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Berbakov, L.; Pavković, B.;
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Abstract: One major problem that affecting grape production is that of infestations by fungal
pathogens, among which Plasmopara viticola is one of the worst, causing grapevine downy mildew.
This can cause substantial damage to a vineyard, which leads to economic losses. Methods of
predicting disease outbreak rely on the monitoring of meteorological parameters. With the recent
development of Internet of Things (IoT) technologies, in situ data can be efficiently collected on a large
scale. In this paper, a new model with early warning system implementation for grapevine downy
mildew based on Narrow Band IoT (NB-IoT) and energy harvesting is presented. Models of downy
mildew warning systems have evolved from the early temperature-based (and later, humidity-based)
models to the latest mechanistic models which include rainfall/leaf wetness and hourly monitoring.
We added parameters such as ’favorable night condition’ and ’wind speed’ as critical for sporangia
spreading. The comparison of the model with the commercial iMetos® warning system and the latest
mechanistic model for three specific vineyard locations indicates a high correlation between alarms.

Keywords: NB-IoT; energy harvesting; grapevine downy mildew; decision support; early warning

1. Introduction

Downy mildew is among the most harmful diseases to grapevine [1,2]. It is caused by
the fungi Plasmopara viticola. The fungi overwinter in infected leaves and litter in the soil as
oospores that germinate in the spring and produce a sporangium. Rainfall and wind can
disperse the primary zoospores to grapevine leaves. Zoospores can swim through water
and only penetrate through the stomata. The process of sporangia production occurs at
night (for at least 4 h) under very humid conditions (relative humidity of 95 to 100%) and
at a favorable temperature (an optimal temperature for growth is approximately 25 ◦C).

The number of infestations varies from one year to the next, primarily depending
on the weather conditions. Under favorable weather conditions, the disease can cause
huge losses due to the infection of the entire grapevine canopy (green parts). The worst
epidemics occur in years with wet winters and wet springs followed by a hot summer with
occasional rain showers. Meteorological parameters such as temperature, precipitation and
relative humidity should be known in order to take proper measures against the disease.
These parameters are used to determine the incubation period, which allows immediate
actions to be taken.

Plasmopara viticola has two cycles of infestation. The first infestation cycle develops
following the widely known 3–10 (three tens) rule [3]. The rule is based on the simultaneous
occurrence of the following conditions: vine shoots at least 10 cm long, a minimum of
10 mm of rainfall within 24–48 h and average daily air temperature equal to or greater than
10 ◦C. Persistent rain, high humidity, and average daily temperatures higher than 11–14 ◦C
(depending on region and authors) are critical to primary infections cycles. Secondary
infections only occur if the primary infection has already spread. Primary infection spread
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is directly observed in the form of the so-called “oil stains” found on grapevine leaves.
Secondary infection can only occur under favorable night conditions, i.e., in humid, wet,
and wind conditions, with temperatures higher than 12 ◦C. Various simulation models can
provide the basis for the development of useful systems for timely disease warning and
forecasting [2]. The winemaker can therefore optimize the number and timing of treatments.
It is generally assumed that under favorable conditions, Plasmopara viticola can inoculate
one primary infection and several secondary infections. However, Kennelly et al. [4] have
shown that multiple primary infections can occur during a single season. The disease
prevention strategies include treating the primary infection immediately before rainfall.
A good weather forecast service is required in order to take as timely action as possible.
If the infection has already occurred, a percentage of affected area will influence the method
of treatment. Most of present disease treatment strategies include applying proper chemical
sprays (copper-based fungicides or systematic fungicides, etc.). The application of sprays
generally follows a fixed calendar schedule which results in a number of unnecessary
treatments and large associated economic, health and environmental impacts. A more
up-to-date approach in precision agriculture involves using precise data on environmen-
tal conditions (for example, on weather, soil or plants) and predicting infection periods.
Precise data can enable the provision of timely warnings for both primary and secondary
infections. A new model of the warning system with additional parameters that can replace
conventional models is proposed in this paper.

