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Abstract: The deployment of millimeter waves can fulfil the stringent requirements of high bandwidth
and high energy efficiency in fifth generation (5G) networks. Still, millimeter waves communication is
challenging because it requires line of sight (LOS). The heterogeneous network (HetNet) of millimeter
waves and microwaves solves this problem. This paper proposes a millimeter -microwaves hetero-
geneous HetNet deployed in an indoor factory (InF). In InF, the manufacturing and production are
performed inside big and small halls. We consider non standalone dual-mode base stations (DMBS)
working on millimeter waves and microwaves. We analyze the network in terms of throughput and
energy efficiency (EE). We formulate mixed-integer-non-linear-programming (MINLP) to maximize
the throughput and EE of the network. The formulated problem is a complex optimization problem
and hard to solve with exhaustive search. We propose a novel outer approximation algorithm (OAA)
to solve this problem, and the proposed algorithm OAA achieves optimal solution at β = 10−3. At
this β, the average throughput value obtained is approximately 50 Mbps, whereas the value of EE
is 4.4 Mbits/J. We also compare the performance of OAA with the mesh-adaptive-direct-search-
algorithm (NOMAD), and the experimental results verify that OAA outperforms NOMAD in terms
of throughput and EE maximization. We also compare the performance of OAA with particle swarm
optimization (PSO), genetic algorithm (GA), and many others optimization algorithms. Experimental
results verify that OAA outperforms all other algorithms.

Keywords: optimization; resource allocation; millimeter waves; throughput; energy efficiency;
HetNet

1. Introduction

The past few years have shown that millimeter-wave deployment can fulfil the spec-
trum shortage requirement for 5G [1]. The mm-wave has an unlicensed band of 60 GHz [2].
It opens the door for future correspondence utilizing channel transfer speed past 1 GHz [3],
and this is the motivation behind 5G research committees and working groups effectively
contributing huge research endeavors towards utilizing the mm-waves in cellular net-
works [4].

The mm-waves communication requires LOS, and the availability of LOS is one of
the biggest challenges for mm-wave communication. These waves face the challenge
of interference due to attenuation at shorter distances due to shorter ranges. However,
reducing the interference effect due to attenuation at shorter distances improves transmis-
sion quality. An outdoor propagation environment produces rich multi-paths at 28 GHz.
These multi-paths can be utilized to receive signal power, particularly in the case of non-
line of sight (NLOS) [5]. Intelligent antennas with directional beamforming improve the
propagation [6].

The mm-waves have so many advantages such as broad bandwidth, high data rate,
and low latency to fulfil the requirements of future 5G networks, but mm-wave communi-
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cation is highly challenging. The reason behind this is the requirement of the LOS, and to
overcome this challenge in an indoor factory (InF), the mm-wave–µ wave HetNet is used.
To deploy these HetNets, parameters such as throughput, EE, latency, and reliability must
be considered. The greenhouse effect is caused by the emission of carbon dioxides (CO2)
from factories due to energy consumption. An increase in energy consumption increases
the operational expenditure (OPEX) of the network. The other reasons for the rise in energy
consumption are high data rates and dense deployment of base stations. These concerns
have highlighted the need for energy-efficient resource allocation strategies for HetNets,
reducing energy consumption while high-quality service standards are met.

This paper considers the InF scenario with mm-wave–µ wave HetNet. The primary
objective is to increase the throughput and EE of this mm-wave–µ wave HetNet. The use
of µ wave will improve EE and network throughput and be an appropriate solution to
problems such as line of sight in mm-wave communication.

The following is the paper organization: Section 1 describes the introduction. Section 2
explains the work associated with the paper and its contributions. In Section 3, a system
model is defined with problem solving and algorithm description. Section 4 illustrates the
experimental results. Finally, Section 5 summarizes the entire work in the conclusion.

2. Related Work

Ansari et al. illustrated a scheme based on control database separation architecture
(CDSA) which comprised a control base station (CBS) overlaying on database base station
(DBS) [7]. They formulated an optimization problem having multiple objectives to improve
energy and spectral efficiency. In Reference [8], the writers demonstrated the use of a
recurrent neural network (RNN) and support vector machine (SVM) for resource allocation.
In Reference [9], the authors assigned power in HetNets by using a convolutional neural
network (CNN) which demands 6.76% of central processing unit (CPU) runtime. Similarly,
the authors in [10], used CNN for the security analysis of the Internet-of-Things (IoT)
enabled network and achieved 20% gain in precision. Chergui et al. proposed SVM based
framework for semi-blind decoupling of uplink and downlink in sub-6 GHz band [11].
This method achieved an accuracy of 95%.

