Circuit-Based Compact Model of Electron Spin Qubit
Abstract
:1. Introduction
2. The Qubit Model
3. Cadence© Implementation
4. Qubit Model Test
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Feynman, R.P. Simulating Physics with Computers. Int. J. Theor. Phys. 1982, 21, 467–488. [Google Scholar] [CrossRef]
- Shor, P.W. Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In Proceedings of the 35th Annual Symposium on Foundation of Computer Science, Washington, DC, USA, 20–22 November 1994; pp. 124–134. [Google Scholar] [CrossRef]
- Vandersypen, L.M.-K.; Steffen, M.; Breyta, G.; Yannoni, C.S.; Sherwood, M.H.; Chuang, I.L. Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 2001, 414, 883–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Olson, J.; Cao, J.Y.; Romero, J.; Johnson, P.; Dallaire-Demers, P.-L.; Sawaya, N.; Narang, P.; Kivlichan, I.; Wasielewski, M.; Aspur-Guzik, A. Quantum Computation and Information for Chemistry. NSF Workshop 2016, arXiv:1706.05413. [Google Scholar]
- Bourzak, K. Chemistry is quantum computing’s killer app. Chem. Eng. News 2017, 95, 27–31. [Google Scholar]
- Cao, Y.; Romero, J.; Aspuru-Guzik, A. Potential of quantum computing for drug discovery. IBM J. Res. Dev. 2018, 62, 6:1–6:20. [Google Scholar] [CrossRef]
- Gill, D.; Garcia, J.M.; Swarup, V.; Hintennach, A. Enter the Quantum Decade. In Proceedings of the Consumer Electronics Show (CES), Las Vegas, NV, USA, 8 January 2020. [Google Scholar]
- Solgun, F. Microwave Engineer’s Guide to the Design of Superconducting Qubit Circuits. In Proceedings of the IEEE MTT-S International Microwave Symposium, Boston, MA, USA, 2–7 June 2019; pp. 263–366. [Google Scholar] [CrossRef]
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al. Quantum Supremacy using a programmable superconducting processor. Nature 2019, 574, 505–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, J. CES 2018: Intel’s 49-Qubit Chip Shoots for Quantum Supremacy. IEEE Spectrum, 8 January 2018. [Google Scholar]
- Vandersypen, L. Dot-to-Dot Design. IEEE Spectrum, 4 September 2007; Volume 44, 42–47. [Google Scholar] [CrossRef]
- Loss, D.; DiVincenzo, D.P. Quantum Computation with quantum dots. Phys. Rev. A 1998, 57, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Zwanenburg, F.A.; Dzurak, A.S.; Morello, A.; Simmons, M.Y.; Hollenberg, L.C.L.; Klimeck, G.; Rogge, S.; Coppersmith, S.N.; Eriksson, M.A. Silicon quantum electronics. Rev. Mod. Phys. 2013, 85, 961–1019. [Google Scholar] [CrossRef]
- Veldhorst, M.; Eenink, H.G.J.; Yang, C.H.; Dzurak, A.S. Silicon CMOS architecture for a spin-based quantum computer. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Reilly, D.J. Engineering the quantum-classical interface of solid-states qubits. npj Nat. Quantum Inf. 2015, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Charbon, E.; Sebastiano, F.; Babaie, M.; Vladimirescu, A.; Shahmohammadi, M.; Staszewski, R.B.; Homulle, H.A.R.; Patra, B.; van Dijk, J.P.G.; Incadela, R.M. Cryo-CMOS Circuits and Systems for Scalable Quantum Computing. In Proceedings of the IEEE International Solid State Circuits, San Francisco, CA, USA, 5–9 February 2017; pp. 264–266. [Google Scholar] [CrossRef]
- Vandersypen, L. Quantum Computing—The Next Challenge in Circuit and System Design. In Proceedings of the IEEE Integrated Solid-State Circuit Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 24–26. [Google Scholar] [CrossRef]
- Geck, L.; Kruth, A.; Bluhm, H.; van Waasen, S.; Heinen, S. Control Electronics For Semiconductor Spin Qubits. Quantum Sci. Technol. 2020, 5, 1. [Google Scholar] [CrossRef]
- Bluhm, H.; Schreiber, L.R. Semiconductor spin qubits—A scalable platform for quantum computing. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019. [Google Scholar] [CrossRef]
- Prati, E.; Rotta, D.; Sebastiano, F.; Charbon, E. From the quantum Moore’s law toward silicon based universal quantum computing. In Proceedings of the IEEE International Conference on Rebooting Computing, Washington, DC, USA, 8–9 November 2017. [Google Scholar] [CrossRef]
