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Abstract: The resistive superconducting fault current limiter is well known for its simple structure
and outstanding current-limiting effect, and it is broadly applied in power grid systems. The second-
generation high-temperature superconductor (HTS) tape, of higher structural strength and greater
room-temperature resistance, is well suited for application in resistive superconducting fault current
limiters. The quenching caused by overcurrent in the HTS tape is a complexed coupling effect of
several physical factors. The tape structure and properties directly impact the ultimate HTS tape’s
quench performance. In this study, various SS316-laminated HTS tapes, of different critical currents,
room-temperature resistances, and masses, were prepared. The pulse impact parameters of the
various tape samples were measured using the RLC high-current impact test platform. By analyzing
the resultant data, a quantitative assessment methodology to measure a tape’s tolerance toward
impact was developed. The dependence of the HTS tape’s tolerance toward impact on its critical
current, room-temperature resistance, and mass was studied. This provides numerical guidance on
HTS material selection for resistive superconducting fault current limiters.

Keywords: resistive superconducting fault current limiter; HTS tape; lamination; resistance to pulse
impact; resistance response

1. Introduction

As power systems increase in capacity and complexity, large short-circuit fault current
is one of the main factors threatening the safety and stability of power systems. It is, thus,
critical to effectively limit short-circuit fault currents in power systems. Considering the
limitations of high-capacity circuit breaker, a superconducting current limiter is a good
alternative [1–5].

There are two types of superconducting current limiters: saturated iron core current
limiter and resistive current limiter. As the second-generation HTS tapes enter the commer-
cialization stage, more and more enterprises can mass-produce the second-generation HTS
tapes [6–13]. Compared with the first-generation tapes, 70% of which were made from sil-
ver, the second-generation tapes have higher structural strength, greater room-temperature
resistance, and higher quench recovery speed, which has attracted research interest to be
applied for resistive current limiters [14].

A resistive superconducting fault current limiter (R-SFCL) is a device that operates on
the state transition characteristics of superconductors. Its working principle and structure
are simple, and its current-limiting effect is outstanding. At present, R-SFCL has been
studied in many countries in the world, and many prototypes have been produced and
tested in different power systems [15]. AMSC (Boston, MA, USA), and Siemens (France),
developed the first 115 kV/1.2 kA transformer R-SFCL [16,17]. KEPCO (South Korea),
developed a 154 kV RSFCL [18,19]. SuperOx (Russia), developed a 220 kV/1.2 kA current
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limiter [20]. Shanghai Jiaotong University (China), developed a 10 kV/200 A current
limiter [21,22]. Using the HTS tapes supplied by Shanghai Superconductor Technology
Co., Ltd. (SST), (China), Zhongtian Technology (China), developed a 220 kV/1.5 kA
resistive current limiter [23], and Guangdong Power Grid (China), jointly developed a
±160 kV/1.0 kA resistive current limiter [24].

Extensive studies have been carried out on testing HTS tapes for resistive fault current
limiter application. Llambes et al. [25] and Hajdasz et al. [26] studied the application
of superpower tapes in SFCL; Schmidt et al. [27] and Baldan et al. [28,29] studied the
application of AMSC tapes in SFCL; Ahn et al. [30], Park et al. [31], and Sheng et al. [32]
compared the tape structures from different postprocessing treatments in the application
of SFCL; Lacroix et al. [33,34] developed a novel structure to increase the NZPV (normal
zone propagation velocity) of HTS tape during impulse impact; Zhang et al. [35] and
Liu et al. [36] determined the DC overcurrent impact on the tapes at different temperatures
and analyzed quench resistance; Sheng et al. [37] and Maeda et al. [38] studied the quench
recovery of the tapes after overcurrent impact and observed the bubbles generated by heat
transfer on the tape surface during the quench process; Xiang et al. [39] studied the effect of
magnetic field on the overcurrent impact of tapes; Rusiński et al. [40] and Jiang et al. [41]
studied the effect of tape insulation on overcurrent impact; Liang et al. [42,43] modeled
the quench resistance of the tape through the R–Q curve; LV et al. [44] laminated the
optical fiber on the side of the tape to measure the temperature during the overcurrent
impact process.

Most of the prior studies were based upon mature commercialized HTS tapes. By
optimizing tape structure to improve the relevant parameters, the performance of fault
current limiters can be further improved. From previous studies, it was evident that, given
the same room-temperature resistance, laminated tapes were 2–3 times better in terms
of overcurrent impact resistance than copper-plated tapes. In this paper, the preparation
process of SST tapes for resistive fault current limiters is elaborated in detail. By means of
calculation, experiment, and photography, the effects of metal layer constituents on the
impact tolerance and characteristics of stainless-steel laminated HTS tapes are studied. This
provides a basis for the selection of tapes for resistive superconducting current limiters.

