depends on the gap waveguide geometrical
parameters such as the pin side q, the pin height d, the pitch between two adjacent pins p
and the air gap height h. An appropriate GGW geometry for X-band operation is selected
in agreement with Ref. [32] and illustrated in Figure 1.

From now on, the air inside a metal background is illustrated and top metal layers are
hidden for better clarity. Pins are arranged according to a square lattice and the bed of nails
is truncated on each side after the third row of pins, with no performance deterioration [33].
The material adopted in the following simulations is PEC with zero surface roughness.
PEC boundary conditions surround the transversal walls.

With resemblance to a standard RW, a dispersive mode very similar to the TE10 mode
propagates inside the groove within the stopband. The GGW dispersion diagrams are
calculated using the eigenmode solver in CST Microwave Studio, and are presented in
Figure 2. From an analysis of the first eight propagating modes, the resulting stopband
covers the whole X band, ranging from 7.86 GHz to 13.07 GHz. It is well known that
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full-wave software requires continuous cross-section waveguide ports. Similarly to the
RW, numerical ports are usually attached to the GGW [34], although perfect impedance
matching may not be guaranteed. For this reason, an equivalent RW can be defined, with
width a and height b = d + h, and separated from the first row of pins by a distance k. The
values for a and k for the geometry of Figure 1 are chosen for optimum return loss, as
reported in Figure 3 for the whole stopband.
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Figure 1. Groove gap waveguide geometry. (a) Cross section. (b) Top view. (c) 3D view.

The propagation constant of the equivalent RW is also plotted in Figure 2, indicating a
strong similarity between the fundamental modes of the two waveguides in the designated
bandwidth. Figure 4 clearly shows that the electric field is almost nonexistent after the
third row of pins, as expected. The GGW geometrical parameters are listed in Table 1.
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Table 1. Groove gap waveguide geometrical parameters.

Parameter Description Value (mm)

a Eq. waveguide width 21.70
b Eq. waveguide height 10.00
d Pin height 8.75

gw Groove width 22.86
h Air gap separation 1.25
k Eq. waveguide distance 1.37
p Pin pitch 3.25
q Pin side 1.25

3. T-Junctions Design

Since a magic-T is the combination of an H-plane T-junction and an E-plane T-junction
with common co-linear ports, the design of both junctions is a preliminary step for the final
component. In this paper, all devices operate at a center frequency of 9.5 GHz.

The H-plane T-junction geometry is shown in Figure 5. The architecture is similar
to a classical RW junction, with inductive irises at the junction between the input and
output ports with width and height equal to the GGW pins and a tuning post acting as a
metal septum again with the same dimensions of the GGW pins. A small central square
block introduces a localized capacitance which improves impedance matching. The H-
plane T-junction geometrical parameters and simulated scattering parameters are reported
in Table 2 and Figure 6, respectively. The return loss is better than 20 dB from 8.95 to
10.20 GHz, corresponding to a 13.05% fractional bandwidth. Equal power division is
observed in the same frequency interval.
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Table 2. H-plane T-junction geometrical parameters.

Parameter Description Value (mm)

bh Block height 0.50
bl Block length 4.38
bx Block offset 4.92
il Iris length 2.86

p1l Post 1 length 9.01

The E-plane T-junction geometry is shown in Figure 7. Port 1 lies in the upper layer,
with ports 2 and 3 in the lower layer. These layers are coupled by means of a symmetrical
slot excited by a post with the same dimensions of the GGW pins. The GGW short distance
with respect to the slot center is optimized for impedance matching. Internal edges are
rounded with a blending radius of 2 mm. The E-plane T-junction geometrical parameters
and simulated scattering parameters are reported in Table 3 and Figure 8, respectively. The
return loss is better than 20 dB from 9.24 to 9.81 GHz, corresponding to a 5.98% fractional
bandwidth. Equal power division is observed in the same frequency interval.
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Table 3. E-plane T-junction geometrical parameters.

Parameter Description Value (mm)

d Short distance 18.35
p2l Post 2 length 5.50
sl Slot length 16.34
sw Slot width 3.85
t Slot thickness 1.00
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4. Magic-T Design

The superposition of the two junctions of Section 3 generates a GGW magic-T. De-
pending on whether the sum and difference ports point in the same or opposite directions,
two configurations can be derived, namely the T-shaped (TMT) one and the cross-shaped
(XMT) one in Figure 9.
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The geometrical parameters remain the same with respect to the H-plane and E-plane
T-junctions, with the only exception of introducing parameter x, indicating the distance
between the coupling slot center and the matching post in the lower layer. Port numbers 1,
4, 2 and 3 indicate the sum port, the difference port and the co-linear ports, respectively.

Since the T-junctions are not two completely independent structures, the geometrical
parameter values need a full-wave local optimization for the design of the two magic-Ts.
Both the TMT and XMT are simulated in the frequency-domain using the CST Microwave
Studio “Trust Region Framework” built-in optimization algorithm. The geometrical pa-
rameters for the two configurations are listed in Table 4. Internal edges are rounded with a
blending radius of 2 mm.

