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Abstract: Motor rehabilitation exercises require recurrent repetitions to enhance patients’ gestures.
However, these repetitive gestures usually decrease the patients’ motivation and stress them. Virtual
Reality (VR) exer-games (serious games in general) could be an alternative solution to address
the problem. This innovative technology encourages patients to train different gestures with less
effort since they are totally immersed in an easy to play exer-game. Despite this evolution, patients,
with available exer-games, still suffer in performing their gestures correctly without pain. The
developed applications do not consider the patients psychological states when playing an exer-game.
Therefore, we believe that is necessary to develop personalized and adaptive exer-games that take
into consideration the patients’ emotions during rehabilitation exercises. This paper proposed a
VR-PEER adaptive exer-game system based on emotion recognition. The platform contain three main
modules: (1) computing and interpretation module, (2) emotion recognition module, (3) adaptation
module. Furthermore, a virtual reality-based serious game is developed as a case study, that uses
updated facial expression data and provides dynamically the patient’s appropriate game to play
during rehabilitation exercises. An experimental study has been conducted on fifteen subjects who
expressed the usefulness of the proposed system in motor rehabilitation process.

Keywords: 3D Exer- game; deep learning; adaptation; rehabilitation; emotion recognition; facial
emotion recognition (FER); CNN; virtual reality (VR)

1. Introduction

Motor rehabilitation helps people to bring up dysfunctions in various parts of the
body such as the lower or upper limbs [1]. The biggest challenge patients may face during
training is having to repeat the exercises over and over. This may expose them to severe
boredom, and later, affect their performance in exercises and lead to an imbalance in their
treatment program that may be more and more extended. Recently, many researchers have
been interested in exer-games and virtual reality, which they consider a viable solution to
this issue. Exer-games are video games with user interfaces that require active participa-
tion and physical exertion from players. These exer-games are meant to detect the body
movement and provide participants with both enjoyment and exercise. Exergames can be
used to motivate older people to engage in physical activity [2,3]. Moreover, they can be
used as an alternative to exercise because they are widely available, allow for autonomous
practice, and provide control and personalized adjustment possibilities. Exer-games have
been shown to be effective in enhancing motor and cognitive skills, minimizing the risk
of falling [4], and increasing quality of life of old individuals [5], and people living with
chronic diseases [6]. Furthermore, they may be used to enhance flexibility and balance [7],
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and improve cognitive inhibition. These technologies have helped many patients with their
motor rehabilitation programs. Researchers [8,9] have found that VR can improve motiva-
tion and engagement when used in combination with exer-games. The use of exer-games
became indispensable in several clinical cases. Thus, several projects have been developed
and experienced with patients [10–13]. Virtual reality exer-games facilitate the exercises
and give patients an impulse to finish the exercises as a kind of pleasure rather than the
pain and boredom during motor rehabilitation sessions [14]. Despite the great success
of these exer-games, patients’ behavior and responses vary, even if they play the same
exer-game. This was the reason for the appearance of personalized or adaptive exer-games.
It can be used in several fields (health, training, learning . . . ) for their ability to motivate
the user [15]. According to [16], the differences in the physical and gaming capabilities of
the players requires providing a personal experience to achieve the targeted positive results.
In addition, there are many studies that have proved the effectiveness of personalized
and adaptive exer-games by conducting experiments in motor rehabilitation clinics. The
game proposed by [17] was well accepted by the patients, and the results showed that the
adaptive game is stimulating and attractive. In other experiments carried out by [18], it
was noted through that adapting the gameplay parameters improved the physiological
performance of the participants. Patients are sometimes faced with hard games that may
stress them. This forces them to give up the game quickly. To avoid this tedious and hard
situation, adaptive exer-games can be a relevant solution. In general, an adaptive system
refers to automatically fitting any context of use continuously; performances and capacities
have to be guaranteed too. Consequently, an adaptive game becomes a breakthrough
for rehabilitation specialists in clinical situations. This adaptation can be perceived from
various perspectives. However, the biggest challenge facing researchers in this field is how
to adapt it to individual patients. End-users need access to adaptive interfaces to meet
these requirements [19,20]. In this regard, the personalized exer-game addresses this issue.
Several studies in the literature focused on such games, some of them are interested in static
adaptation [21,22], which makes changes only at the beginning of the game, as opposed
to dynamic adaptation, which allows you to adapt the game during the long period of
play [17,22–27]. Even if the adaptation is dynamic, it is according to parameters that do
not really express the situation of the patient such as the score, or other systems that rely
mainly on specialists to intervene in every adaptation process [20,24].