2. Experimental Details
2.1. Preparation of Samples

The YBCO superconducting tapes used in the experiments were produced by SST [39].
Al2O3/Y2O3/MgO/LaMnO3/CeO2/REBCO/Ag layers were successively plated on 50 µm
thick 10 mm wide HastelloyTM substrate. Depending on the requirements of actual ap-
plication, copper electroplating and lamination can be added to the tapes. The resistive
superconducting fault current limiter requires the tapes to have high room-temperature
resistance and high impact tolerance. Previous studies have shown that stainless-steel
laminated tape has better performance than copper-plated tape in these aspects; hence,
stainless steel was chosen to encapsulate the tapes.

Figure 1 shows the basic structure of an HTS tape used in a fault current limiter.
This is the actual structure of the samples studied in this paper. The metal layers of the
tape primarily included a silver stabilizing layer, copper stabilizing layer, stainless-steel
reinforcing layer, and tin solder layer. The silver layer was plated by magnetron sputtering.
In order to ensure full protection of the superconducting layer and save cost, the side on the
superconducting surface was plated with 1.5 µm, the side on the HastelloyTM surface was
plated with 0.5 µm. Electrochemical copper plating was applied outside the silver layer.
The wettability of the silver layer and tin solder was rather poor, but the wettability of
copper and tin solder was good. In order to keep the layers bonded together, copper plating
is an essential step. To prevent it from melting and being scratched in the lamination
process, the copper plating layer needs to maintain a minimum thickness of 2 µm per
side. Whether silver or copper is plated, the sides of the tapes need to be plated to form
an integral coverage. Lamination primarily uses the welding method (“sandwich” type
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encapsulation) to adhere two layers of encapsulation on the upper and lower sides of the
superconducting tape. The solder composition used in the experiments was Pb63Sn37. The
width of the stainless-steel lamination tape was 12 mm, and 1 mm wide gaps on both sides
were filled with solder to ensure that the encapsulated superconducting tape formed a
complete cladding structure. In addition, the interlayers between stainless-steel tape and
superconducting tape are filled with solder, and the external surfaces of stainless steel were
also covered with solder. The thickness of the interlayer and coated solder was about 4 µm.

Electronics 2022, 11, x FOR PEER REVIEW 3 of 19 
 

 

plating is an essential step. To prevent it from melting and being scratched in the lamina-
tion process, the copper plating layer needs to maintain a minimum thickness of 2 μm per 
side. Whether silver or copper is plated, the sides of the tapes need to be plated to form 
an integral coverage. Lamination primarily uses the welding method (“sandwich” type 
encapsulation) to adhere two layers of encapsulation on the upper and lower sides of the 
superconducting tape. The solder composition used in the experiments was Pb63Sn37. 
The width of the stainless-steel lamination tape was 12 mm, and 1 mm wide gaps on both 
sides were filled with solder to ensure that the encapsulated superconducting tape formed 
a complete cladding structure. In addition, the interlayers between stainless-steel tape and 
superconducting tape are filled with solder, and the external surfaces of stainless steel 
were also covered with solder. The thickness of the interlayer and coated solder was about 
4 μm. 

 
 

(a) (b) 

Figure 1. (a) Cross-section of laminated tape used for SFCL; (b) cross-sectional area of each material. 

When not in a superconducting state, the superconductor layer and the buffer layers 
are considered as oxide materials, with electrical resistance much higher than metals. 
Hence, their resistances were excluded in resistance calculation. The resistance of every 
metal layer can be calculated using the formula below. 𝑅 = 𝜌ோ 𝐿𝑆 (1)

where L is the length of metal, S is the cross-sectional area, and the ρR of individual metals 
at various temperatures can be found in Table 1. 

From the structure of the laminated HTS tape, it is assumed that there is no current 
transfer among the metal layers; the variation of resistance of the above-described metal 
layers with temperature T can be calculated using the following formula as conductors in 
parallel: 1𝑅ௌ(𝑇) = 1𝑅ு௦(𝑇) + 1𝑅(𝑇) + 1𝑅௨(𝑇) + 1𝑅ௌ௨௦(𝑇) + 1𝑅ௌ(𝑇). (2)

Upon eliminating certain items from the above equation, the room-temperature re-
sistance of products from individual processing steps can be calculated and, thus, con-
trolled. For example, the HTS tape product after silver plating has a resistance of 1𝑅ௌ(𝑇) = 1𝑅ு௦(𝑇) + 1𝑅(𝑇). (3)

Transport measurements on a large amount of HastelloyTM substrates, of 50 μm thick-
ness and 10 mm width, allowed concluding that its room-temperature resistance is around 
2700 mΩ/m. After applying the buffer layers and superconductor layer, the room-temper-
ature resistance remained approximately the same. The HTS tape after silver plating 
measured about 610 mΩ/m. 