Wireless sensor networks (WSNs) have been used in short-range communication for
decades. In the last decade, these have evolved into new systems such as massive machine
to machine (M2M) and the Internet of Things (IoT) [5]. New technologies have recently
emerged for scenarios where low power and a wide area are required. Technologies such
as LoRaWAN [6] and Sigfox are used in non-licensed bands of the frequency spectrum.
In the licensed spectrum covered by mobile network operators (MNOs), the Narrowband
Internet of Things technology (NB-IoT) [7,8] has emerged, with the advance of the Long
Term Evolution (LTE) and issuing of 3GPP standard Release 13 [9]. NB-IoT has been in use
for a few years, with several hardware platforms available (for example, U-blox SARA-R410
and Quectel BC-68/95 modules).

NB-IoT uses star topology where all the sensor nodes are directly connected to the LTE
cellular base station acting like a concentrator or the ’sink node’ in WSN terminology. The
underlying network core performs all the necessary data processing. On the other hand,
the WSN uses multi-hop communications and distributed systems in most applications.
Figure 1 illustrates an example of the NB-IoT system. This shows the end-to-end NB-IoT
details of connection for a reliable and efficient communication system between the two end
points: a wireless sensor node and a cloud application. At the physical level, the wireless
sensor node receives all the information on environmental conditions (e.g., temperature,
humidity, etc.) and transfers the information to the mobile operator eNB (Evolved Node B)
using the User Datagram Protocol (UDP) or Transmission Control Protocol (TCP) with
higher overhead. All the NB-IoT signals are managed within the mobile network operator
premises by using various protocols (e.g., radio resource controls (RRC), non-access stratum
(NAS), and mobility management entity (MME)). The received data are forwarded through
a packet gateway (PGW) to an IoT platform that manages the cloud application. With regard
to the application level, there are several options such as MQTT or CoAP.

Figure 1. NB-IoT system overview with an exemplary protocol stack.
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Energy efficiency [10] is crucial for all the low-power IoT and M2M communication
technologies including the NB-IoT. Long battery life is fundamental to extending the system
life to the final goal of 10 years. A decrease in service and maintenance costs can also be
achieved. Cellular technologies do not feature low power and energy efficiency by default.
The NB-IoT uses LTE cellular technologies with some modifications and simplifications in
order to decrease power consumption. The list of NB-IoT characteristics and assumptions
is provided below:

• Infrequent data transmissions;
• Low data rates;
• Specific dataflow;
• Extended coverage (due to the 20 dB boost of maximum losses);
• Battery and system lifetime extension by low-power device design;
• Reduced signaling compared to ‘conventional’ cellular technologies;
• High scalability.

Feltrin et al. [11] provided more technical details and explanations on potential NB-IoT
configurations and the data exchange procedures (both uplink and downlink). Lukic et al. [12]
explained the specific non-IP and IP-based data flow in the NB-IoT networks. Most of the
early warning systems and decision support and forecasting systems for grapevine diseases
currently use the well-established communication technologies such as SMS or GPRS
but some alternative solutions with LoRaWAN or the NB-IoT were recently developed
(e.g., Metos [13]).

Where a large number of sensor devices are needed to monitor a particular area, the
operation of these devices with minimum maintenance requirements should be provided.
In this regard, we applied energy-saving techniques to ensure uninterrupted operation
over a long time without having to recharge or replace batteries. A photovoltaic cell and a
LiPo battery with a charging circuit were added to complement the usual NB-IoT power
preserving methods such as the power saving mode (PSM) and the microcontroller unit
sleep mode during periods of inactivity. The used energy harvesting feature enables the
compensation of energy discharged by measure-and-transmit cycles, which was confirmed
by measurements and calculations, as discussed in Section 2.3.

1.1. Related Work

A review of the related works on the two research areas, downy mildew models and
the warning and forecasting systems, is provided in this section.