During training, many researchers, including [28–30], have confirmed the existence
of a relationship between the patient’s feelings and performance, as well as the results of
physical therapy. In short-term group psychotherapy, [28] discovered that the experience
and expression of positive emotions was related to positive therapeutic outcomes, whereas
the intense expression of negative emotions was linked to negative outcomes. It was found
in [29] that therapeutic change seemed to be related to the experience of positive emotions,
while the experience of only negative emotions was associated with a bad therapeutic
outcome. The goal of the research conducted by [30] is to look into the direct relationship
between the patients’ performance quality and a positive or negative emotional state that
has been artificially induced. Statistical analysis of the resulting EMG and Accelerometer
signals revealed a significant difference in the quality of each subject’s physical exercise
induced by various emotional triggers. All observer-based emotion recognition tools use
facial expressions as a reliable indicator of positive and negative emotions. Seven basic
emotions are universal to human beings, namely: neutrality, anger, disgust, fear, happiness,
sadness, and surprise [31]. One study [32] proposed a dimensional approach, in which any
emotion is represented in terms of three basic dimensions: valence (positive/pleasurable
or negative/unpleasurable), arousal (engaged or not engaged), and dominance (degree
of control that a person has over their affective states). In this paper, we will base on the
valence dimensions (positive/negative). According to the above model, we will classified
the emotions into three classes: positive (happy), negative (angry, disgust, fear, sad) and
neutral (neutral). As for the feeling of surprise, some of them considered it positive [33,34],
negative [35] or both [36,37]. Therefore, in this paper, we will divide the surprise probability
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into two halves. Thus, we will add half to the positive emotion probability and the other
half to the negative emotion probability.

Facial emotions can be recognized in different ways that are divided in the literature
into two parts: electrical and non-electrical methods [38]. The proposed solution adapts the
exer-game to the patient based on his feeling. If he shows negative emotions, the system
makes changes to reduce the difficulty of the game. On the other hand, if he is happy
(positive emotions) and constructed (i.e., he can easily do it), the system increases the
difficulty. This is exactly what the doctor does; he asks the patient to decrease or increase
the exercise speed.

Computer vision researchers are using this technology to develop approaches for
automatically recognizing emotions from facial expressions, thanks to advancements in
automatic facial expression analysis. Therefore, we proposed a case study that allows us to
know the patient’s emotion using on artificial intelligence method (CNN), by analyzing
facial expressions of the patients.

Thus, our contribution through this work aims at developing the VR-PEER platform in
which we implement facial expression and adaptive exer-games modules. The platform is
divided into three phases: (1) the capturing and interpretation phase, in which we capture
and interpret the contextual information of the patients; (2) analysis phase: in this phase,
we analyze the interpreted information and recognize the emotions of the patient; (3)
adaptation phase: the most important part of our architecture in which we make changes
and adjustments to the exer-game according to the patient’s mood. The difficulty level
of the game varies according to the patient’s facial expression during the exercise. For
example, if we detect that the patient is sad, angry, fear or disgust, the system lowers the
difficulty level of the exer-game, and vice versa if the patient is happy.

The upcoming pages will provide more details about our contribution. Firstly, we
shall enumerate several related work. Secondly, we will present the proposed architecture.
Thirdly, we will represent the study case of VR-PEER architecture. Finally, we will validate
our solution with an experimental setup.

