Analytical and 3D Numerical Study of Multilayer Shielding Effectiveness for Board Level Shielding Optimization
Abstract
:1. Introduction
2. Theoretical Analysis of Multilayer Shielding Screens
2.1. Analytical Study of a Single Metallic Sheet
2.2. Analytical Model of Multilayer Shielding Screens
3. Numerical Studies of a Planar Shielding Sheet
3.1. Parametric Studies on Multilayer Shielding
3.2. The Case of High Permittivity Insulating Layers
4. Simulations of the Shielding Enclosure Effectiveness with IEMI Aggression
4.1. Design of the Subject 3D Model
4.2. Design of the EM Source 3D Model
4.3. Numerical Studies of the Cases of Susceptibilty
5. Conclusions
6. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yao, J.; Li, Y.; Wang, S.; Huang, X.; Lyu, X. Modeling and Reduction of Radiated EMI in a GaN IC-Based Active Clamp Flyback Adapter. IEEE Trans. Power Electron. 2021, 36, 5440–5449. [Google Scholar] [CrossRef]
- Huang, H.-Y.; Villaruz, H.M.; Mapula, N.M. High-Efficiency Low-EMI Buck Converter Using Multistep PWL and PVT Insensitive Oscillator. IEEE Trans. Power Electron. 2022, 37, 9325–9332. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, Z.; Wang, F. Overview of high voltage sic power semiconductor devices: Development and application. CES Trans. Electr. Mach. Syst. 2017, 1, 254–264. [Google Scholar] [CrossRef]
- She, X.; Huang, A.Q.; Lucia, O.; Ozpineci, B. Review of Silicon Carbide Power Devices and Their Applications. IEEE Trans. Ind. Electron. 2017, 64, 8193–8205. [Google Scholar] [CrossRef]
- Giri, D.; Tesche, F. Classification of Intentional Electromagnetic Environments (IEME). IEEE Trans. Electromagn. Compat. 2004, 46, 322–328. [Google Scholar] [CrossRef]
- Fujii, K.; Noto, Y.; Oshima, M.; Okuma, Y. 1-MW Solar Power Inverter with Boost Converter Using all SiC Power Module. In Proceedings of the EPE-ECCE Europe, Geneva, Switzerland, 8–10 September 2015; pp. 1–10. [Google Scholar]
- Ozdemir, S.; Acar, F.; Selamogullari, U.S. Comparison of silicon carbide MOSFET and IGBT based electric vehicle traction inverters. In Proceedings of the ICEEI, Denpasar, Indonesia, 10–11 August 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Mishima, T.; Morinaga, S.; Nakaoka, M. All-SiC Power Module Applied Single-Stage ZVS-PWM AC−AC Converter for High-Frequency Induction Heating. In Proceedings of the IEEE IECON, Yokohama, Japan, 9–12 November 2015; pp. 004211–004216. [Google Scholar]
- Sonnemann, F.; Bohl, J.; Ehlen, T. Comparison of Threshold and Destruction Levels at a Generic Electronic Device irradiated with UWB and NNEMP Pulses. In Proceedings of the EuroEM 2000, Edinburgh, Scotland, 30 May–2 June 2000. [Google Scholar]
- Schulz, R.; Plantz, V.; Brush, D. Shielding theory and practice. IEEE Trans. Electromagn. Compat. 1988, 30, 187–201. [Google Scholar] [CrossRef]
- Vance, E.; Graf, W. The role of shielding in interference control. IEEE Trans. Electromagn. Compat. 1988, 30, 294–297. [Google Scholar] [CrossRef]
- Graf, W.; Vance, E. Shielding effectiveness and electromagnetic protection. IEEE Trans. Electromagn. Compat. 1988, 30, 289–293. [Google Scholar] [CrossRef]
- Amato, T.; Mis, D.J.; Willard, B. Shielding effectiveness before and after the effects of environmental stress on metalized plastics. IEEE Trans. Electromagn. Compat. 1988, 30, 312–325. [Google Scholar] [CrossRef]
- Ashtari, R.; Jones, D.H. Low-Frequency Magnetic Shielding. In Proceedings of the IEEE EMC SIPI, New Orleans, LO, USA, 22–26 July 2019; pp. 84–89. [Google Scholar]
- Liu, Q.-F.; Ni, X.; Zhang, H.-Q.; Yin, W.-Y. Lumped-Network FDTD Method for Simulating Transient Responses of RF Am-plifiers Excited by Intentional Electromagnetic Interference Signals. IEEE Trans. Electromagn. Compat. 2021, 63, 1512–1521. [Google Scholar] [CrossRef]