Early downy mildew warning system models were based on incubation methods.
After the conditions for primary infection are met (e.g., as indicated by the 3–10 method [3]),
Miller’s incubation method [14] can be used to estimate the incubation period of time
(number of days). This incubation method resulted from many decades of research in
central Europe [15]. The incubation curve is interpreted in the form of a table in order to
enable the estimation of the incubation period based on average daily temperatures. The
main drawback of this method is that it predicts the duration of the incubation period
from the average daily temperature at the time of the beginning of incubation. A more
precise method has been developed [15] to account for daily averages. It can be given by
Equation (1), which corrects the estimation of the incubation period on a per-day basis.
Note that Miller’s method does not take into account days with average daily temperatures
below 12 ◦C:

c =
a
b
− b (1)

where c is the number of days before the incubation is completed, b is the number of days
that have passed after the infection started (the days with average daily temperatures below
12 ◦C are not taken into account), and a is the sum of the estimated duration of incubation
period for every day that has passed after the infection started.

A similar method is that of Shatsky’s incubation method, in which the incubation time
is taken as a daily ratio based on the average daily temperature. When the daily ratios sum
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up to 100%, the incubation period can be considered completed. Only days with a new
temperature threshold (8 ◦C, instead of 12 ◦C) qualify for the estimation. The actual daily
add-ons to the sum based on the average daily temperature are given in a table in [15].

Russian scientists Mersanin and Lipitskaya found that the incubation period calculated
as a sum of effective temperatures could be considered during the period when the sum
was 61 ◦C. Here, the temperature threshold is set to 8 ◦C.

The Goidanich index (GI) [16] is applied where the 3–10 requirements are met, and an
observation of the evolution of primary infection can start. Unlike the early methods that
only use average daily temperatures, the GI is based on monitoring the average daily
temperature (Tm), the average relative humidity (Hm), and precipitation. In addition,
low and high humidity values are distinguished with the GI. The Goidanich table-based
model [16] can be described as a more practical version of the two equations [17].

One of the early mechanical models [18] (we designate it as mechanical model 1)
simulated the monitoring of the entire infestation spread during the season. To calcu-
late the incubation period, the hydro-thermal time from the temperature, humidity, and
precipitation data including hourly monitoring was used.

A more recent simulation model [19] of downy mildew epidemics was based on a
complex set of parameters to simulate epidemics throughout the entire season. However,
the incubation period was set to two discrete values in correlation with the levels of temper-
ature (cold and warm) and humidity (wet, partly wet, dry, and very dry). Temperature is
considered cold at below 13 ◦C and warm at above 13 ◦C. The daily precipitation is added
for the wet and partly wet parts in the next model [20] (we designate it as mechanical
model 2).

Present early warning systems (EWSs) for the disease forecasting generally consist of
(1) a module for collecting environmental and weather information (from on-site sensors
or meteorological services); (2) a model for disease prediction; (3) a hardware and com-
munication module; and optionally (4) a cloud-based platform service. The early EWS
was designed to operate offline on a desktop computer [21,22]. Systems with fundamental
communication based on the SMS were subsequently introduced [23]. With the growth in
wireless sensor networks, Web technologies, and especially the Internet, the early warning
systems and forecasting systems for grape diseases have begun to use widely available
communication technologies (such as the Web [24], GSM/GPRS [25] and WiFi [26]). Some
commercial solutions that use modern low-power technologies such as LoRaWAN or NB-
IoT, have recently emerged (e.g., Metos [13]). Two examples of a platform-based approach
consist of a weather station net, disease models, and the Internet website with specific tools
and features [27]. A new line of research suggests using a machine learning approach to
downy mildew forecasting [28].

1.2. Contributions

The contributions of this paper are as follows:
• A new algorithm for the warning system and a model for the early prediction of

downy mildew of grapevines (primary and secondary infections) in the vineyard use-
case were developed and presented. In addition to temperature and relative humidity,
it uses additional sensor data (hourly based data, wind speed, and day/night period)
to make the model more accurate than traditional methods.

• A complete design and overview of the implementation of the NB-IoT and energy
harvesting-based early warning system (called Winet) with a wireless sensor node for
monitoring several environmental parameters are presented, including both hardware
and software (cloud-based front-end, back-end, and mobile application). To the best
of our knowledge, there has not been any published scientific research to date using
the NB-IoT technology in downy mildew EWS implementation.