In Reference [12], the authors used Q-learning to minimize latency in mm-wave–µ
waves HetNets. However, their model is limited to overhead beam preparation, which
enhances the risk of failure. The writers of [13] suggested traditional infrastructure and
medium access control (MAC) layer convergence for ultra-reliability and low latency of
HetNet. However, this system fails to perform well in MIMO situations. In Reference [14],
the authors propose a framework to enhance the throughput in the mm-wave commu-
nication network. This framework is based on game theory and is valid for short-range
communication only. In Reference [15], the authors used extreme gradient boosting (XG-
Boost) to improve the handovers success rate in HetNets. This technique had the drawback
of service degradation during handovers. In Reference [16], Okamoto et al. proposed an
online learning-based adaptive regularization of weight vectors (AROW) algorithm to find
the throughput of HetNets. This scheme was only applicable to networks with throughput
limited to 1 Gbit/s.

In Reference [17], game theory maximized data rate and energy utilization in HetNets.
The network did not work well beyond a certain specified distance outside the same radius;
the interference signal plus the noise ratio (SINR) decreased, which reduced efficiency.
In Reference [18], a joint resource allocation algorithm (JRAA) and a greedy algorithm
were put forward to maximize data rate in HetNets. The suggested framework utilized
E-band and V-band, and the LTE band for resource allocation. In Reference [19], SVM
based user allocation algorithm and alternating direction method of multipliers (ADMM)
were recommended to make HetNets ultra-reliable with low latency. Both these algorithms
were low complexity phase heuristic solutions. The network efficiency decayed with a
sudden increase in the number of users. In Reference [20], exhaustive search and greedy
zero-forcing dirty paper algorithms were utilized to maximize throughput in HetNets.
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However, this technique was only applicable to the selection of multi-users in MMIMO
orthogonal frequency division multiple access (OFDMA) networks. An efficient method to
improve the EE of mm-wave–µ wave HetNet is proposed [21]. In this method, constraints
such as interruption, power, and network rate are considered. The problem was solved by
using the matching game approach.

Likewise, an algorithm was demonstrated in [22] to create mm-wave–µ wave HetNet
more effectively when considering power limitations, interruption, and LOS. However, this
method was better suited to massive MIMO. Similarly, in Reference [23], the DBMBOLA al-
gorithm was proposed to maximize the EE in mm-wave–µ wave HetNet. The shortcomings
of QoS were considered in this strategy. In Reference [24], the energy-efficient power alloca-
tion (EEPA) algorithm was proposed for EE in an mm-wave network. This algorithm was
based on enhanced non-orthogonal multiple access (E-NOMA). The major drawback of this
algorithm was that it did not apply to HetNets. In Reference [25], the authors enhanced the
performance of HetNets considering the restrictions of path loss, power use, and LOS. The
suggested algorithm is applied to the dense implementation of the mm-wave self-backhauls
network. The authors in [26] demonstrated a signal-to-interference ratio-based algorithm
to optimize throughput in an mm-wave network termed heuristic interference mitigation
(HIM) algorithm. Similarly, in Reference [27], a heuristic algorithm (HUA) was proposed
to increase the coverage and capacity of mm-wave–µ wave HetNet. QoS constraints were
considered in this scheme, but mm-wave propagation problems such as path loss, rain
fading, and LOS were ignored. Furthermore, the advantage of using a bag of features (BoF)
to train classifiers such as SVM is illustrated in [28].

Mesodiakaki et al. in Reference [29] proposed the heuristic algorithm to maximize
the EE and spectral efficiency of the mm-wave small cell network. However, the authors
only focused on the small cell. Similarly, in Reference [30], the authors proposed a low
complexity algorithm for the resource allocation in 5G HetNets. The proposed algorithm
achieved optimal performance for the 3GPP scenarios. However, no existing studies have
considered an InF scenario in which several robots, machines, and humans communicate
with each other inside a small or big hall. Table 1 shows the existing mm-wave resource
allocation techniques.