The mass of each metal layer can be calculated using density as shown below. 𝑚 = 𝜌𝑉 = 𝜌𝐿𝑆, (4)

Figure 1. (a) Cross-section of laminated tape used for SFCL; (b) cross-sectional area of each material.

When not in a superconducting state, the superconductor layer and the buffer layers
are considered as oxide materials, with electrical resistance much higher than metals. Hence,
their resistances were excluded in resistance calculation. The resistance of every metal layer
can be calculated using the formula below.

R = ρR
L
S

(1)

where L is the length of metal, S is the cross-sectional area, and the ρR of individual metals
at various temperatures can be found in Table 1.

Table 1. Material parameters.

Material
Density
(kg/m3)

Specific Heat
J/(kg·K)

Resistivity
× 10−8 Ω·m

77 K 295 K 77 K 295 K

Silver (Ag) 1.05 × 104 187 236 0.27 1.60

Copper (Cu) 8.93 × 103 254 386 0.23 1.73

Hastelloy (Has) 8.89 × 103 251 427 124.00 127.00

SS 316L (Sus) 7.98 × 103 251 490 56.80 77.10

Solder 63/37 (Sn) 8.78 × 103 155 182 3.00 15.00

From the structure of the laminated HTS tape, it is assumed that there is no current
transfer among the metal layers; the variation of resistance of the above-described metal
layers with temperature T can be calculated using the following formula as conductors
in parallel:

1
RSC(T)

=
1

RHas(T)
+

1
RAg(T)

+
1

RCu(T)
+

1
RSus(T)

+
1

RSn(T)
. (2)
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Upon eliminating certain items from the above equation, the room-temperature resis-
tance of products from individual processing steps can be calculated and, thus, controlled.
For example, the HTS tape product after silver plating has a resistance of

1
RSCAg(T)

=
1

RHas(T)
+

1
RAg(T)

. (3)

Transport measurements on a large amount of HastelloyTM substrates, of 50 µm
thickness and 10 mm width, allowed concluding that its room-temperature resistance
is around 2700 mΩ/m. After applying the buffer layers and superconductor layer, the
room-temperature resistance remained approximately the same. The HTS tape after silver
plating measured about 610 mΩ/m.

The mass of each metal layer can be calculated using density as shown below.

m = ρDV = ρDLS, (4)

where L is the length of metal, S is the cross-sectional area, and the ρR of individual metals
at various temperatures can be found in Table 1.

Hence, the sum of all metal layers is

mSc = (ρHasSHas + ρAgSAg + ρCuSCu + ρSusSSus + ρSnSSn)L, (5)

where ρHas is the density of HastelloyTM, ρAg is the density of the silver layer, ρCu is the
density of the copper layer, ρSus is the density of the stainless-steel layer, ρSn is the density
of the tin solder.

In the calculation, the contribution of buffer layer and superconducting layer oxides
to the resistance and specific heat capacity of HTS tape was ignored. In the temperature
range of 77 K–400 K, it is assumed that the resistivity and specific heat capacity of the metal
layers change linearly with temperature. As a result, the curves of resistance and specific
heat capacity against temperature, of a specific HTS tape, can be obtained by calculation.

For a resistive superconducting fault current limiter, the critical current, room-
temperature resistance, and impact tolerance of HTS tape are important parameters, which
directly determine the performance indices of the fault current limiter. In order to study
the effects of metal layer composites in the stainless-steel laminated HTS tape on its impact
tolerance, 12 laminated tapes of various specifications were prepared, as shown in Table 2.

Samples 1–4 used 80 + 80 µm stainless steel for lamination, while the room-temperature
resistance of the tapes was kept constant at 100 mΩ/m, Tc of the superconductor layer
was 92 K, and critical currents of the tapes were varied with different HTS layer thickness.
Sample 1 had no superconductor layer, but its other layers were identical to other samples.
Samples 4–8 were laminated with 80 + 80 µm stainless steel, while the critical current of the
tapes was kept at 500 A, and the room-temperature resistance of the tapes was varied to
100, 90, 80, 70, and 60 mΩ/m. For samples 4 and 9–12, the room-temperature resistance
of the tapes was kept at 100 mΩ/m and the critical current was kept at 500 A, while the
thickness of the stainless-steel lamination layers of the tapes was varied to 80 µm, 100 µm,
and 120 µm.