• The proposed model is compared with the alarms provided by the commercial Field-
Climate system [29] that uses iMetos1 and iMetos3.3 data collection system, for the
three particular vineyard locations of Vršački Vinogradi, Serbia, Rimski Šančevi, Serbia,
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and Trient, Switzerland, during the 2020 season. The results show a full correlation
with iMetos® alarms in the case of severe infection warnings for all given locations.
The correlation ranges between 0.4 and 1 for moderate and light infection alarms.

• In addition, the proposed model is compared with the latest mechanistic model [20]).
The correlation ranges between 0.55 and 0.71 for the secondary alarms.

The paper is organized as follows. A detailed system overview is provided in Section 2.
The research results are presented in Section 3 while the discussion related to obtained
results is in Section 4. Finally, the conclusions and future research directions are discussed
in Section 5.

2. System Overview

In this section, the components of the designed system are explained in detail.
In Figure 2, the same icons as in Figure 1 are used to illustrate the hardware and

the software components of the designed Winet system. The algorithm of the Winet
warning system runs in the Cloud. Data from the sensor are sent by microcontroller
board with the NB-IoT communication and energy-harvesting module. There is also an
in-house developed add-on board with a display connecting all environmental sensors.
The end-user reads the results and gets warnings from the provided cloud front-end and
back-end application with appropriate dashboard and visualizations. In addition, a mobile
application was also developed.

Figure 2. The Winet system overview focusing on hardware and software components: the barrel-like
casing holds the NB-IoT module (left); Web user interface for vineyard mildew monitoring (right).

2.1. Warning System Algorithm and Model Overview

The proposed model for primary infection warning starts when the grapevine shoots
are in stage 13 of the BBCH scale (i.e., the shoots are at least 10 cm long, or a few unrolled
leaves) at minimum [30]. Then, the average daily air temperature, precipitation, wind, and
daytime/nighttime are monitored. When the average daily temperature exceeds 10 ◦C
and the precipitation within the last 48 h reaches 10 mm, conditions for winter spores
germination are met (designated as 3–10 flag = 1 in our model). If rainfall or gentle breeze
(i.e., wind of speed greater than 3.4 m/s according to the Beaufort scale) occurs at night
within the following 48 h, primary infection has presumably occurred, causing the start of
the incubation period of Plasmopora viticola. When 48 h without rainfall elapse, the 3–10 flag
is reset to zero. The incubation period is calculated on daily basis according to:

f (t) = 0.076t2 − 3.453t + 42.925 (2)

fitted using Miller’s incubation tables [15] (with 99.7% correlation), followed by Equation (1).
When the incubation period has been completed, the algorithm for secondary infection
starts monitoring weather conditions and updates the warning system. Because primary
infection can occur multiple times in a year [4], the algorithm for primary infection con-
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tinues to monitor and update the warning system until the end of the current season. The
primary infection warning system algorithm is shown in Figure 3.

Figure 3. Algorithm for primary infection alarms.

In order to provide a timely alert for secondary infection, sporulation on downy
mildew lesions were assessed. Favorable night conditions (FNCs) are monitored. Night
conditions are considered favorable if the weather is humid (relative humidity (RH) > 80%)
and the temperature is higher than 12 ◦C for at least 2 h. The secondary infection warning
is triggered when the following conditions occur: an additional 2 h of uninterrupted leaf
wetness (LW) and average temperature (T) above 10 ◦C (similar weather assumptions [31]),
with precipitation or strong wind that can increase spore spread. Night conditions are
no longer favorable (FNC = 0) if relative humidity (RH) drops below 60% for at least two
hours. The secondary infection warning algorithm is illustrated in Figure 4.

The main novelties of our algorithm are the monitoring of wind speed for both primary
and secondary alarms and observing favorable night conditions (FNCs) for the secondary
alarms. Wind and FNC as crucial parameters for sporangia dispersion are reported in
several works. The latest is in [20]. However, the wind is not a part of their model.