After analyzing Table 1, we conclude that there is little work on millimeter-wave–µ
wave HetNets in the literature. Still, the authors have not proposed an optimal solution that
jointly maximizes EE and network throughput in the InF scenario. In InF, the deployment of
HetNets is quite challenging, as several robots and machines are communicating with each
other simultaneously. We formulate an MINLP problem and propose a novel algorithm to
optimize throughput and EE. We have used a plethora of algorithms such as firefly algo-
rithm (FA) [31], cuckoo search (CS) [32], PSO [33], artificial bee colony (ABC) [34], teaching
learning-based optimization (TLBO) [35], social group optimization (SGO) [36], basic open-
source non-linear mixed integer programming (BOMIN) [37], genetic algorithm (GA) [38],
and exhaustive search (ES) to compare and validate the results of the proposed algorithm.

Contribution

Analyzing the literature, we conclude that no maximization method considers the
joint optimization of EE and throughput using mm-wave–µ wave HetNets in InF scenario.
Our main contributions are summarized below:

1. A mathematical formulation of a model for throughput and EE maximization.
2. A solution to the formulated problem using OAA.
3. Extensive evaluation of results for validation of our method.
4. Comparison of the proposed algorithm with existing state-of-the-art algorithms.
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Table 1. Summary of the existing mm-wave resource allocation techniques.

Ref.
No.

Het
Nets

mm-
Waves InF Objective Constraints Sample Approach Limitations

[11]
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3. System Model and Problem Formulation
3.1. Scenario of Indoor Factory

This article considers an InF scenario, as illustrated in Figure 1. All the base stations
deployed in the design are dual mode. When there is LOS, these base stations work on
millimeter waves. However, when there is NLOS, these base stations shift to µ waves.
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Figure 1. Smart factory scenario.

3.2. Indoor Factory (InF)

An InF is a smart factory based on the industrial internet of things (IIoT 4.0). The
factory considered in this article has two types of halls in it. One type is a big hall, while
the other is a small hall. The details about area and base station deployment in both arenas
are described in Table 2:

Table 2. Abbreviations used for indoor factory scenario.

Abbreviation Description

InF Indoor factory

InF-SL Indoor factory with sparse clutter and low base station height

InF-SH Indoor factory with sparse clutter and high base station height

InF-DL Indoor factory with dense clutter and low base station height

InF-DH Indoor factory with dense clutter and high base station height

DMBS Dual mode base station

UE User

3.2.1. Big Hall of Indoor Factory

According to 3GPP Release 16 [39], the total area inhabited by one big hall of InF is
300 by 150 m2. Each big gallery contains eighteen base stations. All the base stations are
50 m apart, and their height is 1.5 m and 8 m for InF-DL and InF-SH, respectively. The
distribution of DMBS in the hall is illustrated in Figure 2.

3.2.2. Small Hall of Indoor Factory

According to 3GPP Release 16 [39], the total area inhabited by one small hall of InF is
120 by 60 m2. Each big gallery contains eighteen base stations. All the base stations are 50 m
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apart, and their height is 1.5 m and 8 m for InF-DL and InF-SH. The deployment of DMBS
within the hall is illustrated in Figure 2. The height of the rooms having DMBS varies from
five meters to ten meters. 3GPP Release 16 provides assessment factors for the InF.
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3.2.3. LOS and NLOS Path Loss

Equation (2) calculates the path loss of LOS, while path loss of NLOS in InF-SL,
InF-DL, InF-SH, and InF-DH can be calculated by using Equations (4), (6), (8), and (10),
respectively [39]. In these equations, d3D is the distance between user (UE) and DMBS, and
Equation (1) calculates d3D, fc is the central frequency normalized by 1 GHz [40].

d3D =

√
(d2D)

2 + (hBS − hUT)
2, (1)

PLLOS = 31.84 + 21.50 log10(d3D) + 19.00 log10( fc) (2)

InF-SL : PL = 33.00 + 25.50 log10(d3D) + 20.00 log10( fc) (3)

PLNLOS = max(PL, PLLOS) (4)

InF-DL : PL = 18.60 + 35.70 log10(d3D) + 20.00 log10( fc) (5)

PLNLOS = max(PL, PLLOS, PLInF-SL) (6)

InF-SH : PL = 32.40 + 23.00 log10(d3D) + 20.00 log10( fc) (7)

PLNLOS = max(PL, PLLOS) (8)

InF-DH : PL = 33.63 + 21.90 log10(d3D) + 20.00 log10( fc) (9)

PLNLOS = max(PL, PLLOS) (10)

3.2.4. Mathematical Model

In this article, an mm-waves–µ waves HetNet is considered. This network has M links
between UEs and DMBS. The time slot is shown in Figure 3. This time has two portions,
including one for the alignment and the second for the data transmission.

