An Effective Clustering Algorithm for the Low-Quality Image of Integrated Circuits via High-Frequency Texture Components Extraction
Abstract
:1. Introduction
- Limited by the visual range of the general microscope and the resolution of the camera, an image with high precision and full range of one chip is hard to obtain. The data of one chip could consist of the partial view images captured by multiple scans.
- The environment of data acquisition is hard to strictly control. The data images may contain a variety of noise with drastic changes of temperature, humidity and illuminant, etc.
- Data may suffer from damages during the transmission, such as the network fluctuation in wireless transmission and the data corruption of the storage medium.
2. Background Knowledge
2.1. Spectral Clustering
2.2. High-Frequency Texture Component
3. The Proposed Approach
Algorithm 1: HFSC for the low-quality images of ICs. |
Input: A set of the partial view images of ICs , number of the clusters K, the order and the cut-off frequency of the Butterworth filter |
Output: The cluster indicators corresponding to each data point |
Initialize filter by parameters and |
for all do |
Apply 2D FFT to each sample for the frequency domain information as |
Extract HFTC for all samples by the Butterworth filter according to |
end for |
Construct the graph by calculating the element of by |
Compute the degree matrix |
Compute the Laplacian matrix |
Symmetrize by if needed |
Compute F by solving Function |
or |
Obtain the cluster indicators by conducting Kmeans to Y |
4. Experimental Results
4.1. Data Preparation
4.2. Single Factor
4.3. Comprehensive Factors
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Z.; Lu, Y.; Lv, C.; Mao, Q.; Yan, S. Restoration of integrated circuit terahertz image based on wavelet denoising technique and the point spread function model. Opt. Lasers Eng. 2021, 138, 106413. [Google Scholar] [CrossRef]
- Chao, Y.; Ma, C.; Shan, W.; Feng, J.; Zhang, Z. Adaptive Directional Cubic Convolution for Integrated Circuit Chip Defect Image Interpolation. Int. J. Circuits 2021, 15, 1084–1090. [Google Scholar] [CrossRef]
- Zhou, B.; Aksoylar, A.; Vigil, K.; Adato, R.; Joshi, A. Hardware Trojan Detection using Backside Optical Imaging. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 40, 24–37. [Google Scholar] [CrossRef]
- Nasr, A.A.; Abdulmageed, M.Z. Automatic Feature Selection of Hardware Layout: A Step toward Robust Hardware Trojan Detection. J. Electron. Test. 2016, 32, 357–367. [Google Scholar] [CrossRef]
- Xue, M.; Bian, R.; Wang, J.; Liu, W. Building an accurate hardware Trojan detection technique from inaccurate simulation models and unlabelled ICs. Comput. Digit. Tech. IET 2019, 13, 348–359. [Google Scholar] [CrossRef]
- Ye, M.; Zhang, D.; Yap, Y.K. Recent Advances in Electronic and Optoelectronic Devices Based on Two-Dimensional Transition Metal Dichalcogenides. Electronics 2017, 6, 43. [Google Scholar] [CrossRef] [Green Version]
- Kaintura, A.; Dhaene, T.; Spina, D. Review of Polynomial Chaos-Based Methods for Uncertainty Quantification in Modern Integrated Circuits. Electronics 2018, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Roy, J.A.; Koushanfar, F.; Markov, I.L. EPIC: Ending piracy of integrated circuits. In Proceedings of the Design, Automation and Test in Europe, DATE 2008, Munich, Germany, 10–14 March 2008. [Google Scholar]