2.2. The Sensor Node

The sensor node we used for the on-site data collection (Figure 5) is designed based on
the off-the-shelf module Sodaq SARA AFF [32] featuring the NB-IoT module from uBlox
ATSAMD21J18 and the 32-Bit ARM Cortex M0+ microcontroller. The shield is designed to
support various onboard and external sensors as specified in Table 1.

It is planned to include a leaf wetness sensor and an anemometer in the next version
of the sensor node.
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Figure 4. Algorithm for secondary infection alarms.

Table 1. Sensor specifications.

Sensor Type Operational Range Unit

Air temperature −40 to 85 ◦C
Air pressure −300 to 1100 hPa

Relative air humidity 0 to 100 %
Ambient light 1 to 65,535 lx

Soil temperature −55 to 125 ◦C
Soil moisture 0 to 100 %

(a) (b)

Figure 5. Sensor device: (a) physical appearance; and (b) block diagram.
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2.3. Energy Harvesting

The in-depth evaluation of power consumption was performed by monitoring the
current consumed by the device, as shown in Figure 6. With a typical LiPo battery (3.6 V,
1000 mAh), the total energy budget is Etotal = 3.6 V × 1000 mAh = 3600 mWh. The
average power consumed during a single measure-and-transmit cycle is approximately
ETX = 650 µWh, and the average time required to complete the cycle is TTX = 8 s.
On the other hand, when the device is in low-power mode between two measurements,
the average power consumption is Psleep = 26 µA × 3.6 V = 93.6 µW. When n cycles of data
collection are performed per day, a total daily energy consumption is calculated, as shown
in Equation (3):

Edaily = n × ETX + (24h − n × TTX)× Psleep (3)

Accordingly, the total lifetime of the system (in days) can be calculated as Etotal
Edaily

. Table 2
shows the estimation of battery life for various numbers of daily measurement cycles,
with an assumption that no energy-harvesting techniques are applied whatsoever.

Figure 6. Current consumption log.

Table 2. Battery lifetime depending on the number of daily sampling cycles.

Sampling Period n (nb. of Daily Cycles) Edaily (mWh) Battery Lifetime (Days)

24 h 1 2.90 146.06
12 h 2 3.55 142.32
8 h 3 4.20 138.76
6 h 4 4.85 135.38
4 h 6 6.15 129.09
3 h 8 7.44 123.36
2 h 12 10.04 113.30
1 h 24 17.84 91.03

30 min 48 33.44 65.34
20 min 72 49.03 50.96
15 min 96 64.63 41.77
10 min 144 95.82 30.70
5 min 288 189.39 17.10
2 min 720 470.10 7.34
1 min 1440 937.95 3.76

The solar panel used in the model for the battery recharge has the output power
Psolar = 400 mW with the reference value of solar radiation of 1 kW

m2 . Under the most unfa-

vorable operating conditions (1 transmission per minute), it takes
Edaily
Psolar

= 2.34 h to fully
compensate for daily consumption. Statistical data available online [33] indicate that in all
grapevine growing regions, the daily amount of solar radiation is large enough to provide
the uninterrupted operation of the edge node with no need to recharge, even under the
most demanding operating conditions.
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2.4. Server Back-End

The data collected at the sensor node are transmitted through the NB-IoT network and
the Internet to the WiNet application back-end server, as illustrated in Figure 7.

CakePHP backend

MySQL database

UDP to HTTP 
converter

Internet

Weather API

Web 
app

Mobile 
API

Figure 7. The Winet server.

The server application was developed using the CakePHP software framework. The
data were sent from the sensor node to the server by using the UDP protocol. The Python
service translates the UDP packets into an HTTP request. Each time a new message
conveying the sensor measurements is received, a corresponding HTTP request is created,
which is then received by the CakePHP back-end. The specific API endpoint developed
within the back-end checks the data and if the format is correct, the measurements are
stored in a MySQL database, as illustrated in the diagram in Figure 8. It can be seen in the
diagram that every user in the system has a connected gateway device.