3.2.5. Overhead of Alignment

Let Tp represents the pilot transmission time. The sector-level beamwidth for transmit-
ter and receiver is represented by ψt

i and ψr
i , respectively, whereas beam-level beamwidth
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for transmission and reception is denoted by ϕt
i and ϕr

i , respectively. Consequently, the
overall duration for the alignment in a sector is given by Equation (11).

τi
(

ϕt
i , ϕr

i
)
=

⌈
ψt

i
ϕt

i

⌉⌈
ψt

i
ϕt

i

⌉
TP (11)

where d.e denotes ceiling function. This function returns the smallest integer. The connec-
tion between transmitter and receiver is formed when the optimal directions are calculated
after this data transmission begins. After the alignment process, any pair of DMBS and
UE starts data communication. We derive continuous approximation τi by dumping the
noncontinuous ceiling function. The latter cannot exceed the overall time T and can be
excluded from the lower limit on possible bandwidth (12).

ϕt
i ϕr

i ≥
TP
T

ψt
i ψ

r
i (12)

Even though alignment happens within beamwidths at the sector level, we have
ϕt

i ≤ ψt
i and ϕr

i ≤ ψr
i . The transmission between DMBS and UEs is shown in Figure 4.
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3.2.6. The Effective Rate of Transmission

Let the channel gain be denoted by gc(i,j) for DBMSi and UEj. Table 3 gives the
summary of symbols used in a mathematical model. The transmitter and corresponding
receiver gain can be determined by Equations (13) and (14) respectively.

gt
i,j

(
θt

i,j, ϕt
i

)
=


2π−(2π−ϕt

i)z
ϕt

i
, i f

∣∣∣θt
i,j

∣∣∣ ≤ ϕt
i

2

z, otherwise
(13)

gr
i,j

(
θr

i,j, ϕr
i

)
=

{
2π−(2π−ϕr

i )z
ϕr

i
, i f

∣∣∣θr
i,j

∣∣∣ ≤ ϕr
i

2

z, otherwise
(14)
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Table 3. Description of symbols.

Symbol Description Symbol Description

ϕt Beam level beamwidth of
a transmitter ϕr Beam level beamwidth of

the receiver

ψt Sector beamwidth of a
transmitter ψr Sector level beamwidth

of the receiver

TP Pilot transmission time T Total transmission time

τ Alignment time gt Gain of transmitter

gr Gain of receiver gc Channel gain

pi
Power of the ith base

station E f Error frame

di Data rate of the ith link N Noise

θt Transmission angle θr Reception angle

E Energy r Network rate

M Maximum number of
links - -

In Equations (13) and (14), z is 0 < z � 1. Considering transmission and reception
gain, SINR can be evaluated by Equation (15).

SINRi =
pigt

i,ig
c
i,ig

r
i,i

∑M
k=1, k 6=i pigt

k,ig
c
k,ig

r
k,i + n

(15)

Then the network rate can be evaluated by (16) by using (15).

Ri =
(

1− τi
T

)
log2(1 + SINRi) (16)

Here, Ri signifies the ith link rate in the network, T represents the total transmission
time, τi represents the time needed for the orientation of the ith link, while SINRi signifies
the signal to noise and interference ratio of the corresponding ith link.

3.2.7. The Energy Efficiency (EE) of Network

The ith link EE is determined by Equation (17) [41].

EEi =
di
pi

(17)

In Equation (17), Ei represents energy. di shows data rate of the ith link, and pi denotes
the power of the ith DBMS.

3.3. Objectives and Constraints
3.3.1. Objectives

The aim of our study is to increase the throughput as well as EE of the HetNet deployed
in the InF.