2. Related Work

The idea of introducing gamification into the therapeutic protocol of upper limbs
rehabilitation was created to motivate patients during the rehabilitation programs. There are
numerous studies looking for ways to develop serious games for rehabilitation, including
what our team did, aiming at creating serious games in a virtual reality environment [39].
Several serious games for rehabilitation projects have appeared and showed a wide general
interest in improving and sustaining virtual reality technology [8,40,41]. The core idea of
VR-based rehabilitation is to use sensing devices to capture and quantitatively assess the
movements of patients under treatment in order to track their progress more accurately [42].
Two of the sensing devices that can also be considered as natural user interfaces (NUI)
are the Microsoft Kinect sensor and the Leap Motion Controller [43]. In the same context,
there are several implementations that use, principally, these two types of devices to
control the games and provide feedback to patients. On the other hand, we have two
categories of developed games: non-personalized games and personalized games. In
fact, non-personalized games represent those which could be used for a wide range of
patients without operating changes on the exer-game according to the patients’ states, while
personalized games were conceived to be suitable for each patient’s state changes.

Several works were carried out on non-personalized games. In [44], a Stable-Hand VR
system was developed for hand rehabilitation. It uses a VR device and a leap controller to
manage the hand’s movement. The exer-game focused on pinching gestures, supporting
three tasks: (a) open-hand; (b) pinch position and (c) open-hand. The researchers in [39]
developed fruit-based games and a runner game for rehabilitation of post-stroke upper
limbs using Kinect with Oculus Rift HMD. The researchers in [23] were interested in
cognitive rehabilitation and used only Oculus Go HMD. The mechanics of the game require
memorizing geometric shapes while the player works in two modes, autonomous or
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manual. They defined two levels of difficulty depending on the number of elements to
remember. The exer-game developed in [45] targeted to manage hand disabilities. Five
hand gestures were selected to control a sphere in an environment composed of obstacles
(increase speed, go backwards, jump, and make the sphere bigger or smaller). The goal is
reached when the patient drops the ball in a basket. The system developed used CNN for
hand gesture recognition via EMG signals.

Previous work on serious games has found the need for personalization to deliver
appropriate levels of exercise to individuals and to make the game progressively more
challenging to keep people engaged [46,47], and offer a personalized experience, i.e.,
adapting the game to the learners’ characteristics, situation, and needs.

Consequently, some work was carried out on personalized games. The researchers
in [26] proposed a VR framework for Parkinson’s disease rehabilitation. The proposed
system is designed to capture various movements of the upper limbs, unilateral or bilateral,
and the captured motion is represented one-to-one in the virtual world of the video game.
The difficulty of the game can be monitored remotely by the clinician. One study [22]
investigated the use of free-hand interaction using gesture tracking sensors such as leap
motion to support hand rehabilitation of patients with strokes or trauma. The researchers
in [17] developed a Tetris-like game for motor rehabilitation after stroke. This system
uses the Oculus Rift display device with Razer Hydra Motion Controllers, where patients
perform pronation/supination movements with their hands. The difficulty of the exer-
game changed dynamically according to the score obtained at a given time. The Rehab
Bots game was created in [24]. It is based on the virtual assistant identified by therapists
and contains three main levels that are: (1) a virtual assistance robot that shows patients
how to properly perform the exercises, (2) an intelligent movement notifications module
that analyzes and represents patients in 3D, then, if necessary, adjusts the game to the
appropriate level to achieve the best outcome, and (3) a dynamic correction module that
takes into account both the level of game complexity and the virtual assistant readings
in order to create a series of exercises that are more suited to the patients’ capacities.
Personalized Exer-game Language (PEL) [20] was used to generate exer-games with a focus
on young people [21]. Azure Kinect DK was used to analyze the movement of the entire
body. One study [48] proposed an open-source framework to develop serious games using
client/server architecture to facilitate the connection between different platforms. Two
examples of serious games were played: the classical Gym-Tetris game and a problem-
solving task game. The disadvantage of the last two strategies is that modification needs
the involvement of kinesthetic rehabilitation experts. This means that the system will not
be able to adapt on its own. To offer a personalized serious game for rehabilitation, [49,50]
propose a recommender system, based on interaction analysis and preferences of the user.
A lot of suggestions about serious adaptive games are directed at adults in general, without
caring for young people in particular, as they quickly get bored of rehabilitation exercises.
That is why [21] suggests a serious game adaptation for young people, where they develop
serious games that support plug-and-play metaphors for natural interaction. The author in
this study insists on the need to personalize the rehabilitation process for each individual.
Despite the effort made in personalized exer-games development, the emphasis, however,
is on the game difficulty progress, not on the patient’s states. With personalized games
proposed in the literature, it is difficult to know whether the patient is in good or bad
situation. Thus, patients can present situations of stress, fatigue, or anxiety without the
game detecting this. Here, the exer-game leads to a negative performance. Therefore, we
are interested in studying the emotions of patients in the exer-game. Some studies have
been interested in using this method to adapt serious games for learning. Thus, these
studies did not specifically address motor rehabilitation. For example, in [51], the authors
present a fruit-slicing exer-game to help a hemiparetic person, adaptive serious game in
real-time. It is based on KINECT to recognize facial expressions and adjust the game’s
complexity according to the player’s emotions. The real-time adaptation is executed using
Facial Action Coding System (FACS) as described in [37]. FACS is a method of describing