User

idPK

group_idFK

name

Group

idPK

group name

UserProfile

idPK

user_idFK

attribute name

device_group_idFK

MobileDevice

idPK

user_idFK

device_token

Gateway

idPK

serial

Device

idPK

gateway_idFK

device_type_idFK

DeviceType

idPK

name

DeviceMeasurement

idPK

created

device_idFK

value

unit

User Gateway

idPK

user_idFK

gateway_id
name

name

Location

idPK

latitude

longitude

city

WeatherObservation

idPK

location_idFK

attribute name

WeatherForecast

idPK

location_idFK

attribute name

location_idFK

Figure 8. The Winet MySQL database schema.
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The server collects data from the sensor node and also takes over the data from the
external weather forecast API. The weather data are collected from the Weatherbit.io API
that provides current weather observations as well as weather forecasts on an hourly
basis. The algorithms discussed in the previous sections are periodically run for the
collected data to enable predictions. The user has the following options to access the
data: the Web application and the Android mobile application, which are described in the
following subsection.

2.4.1. Web Application

The Winet Web application is designed on the top of the Web server back-end (see
Figure 9). It supports authentication and authorization options with different user roles.
The super-administrator account has the right to administer the entire Winet Web plat-
form, manage users, define new measuring device types (see Figure 10), etc. When the
vineyard owner/administrator logs into the platform, they can see the graph of various
measurements and obtain the alert from the platform, as illustrated in Figure 10.

The Web user interface allows registered users to verify the data for the assigned
sensor nodes in addition to the prediction results of the algorithms, as shown in Figure 11.

Figure 9. The Winet Web application—home page.

Figure 10. The Winet Web application—sensor type configuration.
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Figure 11. The Winet Web application—measurement graph.

2.4.2. Android Mobile Application

In addition to the Web application, a mobile Android application has also been devel-
oped. While the Web interface is more suitable for the deep analysis of the data, the Android
interface provides real-time notifications of the predefined alarms (see Figure 12). The An-
droid application visualizes the data measurements in real time as well as displays present the
weather observations and weather forecasts obtained from the weather service weatherbit.io.

Figure 12. The Winet mobile application.

3. Results

In this section, the results obtained for the primary and secondary alarms for the
three locations during the 2020 season are provided and discussed. The first two locations,
Rimski Šančevi (RS) and Vršački Vinogradi (VV), are in Serbia. The third location is in
Trient (T), Switzerland. The results for the primary infection warning alarms for all three
locations are presented in Figures 13–15, respectively. All the results are provided together
with the meteorological data. The top part of the figures illustrates relative humidity and
precipitation. The leaf wetness and average daily temperatures are displayed in the middle
part of the figures. Data on the wind are also included for the location of Trient. For both RS
and VV locations, the anemometer was missing and the dataset does not have a wind speed
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parameter. iMetos® alarms for primary or secondary infections as well as mechanistic
model 2 [20] alarms for secondary infections are compared with the alarms provided by
the proposed model in the bottom part of the figures. The iMetos® system sends alarms for
light, moderate, and severe infections, while our model and mechanistic model 2 provide
alarms at a single level.

Figure 13. Primary infection alarms for the location ’Rimski Šančevi’.

Figure 14. Primary infection alarms for the location ’Vršački vinogradi’.
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Figure 15. Primary infection alarms for the location ’Trient’.

The results for secondary infection warning alarms for the locations ’Rimski Šančevi’,
’Vršački Vinogradi’, and ’Trient’ are presented in Figures 16–18, respectively. The results
given in the figures are summarized in Table 3.

Figure 16. Secondary infection alarms for the location ’Rimski Šančevi’.
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Figure 17. Secondary infection alarms for the location ’Vršački vinogradi’.

Figure 18. Secondary infection alarms for the location ’Trient’.
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Table 3. Winet vs. iMetos® and mechanistic 2 alarm comparisons.