3.3.2. First Objective

This objective is related to the maximum throughput in mm-waves–µ wave HetNets.
This is mathematically described using Equation (18).

max
ϕt ,ϕr ,p,r

F1 =
M

∑
i=1

Ri (18)
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s.t. ϕt
i ≤ ψt

i , 1 ≤ i ≤ M (18a)

ϕr
i ≤ ψr

i , 1 ≤ i ≤ M (18b)

0 ≤ pi ≤ pmax, 1 ≤ i ≤ M (18c)

ri ≥ rmax, 1 ≤ i ≤ M (18d)

SINRi ≥ SINRmax, 1 ≤ i ≤ M (18e)

ϕt
i ϕr

i ≥
TP
T ψt

i ψ
r
i , 1 ≤ i ≤ M (18f)

3.3.3. Second Objective

The corresponding second objective of this work is to maximize EE in mm-waves–µ
wave HetNets. This is mathematically described in Equation (19).

max
ϕt ,ϕr ,p,r

F2 =
M

∑
i=1

EEi (19)

s.t. ϕt
i ≤ ψt

i , 1 ≤ i ≤ M (19a)

ϕr
i ≤ ψr

i , 1 ≤ i ≤ M (19b)

0 ≤ pi ≤ pmax, 1 ≤ i ≤ M (19c)

ri ≥ rmax, 1 ≤ i ≤ M (19d)

SINRi ≥ SINRmax, 1 ≤ i ≤ M (19e)

ϕt
i ϕr

i ≥
TP
T ψt

i ψ
r
i , 1 ≤ i ≤ M (19f)

3.3.4. Constraints

1. According to Equations (18a) and (19a), for any ith transmitter, the sector level
beamwidth must be greater than or equal to the beam level beamwidth.

2. According to Equations (18b) and (19b), for any ith receiver, the sector level beamwidth
must be greater than or equal to the beam level beamwidth.

3. According to Equations (18c) and (19c), the maximum power level is always more
significant than the power of any ith link.

4. According to the fourth constraints Equations (18d) and (19d), the rate of the ith
link should be greater than the minimum rate for communication for successful
communication.

5. According to the fifth constraint Equations (18e) and (19e), the SINR of the ith link
should be higher than or equal to the minimum level of SINR.

6. The last constraint Equations (18f) and (19f) rationalize the corresponding lower
bounds on the accessible bandwidth.

4. Proposed Algorithm

The performance analysis of throughput and EE in mm-wave–µ wave HetNet using
OAA and heuristic algorithms is carried out in this section. At first, the algorithm is de-
scribed, then modeled mathematically using (18) and (19), and correspondingly optimized
utilizing OAA.

4.1. Outer Approximation Algorithm (OAA)

The problems in (18) and (19) are MINLP. These problems are very hard to solve due
to their complexity, and exhaustive search achieves optimal solutions to these problems.
However, it becomes complex when M increases. Therefore, we suggest an outer approxi-
mation algorithm (OAA) to resolve this problem. Figure 5 shows the flowchart of the OAA
algorithm. Algorithm 1 explains the pseudo-code of OAA.
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Algorithm 1: Outer Approximation Algorithm

m← 1
Intialize γ

β← 10−3

Convergence← FALSE
while Convergence == FALSE do∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

αm ←
{

min
α
− f (γ, α)

s.t. ψ(γ, α) ≤ 0;
Upper Bound ← f (γm, α∗)

(γ∗, α∗, σ∗) ←



min
γ,σ,α

σ

subject to
σ ≥ −δ(γm, αm)

−∇ f (γm, αm)

(
α− αm

0

)
ψC1−C6

(
γm, αM)

−∇ψC1−C6 (γ
m, αm)

(
α− αm

0

)
≤ 0

Lower Bound← σ

i f Upper Bound− Lower Bound ≤ β then
|Convergence← TRUE

end
else∣∣∣∣ m ← m + 1

γk ← γ∗

end
End

Explanation of the Algorithm

Let f be the corresponding objective, ψC1−C6 signify constraints from C1 to C6 in
Equations (18) and (19), α = {PDBMS using mm Waves, PDBMS using Waves} and γ = x ∪ α. (19) fulfil
the following propositions.

1. The objective function f and ψC1−C6 are convex in α for a specified value of γ because
α is nonempty, convex, and compact.