Electronics 2022, 11, 455 5 of 16

facial movements which are used to find the emotion of the person. Another study [52],
had been carried to predict the players’ emotions. However, he did not use it for adaptation,
but only to assess the learner’s cognitive states during the educational video game, they
used binomial logistic regression method to predict the cognitive-affective states of flow.

The table below presents some previous studies and compares them to the proposed
solution in this paper:

As we mentioned earlier, we aspire to find a way that enables us to develop serious
games for physical rehabilitation, which can be adapted to the patient’s mood dynamically
during exercise on a permanent basis. We notice from Table 1 that there are studies that have
developed serious games for rehabilitation, but they are not adapted to the patient [3,40].
In the same context, if they are adapted they are personalized but not intended for motor
rehabilitation [50], or the adaptation is only at the beginning of the exercise, regardless
of what happens during it [17,19,24]. The previous works may be oriented to kinesthetic
rehabilitation and adapted dynamically to the game’s surroundings, but they do not
take into account the virtual reality aspect [46,49]. There are works, however, that track
the patient’s state while playing, but they are unrelated to virtual reality or kinesthetic
rehabilitation [51,52]. Therefore, the solution we propose will include all these shortcomings.
It is suitable for virtual reality, directed to motor rehabilitation, and depends on the patient’s
emotions dynamically for exer-game adaptation.

Table 1. Comparison between our proposition VR-PEER and few existing methodology.

Reference Year VR Exergame? Exergame for
Rehabilitation?

Personalized Exergame? Real-Time
Patient’s State?Static Dynamic

[22] 2017
√ √ √ √

[3,40] 2017
√ √

[46] 2018
√ √

[51] 2018
√ √

[49] 2019
√ √

[50] 2020
√

[17,24] 2020
√ √ √

[44] 2020
√ √

[52] 2020
√

[19] 2021
√ √

VR-PEER 2021
√ √ √ √

Thus, we propose an approach for a dynamic exer-game depending on patients’ facial
emotions. We can switch from a difficult to an easy level of an exer-game according to the
patients’ face states (e.g., positive or negative). The main contribution of this paper will be
detailed in the next section.

3. VR-PEER Architecture

Proposing an architecture for exer-games is a very challenging task, especially concern-
ing the personalization aspect due to the complexity of virtual reality systems. VR-PEER
(Figure 1) has a highly modular structure in which an adaptive exer-game can be easily
generated. Our architecture is divided into three main phases, namely:

(i) Capturing and Interpretation, (ii) Analysis, and (iii) Adaptation.
Typically, the architecture of a personalized exercise includes observations of the envi-

ronment, analyzing and evaluating the captured data, and finally, selection of adaptations
and their executions.
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3.1. Capturing and Interpretation Phase

This phase forms the basis of our system. In order to be able to intercept context data,
the capture layer presents a collection of sensors. One study [38] proposes a classification of
these sensors to recognize human emotions automatically: (i) electrical sensors such as EEG,
ECG and EMG signals and (ii) non-electrical sensors like Kinent, Web Camera and Occulus.
Basing on this classification in our architecture, each type of sensor must be attached to a
software component allowing access to the intercepted data. This layer contains two parts:
a data provider and a data interpreter. The data provider collects contextual information
from the user’s runtime environment, called “meta information” (e.g., captured patient
photo, patient speech), while the data interpreter uses this information to generate a high-
level representation to describe the context information and make it more exploitable and
easier to manipulate (e.g., ECG signal, photo pixels).