RS VV T

P S P S P S

W/iMl 4/8 4/8 10/11 14/23 13/13 12/18
W/iMm 2/5 3/4 9/10 13/14 9/9 4/4
W/iMs 2/2 2/2 8/8 12/12 4/4 3/3

W+ 4 3 2 0 5 4

Cl 0.5 0.5 0.91 0.61 1 0.67
Cm 0.4 0.75 0.9 0.93 1 1
Cs 1 1 1 1 1 1

W/M2 - 5/7 - 15/21 - 15/27

W+ - 2 - 1 - 0

CM2 - 0.71 - 0.71 - 0.55

Legend: RS—’Rimski Šančevi’; VV—’Vršački Vinogradi’; T—’Trient’; P—primary infection; S—secondary infec-
tion; W—Winet; iMl—iMetos® light; iMm—iMetos® moderate; iMs—iMetos® severe; W+—additional Winet
alarms; Cl/Cm/Cs—correlation of W and iMl/iMm/iMs; M2—mechanistic model 2 [20]; CM2—correlation of W
and M2.

4. Discussion

The majority of models used for the downy mildew early warning part of the system
are based on incubation methods. The purpose of incubation methods is to determine the
duration of the incubation period in days (usually between 4 and 15 days). These methods
usually use some common rule for the start of the incubation period (e.g., 3–10 s rule). Most
of the used methods are based on temperature as the only parameter used to forecast the
duration of the incubation period. An overview of these methods is given in the related
work subsection (e.g., [14,34,35]).

The first improvement over the temperature-based incubation methods is the intro-
duction of humidity as a parameter to the model. One such example is the Goidanich index
(GI) [16] which introduced two categories of humidity—low and high. The GI combined
with aerobiological data was recently assessed [36]. Another example of adding humidity
is given in mechanistic model 1 [18] where the duration of primary inoculum season is mea-
sured based on so-called hydro-thermal time. The iMetos® system [13] offers a widespread,
commercial monitoring solution with hourly data sampling [37].

Sporangia development is based on the germination of overwintered oospores in leaf
litter on the ground. Appropriate weather conditions are necessary for germination to
start. Rainfall on current and previous days has the most effect on spore concentration [36].
The most important weather parameter is the total amount of rainfall during the month of
May [28]. In addition, the wind intensity is also important for sporangia dispersion [20].
Although the statistical analyses [36] demonstrated that the wind is not one of the main
parameters influencing infection risk, we strongly believe that this claim needs to be more
thoroughly investigated.

Our Winet model is an equation and algorithm-based model. It includes both primary
and secondary alarms, has hourly monitoring and average daily data, uses air temperature,
humidity, rainfall, leaf wetness (LW), day/night time, and wind speed data from sensors.
As demonstrated in the Related Work section, the majority of available models from the
literature are missing some parameters (e.g., all incubation methods). Mechanistic model 2
(for secondary alarms only and without the wind parameter) and iMetos® system are the
only ones closely related to the Winet model. The cross-comparison of features among
Winet and other models from the literature is presented in Table 4.
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Table 4. Features comparison of different models.

Model P/S h/avg
Data

Air
Temperature

Humidity Rainfall LW Light
(Day/Night)

Wind
Speed

E/A

Miller [14] P avg X - - - - - E
Shatsky [34] P avg X - - - - - E
Mersanin-
Lipitskaya [35] P avg X - - - - - E

Goidanich [16] P avg X X - - - - E
Mechanistic 1 [18] P h/avg X X - - - - E
Mechanistic 2 [20] S h/avg X X X X X - E+A
iMetos® [13] P+S h+avg X X X X X ? E+A
Our model P+S h+avg X X X X X X E+A

Legend: P—primary infection; S—secondary infection; h—hourly data; avg—averaged daily data; LW—leaf
wetness; E—equation based; A—algorithm based.

Primary infection alarm comparisons between Winet and iMetos® [13] from Figures 13–15,
show that Winet fired 4 out of 8, 10 out of 11, and 13 out of 13 iMetos® light alarms for the
RS, VV, and T locations, respectively. These correspond to correlations of 50%, 91%, and 100%,
respectively. Moderate alarms show similar results: 2 out of 5, 9 out of 10, and 9 out of 9 with
corresponding correlations of 40%, 90%, and 100%, respectively. The best results are for severe
alarms: 2 out of 2, 8 out of 8, and, 4 out of 4 showing perfect 100% alignment for all locations.