The room-temperature resistance variation in samples was realized by adjusting the
thickness of the copper layer. It emerged from the sample preparation process that it
was extremely difficult to accurately control the room-temperature resistance of the tapes.
This is because, although the volume and mass content of silver and copper in the HTS
tape were very low, their resistivity was much lower than that of other materials, and the
resistance of silver and copper layers also varied greatly with temperature, which had a
significant impact on the total resistance of HTS tape. It can be seen from the calculated
value of copper plating thickness in Table 2 that the thickness of copper plating was very
low and required very precise control. A thickness difference of 0.1 µm could bring about a
significant change in room temperature resistance.
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Table 2. Specimen ID and corresponding specifications.

Nominal IC Actual IC
Cu Thickness

Calculated Value Lamination Thickness Nominal
Resistance at RT Actual Resistance at RT Mass, Calculated Value Mass, Actual Value

Sample 1 0 A 0 A 3.29 µm (80 + 80) µm 100 mΩ/m 101.0 mΩ/m 22.6 g/m 22.6 g/m

Sample 2 100 A 101 A 3.50 µm (80 + 80) µm 100 mΩ/m 98.5 mΩ/m 22.7 g/m 22.9 g/m

Sample 3 300 A 288 A 3.41 µm (80 + 80) µm 100 mΩ/m 99.6 mΩ/m 22.6 g/m 22.9 g/m

Sample 4 500 A 510 A 3.38 µm (80 + 80) µm 100 mΩ/m 100.0 mΩ/m 22.6 g/m 22.6 g/m

Sample 5 500 A 501 A 4.34 µm (80 + 80) µm 90 mΩ/m 89.8 mΩ/m 22.8 g/m 22.7 g/m

Sample 6 500 A 502 A 5.45 µm (80 + 80) µm 80 mΩ/m 80.2 mΩ/m 23.1 g/m 22.9 g/m

Sample 7 500 A 500 A 6.97 µm (80 + 80) µm 70 mΩ/m 70.0 mΩ/m 23.4 g/m 23.2 g/m

Sample 8 500 A 498 A 9.51 µm (80 + 80) µm 60 mΩ/m 58.1 mΩ/m 23.8 g/m 24.1 g/m

Sample 9 500 A 506 A 2.96 µm (80 + 100) µm 100 mΩ/m 101.9 mΩ/m 24.5 g/m 24.3 g/m

Sample 10 500 A 511 A 2.78 µm (100 + 100) µm 100 mΩ/m 101.1 mΩ/m 26.3 g/m 26.0 g/m

Sample 11 500 A 510 A 2.47 µm (100 + 120) µm 100 mΩ/m 101.1 mΩ/m 28.6 g/m 28.2 g/m

Sample 12 500 A 510 A 2.45 µm (120 + 120) µm 100 mΩ/m 98.1 mΩ/m 30.5 g/m 30.7 g/m
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From Table 2, it can be concluded that the mass per unit length of tape calculated
using Equation (5) was rather consistent with the mass obtained by actual weighing.

2.2. Test Platform

To assess the transient overcurrent characteristics of HTS tape, the high-current im-
pulse test platform was used as shown in Figure 2. The energy storage discharge mode of
the capacitor was used to generate DC single pulses to simulate the impact of DC power
grid short-circuit fault current on the HTS tapes.
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Before the test, the capacitor was charged at different energy levels by varying the
capacitor charging voltages. The impulse pulse width was controlled by setting the in-
ductance and resistance. The data acquisition part of the system was achieved using a
high-precision oscilloscope, current transformer, and voltage probe. The capacitor output
was steadily increased by increasing its voltage setting stepwise, and the impact test was
carried out on the tapes until they were burned in the system short-circuit, in order to study
the overcurrent impact tolerance of the HTS tapes.

The circuit was an RLC series circuit composed of resistor, inductor, and capacitor.
It was a zero-input response process of a second-order circuit. A second-order homoge-
neous differential equation with constant coefficients where uc is unknown could, thus,
be formulated.