- Patra, B.; Incandela, R.M.; van Dijk, J.P.G.; Homulle, H.A.R.; Song, L.; Shahmohammadi, M.; Staszewski, R.B.; Vladimirescu, A.; Babaie, M.; Sebastiano, F.; et al. Cryo-CMOS Circuits and Systems for Quantum Computing Applications. IEEE J. Solid-State Circuits 2018, 53, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Bardin, J.C.; Jeffrey, E.; Lucero, E.; Huang, T.; Naaman, O.; Barends, R.; White, T.; Giustina, M.; Sank, D.; Roushan, P.; et al. A 28nm Bulk-CMOS 4-to-8GHz <2mW Cryogenic Pulse Modulator for Scalable Quantum Computing. In Proceedings of the IEEE International Solid State Circuits Conference (ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 456–458. [Google Scholar] [CrossRef] [Green Version]
- Nielinger, D.; Christ, V.; Degenhardt, C.; Geck, L.; Grewing, C.; Kruth, A.; Liebau, D.; Muralidharan, P.; Schubert, P.; Vliex, P.; et al. SQUBIC1: An integrated control chip for semiconductor qubits. In Proceedings of the International Workshop on Silicon Quantum Electronics, Hillsboro, OR, USA, 18–20 August 2017. [Google Scholar]
- Charbon, E. Cryo-CMOS: 60 Years of Technological Advances towards Emerging Quantum Technologies. In Proceedings of the IEEE 45th European Solid-State Circuit Conference, Krakow, Poland, 23–26 September 2019. [Google Scholar]
- Bardin, J. CMOS Integrated Circuits for Control of Transmon Qubits. In Proceedings of the Tutorial at IEEE 45th European Solid-State Circuit Conference, Krakow, Poland, 23–26 September 2019. [Google Scholar]
- Voiginescu, S. Towards monolithic quantum computing processors in production FD-SOI CMOS technology. In Proceedings of the Tutorial at IEEE 45th European Solid-State Circuit Conference, Krakow, Poland, 23–26 September 2019. [Google Scholar]
- Sebastiano, F. Cryogenic CMOS interfaces for large-scale quantum computers: From system and device models to circuits. In Proceedings of the Tutorial at IEEE 45th European Solid-State Circuit Conference, Krakow, Poland, 23–26 September 2019. [Google Scholar]
- Mehrpoo, M.; Patra, B.; Gong, J.; Hart, P.A.; van Dijk, J.P.G.; Homulle, H.; Kiene, G.; Vladimirescu, A.; Sebastiano, F.; Charbon, E. Benefits and Challenges of Designing Cryogenic CMOS RF Circuits for Quantum Computers. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019. [Google Scholar] [CrossRef]
- Meunier, T. Towards scalable silicon quantum computing. In Proceedings of the Tutorial at IEEE 45th European Solid-State Circuit Conference, Krakow, Poland, 23–26 September 2019. [Google Scholar]
- Baugh, J. Network architecture for a surface code quantum computer in silicon. In Proceedings of the IEEE 45th European Solid-State Circuit Conference, Krakow, Poland, 23–26 September 2019. [Google Scholar]
- Degenhardt, C.; Artanov, A.; Geck, L.; Grewing, C.; Kruth, A.; Nielinger, D.; Vliex, P.; Zambanini, A.; van Waasen, S. Systems Engineering of Cryogenic CMOS Electronics for Scalable Quantum Computers. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019. [Google Scholar] [CrossRef]
- Lehmann, T. Cryogenic Support Circuits and Systems for Silicon Quantum Computers. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019. [Google Scholar] [CrossRef]
- Jazaeri, F.; Beckers, A.; Tjalli, A.; Sallese, J.-M. A Review on Quantum Computing: From Qubits to Front-end Electronics and Cryogenic MOSFET Physics. In Proceedings of the IEEE International Conference on Mixed Design of Integrated Circuits and Systems, Rzeszow, Poland, 27–29 June 2019; pp. 15–25. [Google Scholar] [CrossRef]
- Severino, R.R.; Spasaro, M.; Zito, D. Silicon Spin Qubit Control and Readout Circuits in 22nm FDSOI CMOS. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020. [Google Scholar] [CrossRef]
- Charbon, E.; Babaie, M.; Vladimirescu, A.; Sebastiano, F. Cryogenic CMOS Circuits and Systems. IEEE Microw. Mag. 2021, 22, 60–78. [Google Scholar] [CrossRef]
- Van Dijk, J.; Vladimirescu, A.; Babaie, M.; Charbon, E.; Sebastiano, F. A Co-design Methodology for Scalable Quantum Processors and their Classical Electronic Interface. In Proceedings of the Design, Automation & Test in Europe Conference, Dresden, Germany, 19–23 March 2018; pp. 573–576. [Google Scholar] [CrossRef]
- Van Dijk, J.; Vladimirescu, A.; Babaie, M.; Charbon, E.; Sebastiano, F. SPINE (SPIN Emulator)—A Quantum-Electronics Interface Simulator. In Proceedings of the IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), Lecce, Italy, 13–14 June 2019; pp. 23–28. [Google Scholar] [CrossRef]