Simulated scattering parameters for both devices are reported in Figures 10 and 11. For
the TMT, port matching is better than 20 dB for all ports in the frequency interval ranging
from 9.25 to 9.75 GHz. In the same bandwidth, the isolation levels between the co-linear
ports and the sum and difference ports are greater than 22 dB and 43 dB, respectively. For
the XMT, port matching is better than 20 dB for all ports in the frequency interval ranging
from 9.25 to 9.75 GHz. In the same bandwidth, the isolation levels between the co-linear
ports and the sum and difference ports are greater than 22 dB and 43 dB, respectively.

Although the posts in the upper layers introduce an asymmetry in the overall geometries,
transmission coefficients are not severely affected, showing a 3-dB power division with very
low amplitude imbalances and correct phase differences in the above-mentioned bandwidth.
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Table 4. Magic-T geometrical parameters.

Parameter Description TMT Value (mm) XMT Value (mm)

bh Block height 1.77 1.80
bl Block length 5.24 5.31
bx Block offset 3.45 3.38
d Short distance 18.27 18.32
il Iris length 2.53 2.43

p1l Post 1 length 7.48 7.44
p2l Post 2 length 5.52 5.51
sl Slot length 15.79 15.74
sw Slot width 2.62 2.63
t Slot thickness 1.00 1.00
x Slot offset 8.40 8.42
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Figure 10. TMT simulated scattering parameters. (a) Port matching. (b) Port isolation. (c) Transmission
coefficients (sum port excited). (d) Transmission coefficients (difference port excited). (e) Amplitude
imbalance and phase difference (sum port excited). (f) Amplitude imbalance and phase difference
(difference port excited).
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coefficients (sum port excited). (d) Transmission coefficients (difference port excited). (e) Amplitude
imbalance and phase difference (sum port excited). (f) Amplitude imbalance and phase difference
(difference port excited).
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5. Magic-T Manufacturing and Test

An XMT prototype is fabricated with aluminum using a low-cost CNC milling machine
manufacturing process. The device is shown in Figure 12 and consists of three split blocks, in
particular a bottom layer comprising the sum and co-linear ports, a central layer including
the coupling slot and the difference port and an upper smooth cover plate. In order to feed
the component, an in-line coaxial-to-groove gap waveguide transition is adopted for the four
input ports, employing a three-step ridged section connected to the inner conductor of a
coaxial line. To the best of the authors’ knowledge, this is the first time that a transition of
this kind is used to feed a GGW device. Further details on such transition can be found in
Ref. [35], such as a tolerance analysis on the most critical geometrical parameters, showing the
suitability of the adopted manufacturing process clearly. The three layers are assembled with
a number of alignment screws and four SMA connectors.
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The XMT is tested with an Agilent N5230A vector network analyzer using the well-
known full 2-port Short-Open-Load-Through (SOLT) calibration technique. Measured
scattering parameters are compared with simulated results and reported in Figure 13.
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Figure 13. XMT measured scattering parameters. (a) Port matching. (b) Port isolation. (c) Transmission
coefficients (sum port excited). (d) Transmission coefficients (difference port excited). (e) Amplitude
imbalance and phase difference (sum port excited). (f) Amplitude imbalance and phase difference
(difference port excited).
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The adopted material in the simulation is aluminum with an equivalent conductivity
of 2 × 107 S/m. This is a realistic value which deviates from the aluminum theoretical
conductivity to compensate for surface roughness originating from a standard CNC manu-
facturing. Despite minor frequency shifts, the results are in very good agreement in the
bandwidth 9.25–9.75 GHz, both in terms of scattering parameters and calculated amplitude
imbalances and phase differences. The transmission coefficients present an average inser-
tion loss of 0.3 dB in this frequency range, which is mainly due to the coaxial connectors.
The small discrepancy between measured and simulated insertion loss is due to the SMA
connectors, assumed as lossless in the simulation. The worsened isolation level for S41 is
to be imputed to manufacturing tolerances in the order of ±0.05 mm and to an imperfect
alignment. Nevertheless, an isolation better than 37 dB in the specified bandwidth can be
considered very good for a low-cost manufacturing process.

6. Conclusions

An H-plane and an E-plane T-junction in GGW technology was presented and com-
bined in the design of a GGW magic-T operating at X band. This device was presented
in two configurations, that is, with the sum and difference ports pointing in the same
or opposite directions. A proof-of-concept prototype was realized with a low-cost CNC
milling machine manufacturing process and tested to validate the design procedure. In
spite of minor frequency shifts due to manufacturing tolerances and assembly, simulated
and measured results have shown very good agreement. Thanks to the slot coupling
feature, this magic-T can be adopted in all GGW circuits where a low-profile is required.
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