3.2. Analysis Phase

In this paper, we seek to propose a system solution to adapt exer-games according
to the patient’s situation. During the rehabilitation exercises, the patient performs several
exercises for his limbs, which may change his psychological state and his feelings. He can
be in pain, fear, or happiness. We thought of recognizing the patient’s emotions to adapt
to the exer-game he was going to have. Emotion recognition is the process of identifying
human emotions, most typically from facial expressions, human speech, etc. The use of
multiple sources can lead to conflicting situations and contradictory results, which lead to
imprecise or even totally incorrect situations. Therefore, this layer must have some form of
intelligence in order to intercept and resolve these conflicts. To accomplish this process,
we propose the use of one of the artificial intelligence methods such as recurrent neural
networks (RNN) or convolutional neural networks (CNN) (which is the method that we
used in our case study), etc.
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3.3. Adaptation Phase

This is the most important stage. The objective of this phase is to adapt the exer-
game according to the emotion transmitted by the analysis phase. It contains three parts:
(i) Adaptation Engine: responsible for defining the various adaptation mechanisms as well
as the various reactions that the system must perform following a change in the patient’s
emotions. In the field of rehabilitation, several decisions and changes must be made in the
metrics of motor rehabilitation (rehabilitation time, number of repetitions, and the difficulty
of the exercise . . . ). (ii) Motor rehabilitation history: every change will be saved in this
part of the system, with the goal of following the progress of patients, preparing reports,
and finally sending them to the therapists. Indeed, with this part, we can have access to
various data whenever needed. (iii) Exercise or application: this part must be subscribed to
the adaptation engine layer in order to make the appropriate changes in the game, to adapt
to his psychological state of the patient.

Mathematical Description of Adaptation Phase

We will briefly describe the adaptation process in the form of a mathematical equation
that contains a number of inputs. Each input represents the law that is applied during the
adaptation process, provided that it is approved by the therapist so that the development
of the game in terms of difficulty is logical and appropriate for patients during motor
rehabilitation. Each input contains, in its turn, two inputs that are the parameters to be
changed and the patient’s emotions at the moment of the adaptation process.

The program contains three exits: what to do if the patient feels pain (negative emo-
tions), the second, if he does not feel pain (positive emotions), and the third is the exit
condition. It is useful when the exercise must be changed, i.e., the condition will be exe-
cuted if the patient is happy and has completed the exercise. We propose using some other
parameters to decide if the patient has completed the exercisesor not. In our case, we will
take average of the gesture numbers completed in every 30 s. Thus, the adaptation in the
same exercise will be based on the patient’s emotions when the passage relies on another
parameter chosen by the therapist. It should be noted that each exercise has this adaptation
equation (see Equation (1)) that changes the number of inputs and outputs according to it,
and that it is implemented at every moment of the system adaptation to the patient in real
time. In our case, for example, we chose the time range for executing this equation to be
every 10 s. This value can be increased or decreased depending on the exercise, game, or
training period. An example of how to apply this function will be given in the next session.

Adaptation(F1(P1, E1), F2(P2, E2), . . . , Fn(Pn, En)) = (AP1, AP2, . . . , APn) (1)

where, Fn: equation using to change the parameter to get an adaptive exer-game; Pn:
adaptation parameter; En: patient’s emotion in the moment of adaptation; APn: the value
of the parameter after the adaptation process.

4. VR-PEER Case Study

In interpersonal communication, facial expressions (FE) are one of the most important
information conduits. We can indicate (and recognize) a variety of emotions through our
facial expressions. We have applied the VR-PEER architecture presented in the previous
section, in which we chose the device used in the capturing phase and the method for
recognizing emotions based on facial expressions.

4.1. Adaptation Based Facial Emotion Recognition

The architecture consists of three modules, as shown in Figure 2:

• Capturing and analysis module: At this stage, a video of the patient’s face is captured
during the rehabilitation program, in the form of a set of images (frames). Each image
is then analyzed to detect and extract the face that will be used later for recognition.