- Alasad, Q.; Yuan, J. Logic Obfuscation against IC Reverse Engineering Attacks Using PLGs. In Proceedings of the IEEE International Conference on Computer Design, Boston, MA, USA, 5–8 November 2017; pp. 341–344. [Google Scholar]
- Qutaiba, A.; Yu, B.; Yuan, J.S. E2LEMI:Energy-Efficient Logic Encryption Using Multiplexer Insertion. Electronics 2017, 6, 16. [Google Scholar]
- Alasad, Q.; Yuan, J.S.; Bi, Y. Logic Locking Using Hybrid CMOS and Emerging SiNW FETs. Electronics 2017, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Alasad, Q.; Lin, J.; Yuan, J.S.; Fan, D.; Awad, A. Resilient and Secure Hardware Devices Using ASL. ACM J. Emerg. Technol. Comput. Syst. (JETC) 2021, 17, 1–26. [Google Scholar] [CrossRef]
- Guo, F.; Guan, S.A. Research of the Machine Vision Based PCB Defect Inspection System. In Proceedings of the 2011 International Conference on Intelligence Science and Information Engineering, Wuhan, China, 20–21 August 2011. [Google Scholar]
- Courbon, F.; Loubet-Moundi, P.; Fournier, J.; Tria, A. SEMBA: A SEM Based Acquisition technique for fast invasive Hardware Trojan detection. In Proceedings of the European Conference on Circuit Theory & Design, Trondheim, Norway, 24–26 August 2015. [Google Scholar]
- Vashistha, N.; Rahman, M.T.; Shen, H.; Woodard, D.L.; Asadizanjani, N.; Tehranipoor, M. Detecting Hardware Trojans Inserted by Untrusted Foundry Using Physical Inspection and Advanced Image Processing. J. Hardw. Syst. Secur. 2018, 2, 333–344. [Google Scholar] [CrossRef]
- Shi, Q.; Vashistha, N.; Lu, H.; Shen, H.; Asadizanjani, N. Golden Gates: A New Hybrid Approach for Rapid Hardware Trojan Detection using Testing and Imaging. In Proceedings of the 2019 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), McLean, VA, USA, 5–10 May 2019. [Google Scholar]
- Sun, C.; Li, L.; Zhou, W.; Tan, X.; He, Y. Research on the Detection Method of HOG-SVM for Doping Modified Hardware Trojan. J. Phys. Conf. Ser. 2020, 1550, 032086. [Google Scholar] [CrossRef]
- Vashistha, N.; Lu, H.; Shi, Q.; Rahman, M.T.; Tehranipoor, M.M. Trojan Scanner Detecting Hardware Trojans with Rapid SEM Imaging Combined with Image Processing and Machine Learning. In Proceedings of the 44th International Symposium for Testing and Failure Analysis, Phoenix, AZ, USA, 28 October–1 November 2018. [Google Scholar]
- Hammouda, H.B.; Mongia, M.; Zièd, G.; Kamel, B. Neural-Based Models of Semiconductor Devices for SPICE Simulator. Am. J. Appl. Sci. 2008, 5, 385–391. [Google Scholar] [CrossRef] [Green Version]
- Bahubalindruni, P.G.; Tavares, V.G.; Barquinha, P.; Duarte, C.; Cardoso, N.; Oliveira, P.; Martins, R.; Fortunato, E. a-GIZO TFT neural modeling, circuit simulation and validation. Solid State Electron. 2015, 105, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Ismail, A.; Jeng, D.S.; Zhang, L.L. An optimised product-unit neural network with a novel PSO–BP hybrid training algorithm: Applications to load–deformation analysis of axially loaded piles. Eng. Appl. Artif. Intell. 2013, 26, 2305–2314. [Google Scholar] [CrossRef]
- Hou, C.; Xiao, Y.; Cao, Y.; Lai, C.; Cao, Y. Prediction of synchronous closing time of permanent magnetic actuator for vacuum circuit breaker based on PSO-BP. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3321–3326. [Google Scholar] [CrossRef]