LC
d2uc

dt2 + RC
duc

dt
+ uc = 0, (6)

or
d2uc

dt2 +
R
L

duc

dt
+

1
LC

uc = 0. (7)

The characteristic equation is

s2 +
R
L

s +
1

LC
= 0. (8)

Solving the differential equations gives

s1,2 = − R
2L

±

√(
R
2L

)2
− 1

LC
. (9)

When > 2
√

L
C , it is an over-damped condition, and its solution is

uc(t) = K1es1t + K2es2t, (10)

iL(t) = C
duc

dt
. (11)
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When R = 2
√

L
C , it is a critically damped condition, and its solution is

ic(t) = K1es1t + K2es2t. (12)

When < 2
√

L
C , it is an under-damped condition, and its solution is

uc(t) = e−at[K1cos(ωdt) + K2sin(ωdt)], (13)

iL(t) = C
duc

dt
. (14)

Substituting in initial conditions gives the actual solutions.
Ignoring the resistance of superconducting tape and the circuit, the capacitance was

8 mF, and the resistance R and inductance L in the circuit were adjustable parameters. The
charging voltage of the capacitor was fixed at 1 kV, and the impact test was carried out on
sample 4.

L was set to 0.2 mH, and R was changed to obtain different current, voltage, and
resistance response waveforms, as shown in Figure 3. It can be seen that the increasing
sides of the current were basically identical, and the decreasing sides became gentler with
resistance increase.
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R was set to 0.2 mΩ, and L was changed to obtain different current, voltage, and
resistance response waveforms, as shown in Figure 4. It can be seen that the current
waveform increased and decreased more or less symmetrically. As inductance increased,
the duration of overcurrent impact impulse increased.
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Some differences can also be observed in the impulse voltage curve and resistance
response curve. At present, superconducting current limiters mainly focus on the response
performance within 5 ms of short-circuit current; therefore, the system setting parameters
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of R = 0.2 mΩ and L = 0.2 mH were finally selected to conduct impact tests on the HTS
tapes, as shown by the red lines in Figures 3a and 4a.

3. Results and Discussion
3.1. Experimental Results and Analysis for Typical Samples

Individual samples were subjected to impact, and the corresponding impulse current
and impulse voltage waveforms were obtained. The distance between the voltage taps on
the tape was 8 cm. Figure 5 shows the waveform of sample 4. For better visualization, the
voltage was converted to volt per meter.
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The curve of Figure 6 was obtained by calculation using data from Figure 5. Under the
impact of large current, the resistance increased rapidly. Since the metal resistance variation
with temperature between 77 K and 600 K was rather linear, the temperature corresponding
to the resistance of a sample could be identified, as marked on the right vertical axis of
Figure 6. The red dotted line in the figure indicates the temperature of 456 K, which is the
melting point of tin solder.
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Figure 6. Transient resistance per meter of sample 4 under impact.

The appearance of the tape samples before impact tests is shown in Figure 7a. The
samples were visually inspected after each impact test. When the tape was impacted
normally, the surface was the same as that before impact. When the sample was impacted
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with a 1.8 kV charged capacitor, the peak impulse current was 3925.9 A, and regional
melting was observed on the surface of the HTS tape, as shown in Figure 7b. It can also
be seen from Figure 6 that the temperature of the sample was close to the melting point
temperature of the solder. When a 1.9 kV charged capacitor was used for impact, the peak
impact current was 4144.0 A, and the strong impact force led to plastic deformation on
the tape, while cracks appeared on the edge of the tape, as shown in Figure 7c. When a
2.0 kV charged capacitor was used for impact, the peak impact current was 4361.1 A, and
the crack at the edge of the tape was further enlarged, while there were scorch marks on
the surface of the tape, as shown in Figure 7d.
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The key factor influencing the temperature of the HTS tape should be the Joule heat
generated during the quench process, which is determined by a combination of quench
resistance, current, and quench time. The variation of Joule heat Q generated in the HTS
tape with time can be calculated using Equation (15), and its unit is Joule (J).

Qheat =
∫ t

0
I2R(t)dt, (15)

where t is the quench time and R(t) is the quench resistance corresponding to the quench time.
Figure 8 shows the variation of tape resistance per unit length with Joule heat following

each impact of sample 4. Similar to Figure 6, the temperatures corresponding to the
resistance of the sample were identified, as marked on the right vertical axis; the red dotted
line in the figure indicates the melting point.

It can be seen from the figure that, with each increase in impact voltage, the increase
in resistance became more rapid. The quench resistance response is a process of heat
accumulation on the HTS tapes. The heat brought by impact leads to the increase in
tape resistance, and the increase in resistance leads to additional heat generation. The
accumulated heat of the tape itself can be expressed by the following equation:

Qaccumulate =
∫ t

0
c(T)m

dT
dt

dt. (16)

Taking the cooling effect from liquid nitrogen into consideration, the following equa-
tions can be derived:

Qaccumulate = Qheat − Qcool , (17)
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Qaccumulate(t) =
∫ t

0

(
I2R(t)− Pcool

)
dt. (18)
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Figure 8. R–Q curves of sample 4 under impact.