• Module for Facial Emotion Recognition (FER)
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Figure 2. Applying VR-PEER architecture with facial emotion recognition using web camera.

We focus in this process on recognizing facial emotions of patients using the convolu-
tional neural networks (CNN) and the DeepFace model proposed by [53]; knowing that we
used in our solution its training set.

DeepFace is one of the most popular facial recognition models. It consists of 9 layers.
The first layer consists of an input image with dimensions of 152 × 152 × 3. It is convolved
with 32 filters of size 11 × 11 × 3, resulting in dimensions of 32 × 11 × 11 × 3 × 152 × 152.
The second layer is a pooling operation with filter size 3 × 3 and stride of 2 separately for
each channel. Hence, the dimensions of resulting image will be 14 × 14 × 6. Similarly, the
third layer also involves a convolution operation with 16 filters of size 9 × 9 × 16. The
purpose of these three first layers is to extract texture and edges, followed by three locally
connected layers (L4, L5 and L6). Finally, DeepFace is followed by two fully connected
convolutional layers (F7 and F8). The output of the last fully connected layer is fed to a
K-way softmax (where K is the number of classes), which produces a distribution over
the class labels. In our case, the final layer will be a softmax output layer with ‘7′ possible
classes. Moreover, we will look at these seven emotions that can be classified into three
classes, called 1) “positive emotion” that includes happy emotions (Equation (1)), “negative
emotion” that includes (angry, sad, surprised, Disgusted, and Afraid) emotions described
in (Equation (2)), and “neutral emotion”.

P(positive) = P(happy) + P(surprised)/2 (2)

We have, negative = angry ∪ sad ∪ surprised ∪ disgust ∪ afraid, so the equation will be:

P(negative) = P(sad) + P(angry) + P(disgust) + P(surprised)/2 + P(Afraid) (3)

During training, the web cam captures facial expressions and calculates P (nega-
tive), P (positive), P (normal) in each frame, and the adaptation is done every Time = T,
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we must therefore calculate the average emotion (positive, negative, neutral) at each T.
(see Equations (3)).

Average = (
i=n

∑
i=1

Pi(Emotion))/n (4)

where, Average = {APos, ANeg, ANeu}, Emotion = {positive, negative, normal},
N: Number of frames in T.
Thus, the result of process will be, Max(APos, ANeg, ANeu).

• Real-time-adaptation module:

This part receives the patient’s mood. There are three possibilities for these outcomes
that are either positive, neutral, or negative emotions. Real-time adaptation module
depends on this result to change the game to be suitable and adapted to the patient’s
emotion; it becomes more difficult if the patient is in a good condition, and the difficulty
decreases if the patient feels physical pain. However, if the patient is in a normal condition,
the game is kept as it is. Based on the result of the previous process to adapt the 3D exer-
game automatically, the patient does not need to change the parameters of the exergame
manually. Our system will be intelligent, as it will pay attention to every change that will
occur in the patient’s face emotion in real time. The adaptation process will be executed
with every change in the patient’s emotion.

4.2. Experimental Setup

In order to evaluate the system that we previously suggested, we developed a simple
3D exer-game for the rehabilitation of the upper limbs. We, first, determine the patient’s
mood based on the detection of facial emotions (positive, negative, or neutral), and then
increase or decrease the game difficulty.

4.2.1. Logical Architecture of Our Serious Game

A serious game was developed using Unity 3D (Figure 3). The exer-game is developed
based on the architecture proposed in advance. We have used a web camera as a sensor
whose role is to track the patient’s face. The video will be used by Unity to detect real-time
patient emotions based on the combination of the Mood Me [54] asset and the DeepFace
framework [53]. Deepface is a framework to be used in Python, and Mood me can be
used in Unity. We have extracted the neural network (weight model) from DeepFace, and
then, included the model in the Mood Me asset. We based our system on this asset to
preprocess the real-time photos of the patient, and to detect his face during training using
the Barracuda package [55]. Then, Mood Me used the DeepFace model to predict the
real-time users’ emotions. The emotion result will be the entry of the adaptation equation
to decide which actions will be executed in the game.