- Feynman, R.P.; Leighten, R.B.; Sands, M. The Feynman Lectures on Physics; Addison-Wesley Publishing Company Inc.: Oxnard, CA, USA, 1964; Volume 3, ISBN-10 8131792137. [Google Scholar]
- Pauli, A.M. The Principles of Quantum Mechanics; Oxford University Press: New York, NY, USA, 1947; ISBN 9783540098423. [Google Scholar]
- Tahan, C.; Friesen, M.; Joyint, R. Decoherence of electron spin qubits in Si-based quantum computers. Phys. Rev. B 2002, 66, 035314. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, L.V. Basic Concepts of Quantum Mechanics; MIR Publishers: Moscow, Russia, 1980; ISBN 9785396002920. [Google Scholar]
- Blokhina, E.; Sokolov, A.; Giounanlis, P.; Wu, X.; Bashir, I.; Leipold, D.; Bogdan Staszewski, R.; Brambilla, A.; Bizzarri, F. Towards the Co-Simulation of Charge Qubits: A Methodology Grounding on an Equivalent Circuit Representation. IEEE Open J. Circuits Syst. 2021, 2, 548–563. [Google Scholar] [CrossRef]
- Kron, G. Equivalent Circuit of the Field Equations of Maxwell. Proc. IRE 1944, 5, 289–299. [Google Scholar] [CrossRef]
- Kron, G. Electric Circuit Models of the Schrödinger Equation. Phys. Rev. 1945, 67, 39–43. [Google Scholar] [CrossRef]
- Moxley, I.M. Quantum Port-Hamiltonian Network Theory. Royal Society Publishing 2000. Available online: http://hal.archives-ouvertes.fr/hal-02554914/document (accessed on 10 December 2021).
- Brinson, M.; Kusnetsov, V. Device and Component Modelling with Algebraic Equations. Available online: qucs-help.readthedocs.io/en/spice4qucs/DModel.html (accessed on 10 December 2021).
- Hwang, J.C.C.; Yang, C.H.; Veldhorst, M.; Hendrickx, N.; Fogarty, M.A.; Huang, W.; Hudson, F.E.; Morello, A.; Dzurak, A.S. Impact of g-factors and valleys on spin qubits in a silicon double quantum dot. Phys. Rev. B 2017, 96, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Cohen-Tannoudji, C.; Dui, B.; Laloe, F. Quantum Mechanics; Wiley: New York, NY, USA, 1977; ISBN-10 047116433X. [Google Scholar]
- Veldhorst, M.; Hwang, J.C.C.; Yang, C.H.; Leenstra, A.W.; de Ronde, B.; Dehollain, J.P.; Muhonen, J.T.; Hudson, F.E.; Itoh, K.M.; Morello, A.; et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 2014, 9, 981–985. [Google Scholar] [CrossRef] [Green Version]
- Petit, L.; Eenink, H.G.J.; Russ, M.; Lawrie, W.I.L.; Hendrickx, N.W.; Philips, S.G.J.; Clarke, J.S.; Vandersypen, L.M.K.; Veldhorst, M. Universal quantum logic in hot silicon Qubits. Nature 2020, 580, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.H.; Leon, R.C.C.; Hwang, J.C.C.; Saraiva, A.; Tanttu, T.; Huang, W.; Camirand Lemyre, J.; Chan, K.W.; Tan, K.Y.; Hudson, F.E.; et al. Operation of silicon quantum processor unit cell above one Kelvin. Nature 2020, 580, 350–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabi, I.I. Space Quantization in a Gyrating Magnetic Field. Phys. Rev. 1937, 51, 652–654. [Google Scholar] [CrossRef]
- Introduction to Analogue IC Design, Simulation, Layout and Verification; Lecture Book Microelectronics Support Centre, STFC Rutherford Appleton Laboratory: Oxford, UK, 2019.
- Spectre Circuit Simulator Reference, Product Version 19.1; Cadence Design System Inc.: San Jose, CA, USA, 2020.
- Van Dijk, J.P.-G.; Kawakami, E.; Schouten, R.N.; Veldhorts, M.; Vandersypen, L.M.K.; Babaie, M.; Charbon, E.; Sebastiano, F. Impact of Classical Control Electronics on Qubit Fidelity. Phys. Rev. Appl. 2019, 12, 044054. [Google Scholar] [CrossRef] [Green Version]
- Fowler, A.; Marlantoni, M.; Martinis, J.M.; Cleland, A.N. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A 2012, 86, 1–48. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borgarino, M. Circuit-Based Compact Model of Electron Spin Qubit. Electronics 2022, 11, 526. https://doi.org/10.3390/electronics11040526
Borgarino M. Circuit-Based Compact Model of Electron Spin Qubit. Electronics. 2022; 11(4):526. https://doi.org/10.3390/electronics11040526
Chicago/Turabian StyleBorgarino, Mattia. 2022. "Circuit-Based Compact Model of Electron Spin Qubit" Electronics 11, no. 4: 526. https://doi.org/10.3390/electronics11040526
APA StyleBorgarino, M. (2022). Circuit-Based Compact Model of Electron Spin Qubit. Electronics, 11(4), 526. https://doi.org/10.3390/electronics11040526