In order to further investigate the problem, the R–Q curves of two impact tests were
selected for analysis as shown in Figure 9. When impact was conducted with a 1.3 kV
charged capacitor, the total heat generated by sample 4 in 7.28 ms was 1028.5 J. When
impact was conducted with a 1.8 kV charged capacitor, the total heat generated by sample
4 in 1.72 ms was also 1028.5 J. However, the resistance response curves of the two were
different at 76.2 mΩ/m and 87.1 mΩ/m, respectively. The temperatures achieved by the
tapes were 230.5 K and 261.3 K, respectively, with a difference of 30.8 K. This temperature
difference originated from the heat dissipation of liquid nitrogen with a time duration
difference of 5.56 ms. It can be concluded that the different rates of resistance increase,
manifested in Figure 8, resulted from the difference in heat dissipation by liquid nitrogen.
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3.2. Comparison of Impact Tolerance

A comprehensive impact experiment was carried out on 12 samples using the overcur-
rent impact test platform. By examining the sample surfaces, the impact values leading to
strictly no local surface melting were retained, and the corresponding peak current was
identified, as listed in Table 3.
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Table 3. Copper-plated and laminated HTS tape samples.

Actual Resistance at RT Calculated
Resistance at 77 K

Actual Resistance
at 77 K

Calculated
Resistance at 456 K

Actual Resistance
at 456 K

Peak Current
During Impact

Heat Generated
During Impact

Sample 1 101.0 mΩ/m 22.6 mΩ/m 24.5 mΩ/m 157.1 mΩ/m 156.0 mΩ/m 3687.2 A 3410 J

Sample 2 98.5 mΩ/m 21.7 mΩ/m 25.3 mΩ/m 153.6 mΩ/m 150.3 mΩ/m 3694.8 A 3440 J

Sample 3 99.6 mΩ/m 22.1 mΩ/m 25.0 mΩ/m 155.1 mΩ/m 156.4 mΩ/m 3694.0 A 3450 J

Sample 4 100.0 mΩ/m 22.2 mΩ/m 25.4 mΩ/m 155.6 mΩ/m 153.7 mΩ/m 3714.0 A 3410 J

Sample 5 89.8 mΩ/m 18.7 mΩ/m 21.9 mΩ/m 140.6 mΩ/m 139.7 mΩ/m 3923.1 A 3510 J

Sample 6 80.2 mΩ/m 15.9 mΩ/m 17.0 mΩ/m 126.2 mΩ/m 126.0 mΩ/m 4395.5 A 3540 J

Sample 7 70.0 mΩ/m 13.1 mΩ/m 14.0 mΩ/m 110.7 mΩ/m 110.6 mΩ/m 4849.9 A 3560 J

Sample 8 58.1 mΩ/m 10.1 mΩ/m 9.7 mΩ/m 92.4 mΩ/m 92.9 mΩ/m 5314.2 A 3570 J

Sample 9 101.9 mΩ/m 23.9 mΩ/m 28.0 mΩ/m 157.7 mΩ/m 152.5 mΩ/m 3741.7 A 3610 J

Sample 10 101.1 mΩ/m 24.6 mΩ/m 29.0 mΩ/m 155.7 mΩ/m 152.9 mΩ/m 4169.2 A 3960 J

Sample 11 101.1 mΩ/m 26.0 mΩ/m 29.6 mΩ/m 154.7 mΩ/m 153.6 mΩ/m 4372.6 A 4340 J

Sample 12 98.1 mΩ/m 25.8 mΩ/m 32.6 mΩ/m 150.0 mΩ/m 143.9 mΩ/m 4579.9 A 4650 J
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Resistance of the 12 samples was measured using a transport current refrigeration and
heating device in a closed environment. The resistance per unit length of the 12 samples at
77 K and 456 K was calculated by using the density and resistivity parameters of different
metals in Table 1. It can be found that the two sets of values were rather close. The trend
line deviations in the R–Q diagram and the resistance of the tapes at 456 K were used to
jointly determine the heat generated during impact, as listed in Table 3.