- Watanabe, A.O.; Raj, P.M.; Wong, D.; Mullapudi, R.; Tummala, R. Multilayered Electromagnetic Interference Shielding Structures for Suppressing Magnetic Field Coupling. J. Electron. Mater. 2018, 47, 5243–5250. [Google Scholar] [CrossRef]
- Gaoui, B.; Hadjadj, A.; Kious, M. Enhancement of the shielding effectiveness of multilayer materials by gradient thickness in the stacked layers. J. Mater. Sci. Mater. Electron. 2017, 28, 11292–11299. [Google Scholar] [CrossRef]
- Merizgui, T.; Hadjadj, A.; Kious, M.; Gaoui, B. Comparison Electromagnetic Shielding Effectiveness Between Smart Mul-tilayer Arrangement Shields. In Proceedings of the ICASS, Medea, Algeria, 24–25 November 2018. [Google Scholar]
- Leduc, R.; Ruscassie, R.; Larbaig, J.M.; Courtois, L.; Dienot, J.M.; Reess, T. High Frequency Signals Synchronization using FPGA-SoC technology for security system in a radiography equipment. In Proceedings of the EAPPC-BEAMS-MEGAGAUSS’2021, Biarritz, France, 29 August–2 September 2021; p. 122. [Google Scholar]
- Sun, X.; Wei, B.; Li, Y.; Yang, J. A New Model for Analysis of the Shielding Effectiveness of Multilayer Infinite Metal Meshes in a Wide Frequency Range. IEEE Trans. Electromagn. Compat. 2022, 64, 102–110. [Google Scholar] [CrossRef]
- Ott, H. Electromagnetic Compatibility Engineering; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Computer Simulation Technology. Available online: https://www.3ds.com/ (accessed on 27 March 2022).
- Liu, Y.; He, R.; Khilkevich, V.; Dixon, P. Shielding Effectiveness of Board Level Shields with Absorbing Materials. In Proceedings of the IEEE EMC—SIPI, New Orleans, LO, USA, 22–26 July 2019; pp. 84–89. [Google Scholar] [CrossRef]
- Stutzman, W. Antenna Theory and Design; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Baum, C.E.; Baker, W.L.; Prather, W.D.; Lehr, J.M.; O’Loughlin, J.P.; Giri, D.V.; Smith, I.D.; Altes, R.; Fockler, J.; McLemore, D.M.; et al. JOLT: A highly directive, very intensive, impulse-like radiator. Proc. IEEE 2004, 92, 1092–1109. [Google Scholar] [CrossRef]
Configuration | Number of Copper Layers | Copper Layer Thickness ec | Insulating Layer Thickness en |
---|---|---|---|
A | 2 | 2 × 9 µm | 1 × 100 µm |
B | 3 | 3 × 6 µm | 2 × 50 µm |
C | 4 | 4 × 4.5 µm | 3 × 33 µm |
η | 0.11 | 0.25 | 0.43 | 0.67 | 1 | 1.5 | 2.3 | 4 | 9 |
---|---|---|---|---|---|---|---|---|---|
en2 (µm) | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 |
en4 (µm) | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |
Configuration | Layer 1 | Layer 2 | Layer 3 |
---|---|---|---|
A (single layer) | Cu-12 µm | FR4-100 µm | - |
B (double layer) | Cu-6 µm | FR4-100 µm | Cu-6 µm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leduc, R.; Ibrahimi, N.; Dienot, J.-M.; Gavrilenko, V.; Ruscassié, R. Analytical and 3D Numerical Study of Multilayer Shielding Effectiveness for Board Level Shielding Optimization. Electronics 2022, 11, 4156. https://doi.org/10.3390/electronics11244156
Leduc R, Ibrahimi N, Dienot J-M, Gavrilenko V, Ruscassié R. Analytical and 3D Numerical Study of Multilayer Shielding Effectiveness for Board Level Shielding Optimization. Electronics. 2022; 11(24):4156. https://doi.org/10.3390/electronics11244156
Chicago/Turabian StyleLeduc, Roman, Njomza Ibrahimi, Jean-Marc Dienot, Veronika Gavrilenko, and Robert Ruscassié. 2022. "Analytical and 3D Numerical Study of Multilayer Shielding Effectiveness for Board Level Shielding Optimization" Electronics 11, no. 24: 4156. https://doi.org/10.3390/electronics11244156
APA StyleLeduc, R., Ibrahimi, N., Dienot, J. -M., Gavrilenko, V., & Ruscassié, R. (2022). Analytical and 3D Numerical Study of Multilayer Shielding Effectiveness for Board Level Shielding Optimization. Electronics, 11(24), 4156. https://doi.org/10.3390/electronics11244156