A Review of Improvements in Power System Flexibility: Implementation, Operation and Economics
Abstract
:1. Introduction
1.1. Definition of Power System Flexibility
1.2. Component of Power System Flexibility
1.3. Effects of and Need for Increased Penetration of VRE in Power Systems
- RES generation is stochastic and is largely dependent on weather conditions [37,38]. Consequently, a high degree of varying penetration results in a drastic disturbance in the power system [39,40,41]. Some of this may be due to system clouding [37] and a variation of system inertia, leading to frequency variation [42], and reference [43] explained that a high penetration can cause under-reach and over-reach problems in over-current protection since the fault current changes dynamically with the fluctuation of RES.
2. Need for Flexibility Study in Power System
2.1. Consequence of Nonflexible Systems
2.2. Drivers of Power System Flexibility
2.2.1. Distributed Generation
2.2.2. Demand Response
3. Parameters for Measuring Flexibility (Flexibility Indices)
3.1. Energy Capacity
3.2. Power Capacity
3.3. Ramping Limit
3.4. Determination of Flexibility Requirements
4. Assessment of Flexibility Requirement
Characteristics of Ramping Events by Wind and Solar Sources
5. Classification of Flexibility Impacts on Power Systems
5.1. Super-Short-Term Impacts
5.2. Short-Term Impacts
5.3. Mid-Term Impacts
5.4. Long-Term Impacts
6. Flexibility Improvement with Renewable Energy Sources
7. Use of Demand-Side Management for Improving Flexibility
8. Use of Energy Storage System for Improving Flexibility
9. Flexibility Based on Energy Forecasting
10. Economic Impact on Flexibility Improvement
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BESS | Battery energy storage system |
BO | Butterfly optimization |
BOA | Butterfly optimization algorithm |
ESS | Energy storage system |
CS | Charging station |
EPEC | equilibrium program with equilibrium constraints |
FDEL | Federated energy demand learning |
DOD | Depth of Discharge |
DPP | Distributed power plant |
DR | Demand response |
EMS | Energy Management Strategy |
IEA | Intentional Energy Agency |
LP | Linear Programming |
MG | Microgrid |
MPEC | mathematical problem of equilibrium constraints |
MILP | Mixed-Integer Linear Programming |
NLP | Non-Linear Programming |
NERC | North American Electric Reliability Corporation |
GWO | Grey Wolf Optimization |
PSO | Particle Swarm Optimization |
PHES | pump hydroelectric storage |
PV | Plug-in electric vehicle |
RES | Renewable energy system |
RF | Random forest |
SOC | State of Charge |
SVM | Random forest |
XGM | extreme gradient boosting |
VPP | Virtual power plant |
VRG | Variable renewable generation |
References
- Tiamiyu, R.A.; Salman, U.T. Deficit in Leadership Qualities Negating Efforts in Curtailing Climate Change. Environ. Ecol. Res. 2021, 9, 215–223. [Google Scholar] [CrossRef]
- Babatunde, O.; Munda, J.; Hamam, Y. Power system flexibility: A review. Energy Rep. 2020, 6, 101–106. [Google Scholar] [CrossRef]
- Papaefthymiou, G.; Haesen, E.; Sach, T. Power System Flexibility Tracker: Indicators to track flexibility progress towards high-RES systems. Renew. Energy 2018, 127, 1026–1035. [Google Scholar] [CrossRef]
- Papaefthymiou, G.; Grave, K.; Dragoon, K. Flexibility Options in Electricity Systems; Project Number: POWDE14426; Ecofys: Utrecht, The Netherlands, 2014. [Google Scholar]
- Akrami, A.; Doostizadeh, M.; Aminifar, F. Power system flexibility: An overview of emergence to evolution. J. Mod. Power Syst. Clean Energy 2019, 7, 987–1007. [Google Scholar] [CrossRef] [Green Version]
- Lannoye, E.; Flynn, D.; O’Malley, M. Evaluation of power system flexibility. IEEE Trans. Power Syst. 2012, 27, 922–931. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, T.; Litvinov, E. A unified framework for defining and measuring flexibility in power system. IEEE Trans. Power Syst. 2015, 31, 339–347. [Google Scholar] [CrossRef]
- Dvorkin, Y.; Kirschen, D.S.; Ortega-Vazquez, M.A. Assessing flexibility requirements in power systems. IET Gener. Transm. Distrib. 2014, 8, 1820–1830. [Google Scholar] [CrossRef]
- Chandler, H. Harnessing Variable Renewables: A Guide to the Balancing Challenge; International Energy Agency: Paris, France, 2011. [Google Scholar]
- Zheng, T.; Zhao, J.; Zhao, F.; Litvinov, E. Operational flexibility and system dispatch. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–3. [Google Scholar]
- Alizadeh, M.; Moghaddam, M.P.; Amjady, N.; Siano, P.; Sheikh-El-Eslami, M. Flexibility in future power systems with high renewable penetration: A review. Renew. Sustain. Energy Rev. 2016, 57, 1186–1193. [Google Scholar] [CrossRef]
- Ma, J.; Silva, V.; Belhomme, R.; Kirschen, D.S.; Ochoa, L.F. Evaluating and planning flexibility in sustainable power systems. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–11. [Google Scholar]
- Papaefthymiou, G.; Dragoon, K. Towards 100% renewable energy systems: Uncapping power system flexibility. Energy Policy 2016, 92, 69–82. [Google Scholar] [CrossRef]
- Li, Z.; Shahidehpour, M.; Aminifar, F.; Alabdulwahab, A.; Al-Turki, Y. Networked microgrids for enhancing the power system resilience. Proc. IEEE 2017, 105, 1289–1310. [Google Scholar] [CrossRef]