Secondary infection alarms are compared to iMetos® [13] and mechanistic model 2 [20]
(M2). The analysis of Figures 16–18 shows that Winet fired 4 out of 8, 14 out of 23, and 12 out
of 18 iMetos® light alarms for the RS, VV, and T locations, respectively. These correspond
to correlations of 50%, 61%, and 67%, respectively. Moderate alarms showed similar
results: 3 out of 4, 13 out of 14, and 4 out of 4 with corresponding correlations of 75%, 93%,
and 100%, respectively. The best results were again obtained for severe alarms: 2 out of 2,
12 out of 12, and 3 out of 3 showing perfect 100% alignment for all locations. Comparisons
between Winet and M2 show that Winet fired 5 out of 7, 15 out of 21, and 15 out of 27 M2
alarms for the RS, VV, and T locations, respectively. The corresponding correlations are
71%, 71%, and 55%.

It can be concluded that Winet alarms are highly correlated with iMetos® for all severe
alarms for primary and secondary infections. In the case of iMetos® moderate alarms,
the correlation is also high (>90%) except for the location Rimski Šančevi. The correlation
of Winet and iMetos® light infection alarms are highly correlated for the locations Vršački
Vinogradi and Trient for primary infection alarms, whereas for the secondary infection, it is
between 60% and 70% for both locations. In the case of Rimski Šančevi, both the primary
and the secondary light infection correlations are approximately 50%. From comparisons
with mechanistic model 2 for the secondary infection alarms, it can be concluded that
the correlation is between 55% and 71%. The main limitation to our research is that we
did not have access to any dataset with labeled primary/secondary infections from in
vivo experiments. It could prove the exact effectiveness of the alarms of Winet (and other
models). However, to the best of our knowledge, there is no such open access dataset.

The obtained results demonstrate that our model could be used as a grapevine downy
mildew early warning system for severe and moderate infections. On the other hand,
the light infection alarms do not seem to be sensitive enough in some cases and will be
investigated as part of future work. The occurrences of additional alarms (W+) also need
more thorough investigation.

The main drawback of the proposed system is the cost of implementation. However,
since the maintenance is almost not needed due to energy harvesting, an initial, relatively
high investment would be compensated in the long run.

5. Conclusions

A grapevine downy mildew early warning system for both primary and secondary
infections was presented in this paper. The proposed model was compared to the models
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described in literature, with certain applied modifications (e.g., favorable conditions at
night for disease development) and additions (e.g., wind measurements) considered useful.
The comparison of the results obtained in the proposed Winet early warning system for
three vineyard locations (two in Serbia and one in Switzerland) and in commercially
available iMetos® system indicates high correlation between the alarms (especially with
alarms for moderate and severe infections). Comparisons between Winet and mechanistic
model 2 [20] indicate a solid correlation. The proposed system features the new low-power
NB-IoT communication and modules for energy harvesting based on photovoltaics. The
system is designed to operate battery-free since the solar panel can fully compensate the
daily power consumption. Winet system features both Web and mobile applications for
user interactions, visualization, and alarms. The proposed system can provide a solid
platform to help grape growers make decisions on the disease control strategies in order to
optimize the schedule of the treatments, resulting in positive health, environmental, and
economic effects.

The first step in future work will be to validate the present findings with a large
set of data (including data from a number of years). The proposed model can also be
compared to some “simpler” models (e.g., Miller’s). Then, a larger dataset will be used to
feed an appropriate machine learning algorithm that calculates the risk of disease outbreak.
It would be interesting to experiment with the proposed model in vivo to see whether
any additional alerts, such as the one in Table 3 (W+), that are not provided by iMetos®,
can be valid in the next season. In addition, a more thorough investigation of the wind
factor would be useful. At present, the proposed model can only forecast grapevine downy
mildew. In the future, the Winet system may incorporate other disease models in order
to enable the control of various diseases, not only in viticulture, but also in other areas
of agriculture.
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