3.2.1. Effect of Critical Current of the HTS Tapes

Samples 1–4 had the same structure and room-temperature resistances, while they
varied only in the critical current Ic. As shown in Figure 10, the peak values of the
overcurrent current Imax during HTS tape impact were about the same, and the anti-impact
energy Qmax of all samples was also roughly identical. This shows that the impact tolerance
to overcurrent is largely dependent on the structure of the HTS tapes and has little to do
with the critical current of the tape itself.
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3.2.2. Effect of Room-Temperature Resistance of the HTS Tapes

For samples 4–8, the critical current of the HTS tapes was the same, and they were
laminated with stainless steel of the same thickness. By slightly varying the thickness of
copper plating, the room-temperature resistances of the tapes were manipulated to be 100,
90, 80, 70, and 60, respectively. As shown in Figure 11, as room-temperature resistance
increased, the peak value of overcurrent impulse decreased. The overcurrent impact energy
Qmax of the HTS tapes remained roughly constant. The amount of impact energy tolerated
increased slightly as the thickness of the copper plating increased.

3.2.3. Effect of Mass of the HTS Tapes

For samples 4 and 9–12, the critical current of the HTS tapes was the same, and they
were laminated with stainless steel of varying thickness. By slightly varying the thickness
of copper plating, the room-temperature resistances of the tapes were controlled to be
100 m Ω/m. As shown in Figure 12, both the peak value of overcurrent impulse Imax and
the overcurrent impact energy Qmax were positively correlated with the mass of the HTS
tapes. This shows that higher mass provides a larger heat capacity, which is beneficial to
withstand impact.
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3.3. Resistance Response to Impulses
3.3.1. Impact of HTS Characteristics on Resistance Response to Impulses

In order to study the impulse resistance response of HTS tapes, a dummy sample
with the same structure and resistance parameters as sample 4 was prepared. The only
difference is that the dummy sample had no superconducting characteristics. Figure 13
shows the impulse current, impulse voltage, and corresponding resistance curves of the
two samples under impacts of different energy level at 77 K.

Comparing Figure 13a,b, it can be seen that the impulse current curves of the two
samples were basically the same. Comparing Figure 13c,d, it can be seen that the difference
in impulse voltage between the two samples was only at the start. For the sample with zero
Ic, the change in voltage was continuously conductive due to the lack of superconducting
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characteristics. For the sample with Ic of 500 A, since the resistance at the beginning was
0, there was a process to enable quenching; hence, there was discontinuity in the first
derivatives for parts of the curves, as shown by the red circles in Figure 13d, whereas the
later parts of the curves were basically the same.

Figure 13e,f were calculated from the earlier graphs. It can be seen that the resistance
of sample 1 and sample 4 was very different in the first 1 ms. The resistance of sample 1
increased from the unit resistance value of 22.60 mΩ/m at 77 K. In Figure 13e, this value
is marked by a red dotted line. It can be seen that this basically coincided with the curve
of impact at a low energy level. The resistance response curve of sample 4 showed a first-
derivative discontinuity at 92 K, which is the critical temperature Tc of SST superconducting
tape. In Figure 13f, this value is marked by a red dotted line. When the tape was impacted
at different energy levels, the time taken to reach 92 K also varied.
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3.3.2. Impact of Critical Current on Resistance Response to Impulses

In order to further observe the effect of critical current on impulse resistance response,
the impulse resistance curve of samples 1–4 was amplified and examined. It can be seen
that the tape with Ic = 0 A was resistive in nature; therefore, when the 0.2 kV charged
capacitor was used for impact, and the peak impulse current was 421.9 A, the impulse
resistance was basically maintained at the 77 K resistance. With the further increase in
impact energy, the impulse resistance response curve of the tape increased gradually.

For the tape with Ic =100 A, when the 0.5 kV charged capacitor was used for impact,
the peak impulse current was 1081.7 A, which is the quenching threshold of the tape. When
impacted at a lower energy level, even though the peak reached 863.9 A, the tape was
only partially quenched. For tapes with Ic = 300 A and 500 A, the threshold of complete
quench was reached. When the 0.6 kV charged capacitor was used for impact, the peak
impulse current was about 1300 A. Comparing the different graphs in Figure 14, it can be
seen that, after complete quench, the resistance response curves of tapes with different
critical currents were similar; after partial quenches, the resistance response curves were
rather different.
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Figure 15 compares the resistance response curves of samples 1–4 under the impact
of 0.5 kV, 0.6 kV, 1.1 kV, and 1.7 kV capacitors. At 0.5 kV impact, the tapes were partially
quenched, and the resistance response curves varied more evidently. At 0.6 kV impact, the
tapes were completely quenched, the difference in resistance response curves decreased
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after 3 ms, and a larger critical current led to lower quench resistance. At 1.1 kV and 1.7 kV
impacts, the peak impulse current was about 2400 A and 3700 A, respectively. The quench
resistances of HTS tapes were roughly identical.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 19 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 15. Impulse resistance response of samples 1–4: (a) 0.5 kV impact; (b) 0.6 kV impact; (c) 1.1 
kV impact; (d) 1.7 kV impact. 