- Hayati, M.; Rezaei, A.; Seifi, M. CNT-MOSFET modeling based on artificial neural network: Application to simulation of nanoscale circuits. Solid-State Electron. 2010, 54, 52–57. [Google Scholar] [CrossRef]
- Peng, Y.; Deng, W.; Luo, Z.; Wu, J.; Huang, J. Hybrid modeling routine for metal-oxide TFTs based on particle swarm optimization and artificial neural network. Electron. Lett. 2020, 56, 453–456. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, G.K.; Pattanaik, M. A Few Shot Learning based Approach for Hardware Trojan Detection using Deep Siamese CNN. In Proceedings of the 34th International Conference on VLSI Design and 20th International Conference on Embedded System (VLSID), Guwahati, India, 20–24 February 2021. [Google Scholar]
- Liang, Z.; Guo, S.; Liu, D.; Li, J. Spectral clustering based on high-frequency texture components for face datasets. IET Image Process. 2021, 15, 2240–2246. [Google Scholar] [CrossRef]
- Surhone, L.M.; Tennoe, M.T.; Henssonow, S.F. Spectral Graph Theory; American Mathematical Society: Providence, RI, USA, 2010. [Google Scholar]
- Sun, Y.; Chen, J.; Liu, Q.; Liu, B.; Guo, G. Dual-Path Attention Network for Compressed Sensing Image Reconstruction. IEEE Trans. Image Process. 2020, 29, 9482–9495. [Google Scholar] [CrossRef]
- Suresh, G.; Rao, C.S. Copy Move Forgery Detection through Differential Excitation Component-Based Texture Features. Int. J. Digit. Crime Forensics 2020, 12, 27–44. [Google Scholar] [CrossRef]
- Elhamifar, E.; Vidal, R. Sparse subspace clustering. In Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Huang, D.; Wang, C.D.; Wu, J.; Lai, J.; Kwoh, C.K. Ultra-Scalable Spectral Clustering and Ensemble Clustering. IEEE Trans. Knowl. Data Eng. 2019, 32, 1212–1226. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Huang, D.; Wang, C.D.; Kwoh, C.K. Spectral Clustering by Subspace Randomization and Graph Fusion for High-Dimensional Data. In Pacific-Asia Conference on Knowledge Discovery and Data Mining; Springer: Berlin/Heidelberg, Germany, 2020; pp. 330–342. [Google Scholar]
Index | Noise | Defects |
---|---|---|
1 | Gaussian 10 | 10 |
2 | Gaussian 10 | 20 |
3 | Gaussian 10 | 25 |
4 | Gaussian 15 | 10 |
5 | Gaussian 15 | 20 |
6 | Gaussian 15 | 25 |
7 | Salt-and-pepper 20 | 10 |
8 | Salt-and-pepper 20 | 20 |
9 | Salt-and-pepper 20 | 25 |
10 | Salt-and-pepper 30 | 10 |
11 | Salt-and-pepper 30 | 20 |
12 | Salt-and-pepper 30 | 25 |
Datasets | Methods | ACC | NMI | Purity | F | ARI |
---|---|---|---|---|---|---|
1 | HFSC Ncut Kmeans SSC SC-SRGF USENC | 100.00 43.33 83.33 84.17 79.17 99.17 | 100.00 61.34 90.70 84.67 86.78 98.88 | 100.00 51.67 85.00 84.17 80.83 99.17 | 100.00 34.39 82.82 71.42 75.40 98.24 | 100.00 27.80 81.19 68.92 73.11 98.10 |
2 | HFSC Ncut Kmeans SSC SC-SRGF USENC | 97.50 40.83 85.83 85.83 70.00 97.50 | 97.20 52.13 88.65 83.44 82.14 97.06 | 97.50 47.50 85.83 85.83 75.00 97.50 | 95.28 27.00 82.11 72.54 67.38 94.93 | 94.90 19.21 80.52 70.15 64.19 94.51 |
3 | HFSC Ncut Kmeans SSC SC-SRGF USENC | 99.17 38.33 86.67 95.83 67.50 96.67 | 98.88 46.03 91.42 95.37 78.78 95.47 | 99.17 45.83 87.50 95.83 70.83 96.67 | 98.24 23.19 82.35 91.76 63.52 93.00 | 98.10 14.40 80.78 91.08 47.08 92.43 |