2. Continuous differentiation of objective function f and ψC1−C6 must be possible.
3. By fixing the value of γ, the solution of every non-linear continuous sub-problem

qualifies the constraints.
4. After solving γ, the appropriate solution NLP problem is obtained.

These assumptions convert Equations (18) and (19) into unique problems. OAA
provides the solution to these master problems. The separation of objective function f
and the constrained constraints of convex directs to external measurements. The OAA
utilizes high limits and low-frequency sequences to fulfil proposals, as indicated above,
for corresponding mixed problems. OAA achieves optimal value when β converges. A
problem that does not match the line has a higher sequence. The main problem can be
written as {

min
α
− f (γ, α)

s.t. ψ(γ, α) ≤ 0;
(20)

The solution to (20) is αm, and it is used for the master problem. The upper bounds can
be obtained from the primary concern, while the lower bounds can be achieved by solving
the master problem. The first solution α is used to drive the master problem. The solution
to the master problem presents a new set of variables γm+1. As the iteration progresses, the
upper and lower limits come together. The algorithm terminates when both boundaries are



Electronics 2022, 11, 474 12 of 21

close such that their difference is less than β. The master problem can be extracted in two
steps. Initially, an issue that has been created in a total space γ is labelled as:{

min
γ

min
α
− f (γm, α)

s.t. ψ(γm, α) ≤ 0;
(21)

The above problem is expressed as

min
γ
− θ(γ) (22)

here {
θ(γ) = min

α
− f (γm, α)

s.t. ψ(γm, α) ≤ 0;
(23)

The projection of the problem in (18) and (19) using discrete variable γ is expressed
as a problem (22). The outer approximation can be made by applying linearization in the
second step. Therefore, the solution to the projection problem is:

min
γ

min
α
− f (αm, γm)−∇ f (αm, γm)

(
α− αm

γ− γm

)
s.t.− ψ(αm, γm)−∇ψ(αm, γm)

(
α− αm

γ− γm

) (24)

With the introduction of new variables, the optimization problem can be expressed as:

minimum
γ,α,σ

σ

s.t. :


σ ≥ − f (αm, γm)−∇ f (αm, γm)

(
α− αm

γ− γm

)
−ψ(αm, γm)−∇ψ(αm, γm)

(
α− αm

γ− γm

)
≤ 0

(25)

The above master problem provides lower bounds. The projection of the issues in
(18) and (19) is the problem formulated in (25). The problem is a linear mixed-integer
programming problem (MILP), and the iterative method solves it. The following section
explains the results obtained by the simulation of the proposed algorithm.

5. Results and Experiments

The system model is simulated in MATLAB 2021Ra using the OPTI toolbox. The
experimental results obtained from the simulations are shown in this section, and the
outcomes also explain the usefulness and the convergence of the corresponding algorithm.
The experimental results of the proposed algorithm are also compared with the state-of-
the-art algorithms. The performance analysis of the network is calculated in terms of
throughput, EE, link rate, and channel efficiency.

Simulation Parameters

The values of the different parameters employed to simulate the system model are
demonstrated in Table 4. The simulation parameters of the other algorithms are illustrated
in Appendix A Table A1.



Electronics 2022, 11, 474 13 of 21

Table 4. Simulation parameters of each base station.

Parameter Value

DBMS power, p 25 Watts
Minimum users 2
Maximum users 50

UE increment 2
TP 20 µ seconds
T 65,535 µ seconds

We have used two algorithms, namely OAA and NOMAD [38], to increase the through-
put and corresponding EE. Figure 6 demonstrates the throughput using OAA. Additionally,
it reveals that it increases with the corresponding number of UEs. Likewise, Figure 7 shows
the EE using the OAA. It indicates that the output converges as UEs rise. By increasing
the UEs, average EE increases. When the number of users is 18, the average EE of the
network is 4.5 Mbits/J; it remains approximately 4.5 Mbits/J until the number of users
reaches 46. After 46 users, the interference dominates, and the EE decreases. This is due to
the congestion of the UEs in the hall, as for the successful operation the hall should have
less than 60% density according to 3GPP InF scenario.