Our game, developed as a 3D application for rehabilitation, is based on 3D interaction
(I3D) using the Leap Motion Controller [56]. In this work, the virtual headset is not planned.
The idea is to have an easy-to-use application in hospitals and reeducation centers. Thus,
to avoid cognitive overload, we used a large screen and a leap motion to create a virtual
environment with semi-immersion, and ensure the 3D interaction of the patient.

In this game, we considered only one gesture. The table below represents the descrip-
tion of the gestures and adaptation parameter (Figure 1). The gamer will extend the arm
completely and move it from top to bottom and similarity from bottom to top, to drop the
apple into the floor. One apple will appear every Timeintervalle.
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As mentioned earlier, the patient in this game tries to extend his arm to drop the
apples to the ground (see Figure 4). We derived from the equation previously cited in the
adaptation process another adaptation equation with predefined parameter Timeinterval and
function (see Equation (6)), containing one entry and one exit (see Equation (5)). Timeinterval
changed by the adaptation’s law (Equation (6)).

Adaptation(F(Timeinterval)) = Time′interval (5)

F(Timeinterval) =


Time_interval = 5

Timeinterval − 1 if emotion = positive
Timeinterval + 1 if emotion = negative

Timeinterval = 15 if Timeinterval > 15
Timeinterval = 3 if Timeinterval < 3

 (6)
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Figure 4. Adaptive serious game developed based on VR-PEER architecture. (a): participant’s
interface, (b): interface used to test the facial emotion recognition.

Our purpose is to make the patient feel that the game is designed for them because it
adapts to their facial emotions, whether they feels pain caused by pressure on their limbs
and wants exercises to be easier, or is willing to do more difficult exercises.
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4.2.2. Tests and Evaluation

We carried out two types of tests to prove the efficiency and performance of our
system. The first is to prove the efficacy of the first part of the Facial Emotion Recognition
process, while the second is for testing the adaptation process. This first phase of our
system evaluation is done to evaluate the performance and robustness of the adaptation
system by taking into account facial emotions. We, therefore, seek to answer the following
question: is the adaptation robust or not. Thus, the goal of this evaluation is to know if
the adaptation is done independently of the patients. We used a laptop with the following
characteristics: I7–9th generation processor, with a GeForce NVidia graphics card, a Web
Camera integrated into the pc, and a leap motion controller.

• Emotion test

We made a 10-min test. Facial emotion recognition (FER) using the DeepFace method is
done in each frame since there are 24 frames in every second, i.e., the number of emotional
recognitions during this period will be 14,400. The adaptation will be executed every
10 s. As a result, we will calculate the average of the positive, negative, and neutral
emotions (results represented in Figure 5). We will obtain 60 values calculated with the
equation below:

Average = (
i=240

∑
i=1

Pi(Emotion))/240 (7)Electronics 2022, 10, x FOR PEER REVIEW 13 of 19 
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Figure 5. Emotion-state progression values for case study subject.

During testing, we found that the system succeeded in recognizing the predominant
user emotions every 10 s, and 57 out of 60 tests were correct. From the three faulty
tests, which were represented by the confusion between happy and neutral emotions, we
conclude that our system is effective in most cases, except a few ones, which is logical as it
is difficult to know whether a person is happy or normal.

• Adaptation test

Our system is divided into two parts: a part to determine the patient’s emotion and a
part to adapt the game according to his facial expressions. In the first, we used a method
that was proven in the previous study, meaning that there is no need to re-test it. As for the
second part, in this table, we tested the response of the adaptation process to the part of the
emotion process.
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We have tested the adaptation process on a group of 15 subjects who have tried the
game (6 men and 9 women ranging from 21 to 60 years old). Overall, 70% of them have
never used VR serious games and 15% are not used to VR games but tried them before; the
rest are used to such games. The duration of each test is 5 min. Subjects change their facial
expressions during exercises randomly.

The adaptation process is executed every 10 s; thus, the number of adaptations (points
check) during the test is 30. Every 10 s, the game will be adapted according to the subject
emotion (positive, negative, or neutral). We have to save every 10 s each subject’s emotion,
the tested adaptation parameter, and theoretical adaptation parameter (see Table 2).