4 | HFSC Ncut Kmeans SSC SC-SRGF USENC | 100.00 34.17 92.50 92.50 89.17 97.50 | 100.00 40.60 95.59 91.57 95.35 97.64 | 100.00 41.67 92.50 92.50 91.67 97.50 | 100.00 23.84 91.47 84.94 89.56 95.32 | 100.00 13.75 90.72 83.68 88.64 94.93 |
5 | HFSC Ncut Kmeans SSC SC-SRGF USENC | 100.00 49.17 90.83 90.83 81.67 93.33 | 100.00 57.50 95.35 88.57 90.70 92.27 | 100.00 55.00 91.67 90.83 83.33 93.33 | 100.00 33.18 90.69 82.06 80.93 86.31 | 100.00 26.56 89.87 80.55 79.15 85.16 |
6 | HFSC Ncut Kmeans SSC SC-SRGF USENC | 100.00 50.83 90.83 95.00 74.17 95.00 | 100.00 64.69 95.35 93.55 80.10 94.77 | 100.00 54.17 91.67 95.00 75.83 95.00 | 100.00 38.63 90.69 89.30 63.66 90.48 | 100.00 32.95 89.87 88.41 59.94 89.69 |
Datasets | Methods | ACC | NMI | Purity | F | ARI |
---|---|---|---|---|---|---|
7 | HFSC Ncut Kmeans SSC SC-SRGF USENC | 100.00 50.00 83.33 80.00 88.33 99.17 | 100.00 59.67 90.70 74.63 93.54 98.88 | 100.00 54.14 84.17 80.00 90.00 99.17 | 100.00 35.62 82.48 57.56 86.99 98.24 | 100.00 29.29 80.84 53.77 85.83 98.10 |
8 | HFSC Ncut Kmeans SSC SC-SRGF USENC | 100.00 49.17 81.67 91.67 78.33 97.50 | 100.00 58.93 88.18 89.64 88.76 97.64 | 100.00 52.50 82.50 91.67 82.50 97.50 | 100.00 33.15 78.03 83.67 77.43 95.32 | 100.00 26.68 75.98 82.30 75.36 94.93 |
9 | HFSC Ncut Kmeans SSC SC-SRGF USENC | 100.00 44.17 86.67 96.67 71.67 95.00 | 100.00 53.89 90.81 95.58 82.05 93.70 | 100.00 49.17 89.17 96.67 75.83 95.00 | 100.00 29.18 83.40 93.00 66.57 89.91 | 100.00 22.48 81.94 92.43 63.27 89.07 |
10 | HFSC Ncut Kmeans SSC SC-SRGF USENC | 95.83 35.83 80.00 90.00 71.67 92.50 | 95.02 44.72 82.81 87.71 80.22 93.32 | 95.83 45.00 81.67 90.00 73.33 92.50 | 92.05 23.35 73.33 78.44 65.17 87.30 | 91.40 14.42 71.00 76.59 61.56 86.22 |
11 | HFSC Ncut Kmeans SSC SC-SRGF USENC | 96.67 41.67 80.00 94.17 67.50 77.50 | 95.58 51.29 80.76 92.89 79.91 80.89 | 96.67 48.33 80.83 94.17 70.83 79.17 | 93.26 28.34 70.11 87.85 63.56 67.68 | 92.71 21.61 67.53 86.85 60.05 64.78 |
12 | HFSC Ncut Kmeans SSC SC-SRGF USENC | 94.17 45.83 70.83 92.50 63.33 75.83 | 93.62 52.36 74.06 90.36 71.66 78.58 | 94.17 47.50 74.17 92.50 63.33 77.50 | 88.67 28.96 58.72 85.22 55.07 66.15 | 87.73 22.35 55.05 83.99 50.33 63.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Z.; Tan, G.; Sun, C.; Li, J.; Zhang, L.; Xiong, X.; Liu, Y. An Effective Clustering Algorithm for the Low-Quality Image of Integrated Circuits via High-Frequency Texture Components Extraction. Electronics 2022, 11, 572. https://doi.org/10.3390/electronics11040572
Liang Z, Tan G, Sun C, Li J, Zhang L, Xiong X, Liu Y. An Effective Clustering Algorithm for the Low-Quality Image of Integrated Circuits via High-Frequency Texture Components Extraction. Electronics. 2022; 11(4):572. https://doi.org/10.3390/electronics11040572
Chicago/Turabian StyleLiang, Zexiao, Guoliang Tan, Chen Sun, Jianzhong Li, Lijun Zhang, Xiaoming Xiong, and Yuan Liu. 2022. "An Effective Clustering Algorithm for the Low-Quality Image of Integrated Circuits via High-Frequency Texture Components Extraction" Electronics 11, no. 4: 572. https://doi.org/10.3390/electronics11040572
APA StyleLiang, Z., Tan, G., Sun, C., Li, J., Zhang, L., Xiong, X., & Liu, Y. (2022). An Effective Clustering Algorithm for the Low-Quality Image of Integrated Circuits via High-Frequency Texture Components Extraction. Electronics, 11(4), 572. https://doi.org/10.3390/electronics11040572