Figure 8 shows the distribution of users on mm-waves and µ waves when the OAA
algorithm is applied. Initially, when the total number of users is two, then one user is on
mm-waves while the other is on µ waves. With the increment in users, the distribution does
not remain symmetrical; µ waves users become more significant, such as when the number
of users is 34, and mm-waves users are 20 while µ waves users are 14. The procedure
for selecting a particular mode depends on several factors. For the selection of mm-wave
mode, the sparse density should be less than 40%, and there should be enough possibility
to have LOS for a more significant duration while the sparse density is greater than 40% for
microwave mode.

We have also calculated the variations in the link rates by changing SINR. Figure 9
shows the plot between SINR in decibels (dB) and link rate (Mbps) and the link rate of
mm-wave link is better than µ wave link. When SINR is 40 dB, the link rate of mm-wave
link approaches 60 Mbps while the link rate of µ wave link approaches 42 Mbps which is
relatively low compared to mm-wave link.
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We have evaluated the performance of the proposed algorithm in the case of LOS,
NLOS and HetNet scenarios. Figure 10 illustrates the relationship between the average
throughput of the network and the number of users for the LOS, NLOS, and HetNet
scenarios. From the plot, the optimal performance from the proposed HetNet scheme using
the OAA algorithm.
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Similarly, we have calculated the relationship between energy efficiency and the
number of users for the LOS, NLOS, and HetNets scenario using the OAA algorithm.
Figure 11 shows the plot of energy efficiency against the number of users for all three
designs. When there is LOS, the communication is very smooth and maximum throughput
is achieved using mm-wave. However, when there is NLOS, and microwaves are used then
the performance of the network is relatively worse than the proposed HetNet which shows
optimal performance and works in both LOS and NLOS scenarios.
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We also compare the performance of the proposed algorithm OAA and other existing
algorithms regarding EE and throughput of the network. Figure 12 illustrates the average
EE of the system when all the algorithms are applied. The plot curves show that all other
algorithms converge slowly, and the maximum average EE achieved by the GA algorithm
is more petite than OAA, i.e., approximately 4.2 Mbits/J. In contrast to all these algorithms,
the OAA has a better convergence rate, and it provides a better average EE of the network,
i.e., 4.5 Mbits/J. These observations from Figure 12 show that OAA is better than existing
optimization algorithms.
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We also compare the performance of both algorithms regarding the throughput of the
network, as shown in Figure 13. When the total users are two, the network throughput with
the OAA algorithm is 12 Mbps, while GA is 10 Mbps. Throughput varies directly with the
entire users, but the network’s throughput with OAA remains better than NOMAD when
users are approaching the upper limit, i.e., 50. The average throughput of the network is
50 Mbps with OAA and 48 Mbps with GA.

Electronics 2022, 11, 474 16 of 21 
 

 

EE of the system when all the algorithms are applied. The plot curves show that all other 

algorithms converge slowly, and the maximum average EE achieved by the GA algorithm 

is more petite than OAA, i.e., approximately 4.2 Mbits/J. In contrast to all these algorithms, 

the OAA has a better convergence rate, and it provides a better average EE of the network, 

i.e., 4.5 Mbits/J. These observations from Figure 12 show that OAA is better than existing 

optimization algorithms. 

 

Figure 12. Average EE of network with OAA and other algorithms. 

We also compare the performance of both algorithms regarding the throughput of 

the network, as shown in Figure 13. When the total users are two, the network throughput 

with the OAA algorithm is 12 Mbps, while GA is 10 Mbps. Throughput varies directly 

with the entire users, but the network's throughput with OAA remains better than NO-

MAD when users are approaching the upper limit, i.e., 50. The average throughput of the 

network is 50 Mbps with OAA and 48 Mbps with GA. 

 

Figure 13. Average throughput of the network with OAA and other algorithms. 

After all of the experiments, we find that the performance of the OAA is better than 

algorithms. Finally, we have calculated the relationship between throughput and channel 

Figure 13. Average throughput of the network with OAA and other algorithms.



Electronics 2022, 11, 474 17 of 21

After all of the experiments, we find that the performance of the OAA is better than
algorithms. Finally, we have calculated the relationship between throughput and channel
efficiency of the network using the OAA algorithm. Figure 14 shows the plot between
channel efficiency and throughput in LOS and NLOS.
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We have also compared the optimal solution of the proposed algorithm with the other
algorithms in terms of EE and throughput. Table 5 highlights the optimal solution of all
the algorithms.

Table 5. Comparison of the optimal solution of proposed algorithm with the existing algorithms.