3.3.3. Impact of Mass on Resistance Response to Impulses 
Under the same overcurrent impact, the resistance response of HTS tapes with dif-

ferent room-temperature resistances varied significantly. From the study of samples 1–4, 
the resistance response of tapes with the same room-temperature resistance under the im-
pact of equal overcurrent, especially under high-energy impact, had little difference. In 
order to more accurately study the impact performance of tapes with the same room-tem-
perature resistance but different masses, samples 4, 10, and 12 were connected in series 
for the impact test, as shown in Figure 16, so as to ensure that the impact currents of the 
three were consistent. 

As shown in Figure 17, when impacts were carried out with the capacitors charged 
at 0.5 and 0.6 kV, the quench resistance responses of the three samples were consistent. 
The quench of sample 4 was slightly slower than that of the other two samples because 
the sample resistance at 77 K was slightly lower. With a further increase in impact energy, 
the impact resistance response curve of the tape increased gradually. When the impact 
was carried out with the 1.1 kV charged capacitor, the quench resistance response of sam-
ple 4 began to surpass that of sample 10 and sample 12. When the impact was carried out 
with the 1.7 kV charged capacitor, the resistance responses of the three samples were sig-
nificantly different. After 1 ms, the resistance of sample 4 was greater than that of sample 
10 and sample 12. This shows that, for HTS tapes with the same room-temperature re-
sistance, the tape of higher mass has a slower resistance response under impact. 

 

Figure 15. Impulse resistance response of samples 1–4: (a) 0.5 kV impact; (b) 0.6 kV impact; (c) 1.1 kV
impact; (d) 1.7 kV impact.

3.3.3. Impact of Mass on Resistance Response to Impulses

Under the same overcurrent impact, the resistance response of HTS tapes with different
room-temperature resistances varied significantly. From the study of samples 1–4, the
resistance response of tapes with the same room-temperature resistance under the impact
of equal overcurrent, especially under high-energy impact, had little difference. In order to
more accurately study the impact performance of tapes with the same room-temperature
resistance but different masses, samples 4, 10, and 12 were connected in series for the
impact test, as shown in Figure 16, so as to ensure that the impact currents of the three
were consistent.
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As shown in Figure 17, when impacts were carried out with the capacitors charged at
0.5 and 0.6 kV, the quench resistance responses of the three samples were consistent. The
quench of sample 4 was slightly slower than that of the other two samples because the
sample resistance at 77 K was slightly lower. With a further increase in impact energy, the
impact resistance response curve of the tape increased gradually. When the impact was
carried out with the 1.1 kV charged capacitor, the quench resistance response of sample 4
began to surpass that of sample 10 and sample 12. When the impact was carried out with
the 1.7 kV charged capacitor, the resistance responses of the three samples were significantly
different. After 1 ms, the resistance of sample 4 was greater than that of sample 10 and
sample 12. This shows that, for HTS tapes with the same room-temperature resistance, the
tape of higher mass has a slower resistance response under impact.
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4. Conclusions

This paper mainly introduced the optimal design, quench characteristic assessment,
and performance analysis of HTS tapes, as deployed in resistive current limiter applica-
tions. According to the HTS tape preparation and postprocessing techniques of Shanghai
Superconducting Technology Co., Ltd., (China), HTS tape samples, targeting fault current
limiter application, of variable mass per unit length, room-temperature resistance, critical
current, and other key parameters, were prepared.

Working with 12 samples, through experiments and calculations, it was found that
the quench performance of a tape in response to overcurrent is independent of its critical
current, and it increases with the tape’s thickness. When the overcurrent impact energy is
maintained at a constant level, the peak value of overcurrent impulse is inversely related to
the room-temperature resistance of a tape.

Following the quench behavior of HTS tape, there is a first-derivative discontinuity
around Tc. When exposed to different levels of impact energy, the HTS tapes take different
amounts of time to reach 92 K.
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In this study, tapes of different critical current but the same structure demonstrated
different impulse resistance responses below 1300 A impulse current. They started to
demonstrate similar impulse resistance responses above 1300 A impulse current. As the
degree of quench aggravated, at the same room-temperature resistance, a higher tape mass
resulted in a slower resistance response under the same impact energy.

The design and assessment methodology for HTS tapes, described in this paper,
could provide helpful guidance on material selection for resistive superconducting fault
current limiters.
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