Table 2. Example of the data saved for each subject during the training.

Emotion Time Interval Tested Theoretical Time
Interval

True or False
Adaptation?

Neutral 5 5 True

Positive 4 4 True

Positive 3 3 True

positive 3 3 True

Negative 4 4 True

Positive 3 3 True

Neutral 3 3 True

Neutral 3 3 True

Positive 3 3 True

Negative 4 4 True

Negative 5 5 True

Negative 6 6 True

Neural 6 6 True

Neural 6 6 True

Neural 6 6 True

Positive 5 5 True

Negative 6 6 True

Negative 7 7 True

Positive 6 6 True

Positive 5 5 True

Negative 6 6 True

Negative 7 7 True

Neural 7 7 True

Neural 7 7 True

Neural 7 7 True

Positive 6 6 True

Negative 7 7 True

Negative 8 8 True

Positive 7 7 True

Positive 6 6 True

True results:30 False results: 0
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In the chart below (Figure 6), we have changed the Timeinterval value when applying
the adaptation system (tested and theoretical) and when not applying it too.
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We note that the time interval changes dynamically after each execution of the adapta-
tion process, while it remains constant if it is not applied. We also note that the values we
obtain in the test are the same as those calculated manually. Thus, we conclude that the
function we used for adaptation is applied correctly in the game.

As we said, the information mentioned in the Table 3 below will be included for each
experimenter in our system. Based on the information from the 15 subjects, we will create a
comprehensive table, which will contain the sum of successful adjustments as well as the
accuracy which is calculated in the following way:

accuracy =
correct adaptations
total adaptations

× 100 (8)

Table 3. Experimenter about system.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Correct Adaptaion 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

The table shows that all the adjustments we made to each person given by the system
exactly match what was calculated manually. The average number of adaptation operations
for each person is 30, and the total number is 450. From these results, we conclude that the
percentage of its total effectiveness is 100.

To find the performance of the proposed system, we will calculate its accuracy. Our
system is divided into two parts: (1) Emotion recognition process (ERP) using DeepFace
Framework. It will be applied at every check point (10 s). We found in the first test
57 correct results out of 60 tests. (2) Adaptation process (AP), which means that the overall
system’s accuracy will be the average of the adaptation process accuracy and the DeepFace
accuracy Framework, which represented 97.35% [16], as well as real-time facial emotion
recognition (Rt-FER).

Accuracy =
FER accuracy + FerRT accuracy + AP accuracy

3
(9)
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Accuracy =
97.35 + 100 + 95

3
= 97.45% (10)

The accuracy comes out to 97.45%. This means that our solution is doing a great job in
adapting the exer-game according to the patient’s emotions.

5. Conclusions

Developing a personalized exer-game is a very challenging problem because it re-
quires a heavy effort to enhance the performance measures of motor rehabilitation. This
field of adaptive serious games is gaining attention owing to its applications to motivate
people during training. This paper presented a detailed global architecture based on emo-
tion recognition. It is divided into three main phases: (1) computing and interpretation,
(2) emotion recognition, (3) and adaptation. Furthermore, a case study using facial emotion
recognition and web camera has been presented in this work. Finally, we have presented an
experimental setup in order to validate the proposed solution. We also conducted two types
of tests where we, first, tested the effectiveness of the system to track changes that occur in
the patient and, second, tested 15 people to determine the effectiveness of adaptation based
on facial emotions.

The results were very satisfying as we reached accuracy. This system is not suitable
for the use of a virtual reality headset. It requires other techniques for emotion recognition
(ECG signal, EMG signal, speech, body movement, etc.). Our system has not been tested
in rehabilitation centers. These shortcomings provide opportunities for future work to
evaluate the therapeutic side of the system by testing our application in real situations,
introducing other methods of adaptation, and comparing them with the method presented
in this paper. We plan to use other devices such as the VR headset, and other techniques for
emotion recognition such as body movements, electrical body signals, and the history of
the gestures made by the patient. Thus, our future work will be an extension of the global
architecture presented in this paper.
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