Algorithm Optimal EE
(MbJ−1) Gain in the EE

Optimal
Throughput

(Mbps)

Gain in the
Throughput

OAA 4.50

7.4%

50.00

4.34%

NOMAD 4.10 46.93

FA 3.46 39.52

CS 3.67 41.99

PSO 3.59 41.61

ABC 3.80 43.47

TLBO 3.71 42.48

SGO 3.75 42.98

BOMIN 4.01 45.94

GA 4.19 47.92

We have also evaluated the runtime complexity of the proposed algorithm with other
existing algorithms and summarized in Table 6. All the runtime complexities are evaluated
on the CPU core i5 (Intel, Chandler, AZ, USA) and GPU Tesla K80 (NVIDIA, Santa Clara,
CA, USA).
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Table 6. Comparison of the runtime complexity of the proposed algorithm with others.

Algorithm
Runtime

Complexity
(GPU)

Difference Overall
Gain

Runtime
Complexity

(CPU)
Difference Overall

Gain

OAA 0.8 s 0s

47.06%

46 s 0 s

45.10%

NOMAD 4 s 3.2 s 224 s 178 s

FA 3 s 2.2 s 168 s 122 s

CS 6 s 5.2 s 336 s 290 s

PSO 2.5 s 1.7 s 90 s 44 s

ABC 1.7 s 0.9 s 102 s 56 s

TLBO 5 s 4.2 s 280 s 234 s

SGO 9 s 8.2 s 504 s 458 s

BOMIN 11 s 10.2 s 616 s 570 s

GA 4 s 3.2 s 224 s 178 s

ES 30 s 29.2 s 1680 s 1634 s

6. Conclusions

We have analyzed the problem of throughput and corresponding energy efficiency
in mm-wave–µ waves HetNets. We studied the problem of the concave fractional system.
We suggest OAA resolves the issue. The proposed algorithm varies sequentially and
gives good results within β = 10−3. The performance of the β-optimal solution obtained
by the OAA method is indicated by different system parameters such as the number of
users and network input. EE improves as the total users increase and become more stable
as we grow UEs again. The average throughput increases with the increase in the number
of users, and with the rise in users, more users switch to µ wave links. The optimal
throughput obtained by the proposed algorithm is 50 Mbps, while the optimal energy
efficiency achieved by the proposed algorithm is 4.5 Mbits/J. The proposed algorithm
applies to millimeter-waves microwaves heterogeneous networks within the defined
area, as in the case of the indoor factory. In future, we will extend this to metropolitan
area networks. We will also use more robust artificial intelligence and machine learning
algorithms to make the network perform well in different environments rather than
focusing on the only indoor factory.
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Appendix A

The simulation parameters of the other algorithms are summarized in Table A1.
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Table A1. Simulation parameters of the other algorithms.

Algorithm Parameters Values

NOMAD

DBMS power, p 25 Watts

Minimum users 2

Maximum users 50

UE increment 2

TP 20 µ seconds

T 65,535 µ seconds

FA

DBMS power 25 Watts

Minimum rate 1 kbps

TP 20 µ seconds

T 65,535 µ seconds

CS

DBMS power 25 Watts

Minimum rate 1 kbps

TP 20 µ seconds

T 65,535 µ seconds

Bandwidth 180 kHz

PSO

DBMS power 25 Watts

Minimum rate 1 kbps

Maximum users 50

Minimum users 2

TP 20 µ seconds

T 65,535 µ seconds

Bandwidth 180 kHz

ABC

DBMS power 25 Watts

Minimum rate 1 kbps

TP 20 µ seconds

T 65,535 µ seconds

TLBO

DBMS power 25 Watts

Minimum rate 1 kbps

Pilot time 30 µ seconds

Bandwidth 180 kHz

SGO

DBMS power, p 25 Watts

Minimum users 2

Maximum users 50

UE increment 2

TP 20 µ seconds

T 65,535 µ seconds
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Table A1. Cont.

Algorithm Parameters Values

BOMIN

DBMS power, p 25 Watts

Minimum users 2

Maximum users 50

UE increment 2

TP 50 µ seconds

T 65,535 µ seconds

GA

DBMS power 25 Watts

Minimum rate 1 kbps

Pilot time 40 µ seconds

Bandwidth 180 kHz
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