- Bruninx, K.; Dvorkin, Y.; Delarue, E.; D’haeseleer, W.; Kirschen, D.S. Valuing demand response controllability via chance constrained programming. IEEE Trans. Sustain. Energy 2017, 9, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Kim, S. Crisis-induced public demand for regulatory intervention in the social media era: Examining the moderating roles of perceived government controllability and consumer collective efficacy. New Media Soc. 2020, 22, 959–983. [Google Scholar] [CrossRef]
- Jain, S.; Gupta, S.; Thomas, N.; Bandyopadhyay, S. Capacity expansion of electricity sector using multiple sustainability indicators. Process Integr. Optim. Sustain. 2020, 4, 51–65. [Google Scholar] [CrossRef]
- Gi, K.; Sano, F.; Akimoto, K.; Hiwatari, R.; Tobita, K. Potential contribution of fusion power generation to low-carbon development under the Paris Agreement and associated uncertainties. Energy Strategy Rev. 2020, 27, 100432. [Google Scholar] [CrossRef]
- Chen, C.F.; Wang, Y.; Adua, L.; Bai, H. Reducing fossil fuel consumption in the household sector by enabling technology and behavior. Energy Res. Soc. Sci. 2020, 60, 101402. [Google Scholar] [CrossRef]
- Sinsel, S.R.; Riemke, R.L.; Hoffmann, V.H. Challenges and solution technologies for the integration of variable renewable energy sources—A review. Renew. Energy 2020, 145, 2271–2285. [Google Scholar] [CrossRef]
- Alawode, B.; Salman, U.; Khalid, M. A Flexible Operation and Sizing of Battery Energy Storage System Based on Butterfly Optimization Algorithm. Electronics 2022, 11, 109. [Google Scholar] [CrossRef]
- Ayodele, T.; Jimoh, A.; Munda, J.; Agee, J. Challenges of grid integration of wind power on power system grid integrity: A review. Int. J. Renew. Energy Res. 2012, 2, 618–626. [Google Scholar]
- Grunewald, P.; Diakonova, M. Flexibility, dynamism and diversity in energy supply and demand: A critical review. Energy Res. Soc. Sci. 2018, 38, 58–66. [Google Scholar] [CrossRef]
- Shi, Q.; Li, F.; Hu, Q.; Wang, Z. Dynamic demand control for system frequency regulation: Concept review, algorithm comparison, and future vision. Electr. Power Syst. Res. 2018, 154, 75–87. [Google Scholar] [CrossRef]
- Li, J.; Liu, F.; Li, Z.; Shao, C.; Liu, X. Grid-side flexibility of power systems in integrating large-scale renewable generations: A critical review on concepts, formulations and solution approaches. Renew. Sustain. Energy Rev. 2018, 93, 272–284. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.; Yao, W.; Han, X.; Wen, J.; Cheng, S. Chronological operation simulation framework for regional power system under high penetration of renewable energy using meteorological data. Appl. Energy 2017, 203, 816–828. [Google Scholar] [CrossRef]
- Kamarposhti, M.A.; Mozafari, S.B.; Soleymani, S.; Hosseini, S.M. Improving the wind penetration level of the power systems connected to doubly fed induction generator wind farms considering voltage stability constraints. J. Renew. Sustain. Energy 2015, 7, 043121. [Google Scholar] [CrossRef]
- Simla, T.; Stanek, W. Reducing the impact of wind farms on the electric power system by the use of energy storage. Renew. Energy 2020, 145, 772–782. [Google Scholar] [CrossRef]
- Rakhshani, E.; Torres, J.L.R.; Palensky, P.; der van Meijden, M. Determination of maximum wind power penetration considering wind turbine fast frequency response. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6. [Google Scholar]
- Li, S.; Dong, W.; Huang, J.; Wu, Z.; Zhang, H. Wind power system reliability sensitivity analysis by considering forecast error based on non-standard third-order polynomial normal transformation method. Electr. Power Syst. Res. 2019, 167, 122–129. [Google Scholar] [CrossRef]
- Mukherjee, S.; Chakrabortty, A.; Babaei, S. Modeling and Quantifying the Impact of Wind Power Penetration on Power System Coherency. arXiv 2019, arXiv:1901.02098. [Google Scholar]
- Diuana, F.A.; Viviescas, C.; Schaeffer, R. An analysis of the impacts of wind power penetration in the power system of southern Brazil. Energy 2019, 186, 115869. [Google Scholar] [CrossRef]
- Barutcu, I.C.; Karatepe, E.; Boztepe, M. Impact of harmonic limits on PV penetration levels in unbalanced distribution networks considering load and irradiance uncertainty. Int. J. Electr. Power Energy Syst. 2020, 118, 105780. [Google Scholar] [CrossRef]
- Kumar, R.; Ganesh, A.; Kumar, V. Raising Concerns on High PV Penetration and Ancillary Services: A Review. In International Conference on Intelligent Computing and Smart Communication 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1347–1364. [Google Scholar]
- Badakhshan, S.; Hajibandeh, N.; Shafie-khah, M.; Catalão, J.P. Impact of solar energy on the integrated operation of electricity-gas grids. Energy 2019, 183, 844–853. [Google Scholar] [CrossRef]
- Sahoo, R.; Kulkarni, S. Impact of Photovoltaic Penetration on Distribution Systems. Int. J. Appl. Eng. Res. 2019, 14, 2596–2601. [Google Scholar]
- Mohandes, B.; El Moursi, M.S.; Hatziargyriou, N.; El Khatib, S. A review of power system flexibility with high penetration of renewables. IEEE Trans. Power Syst. 2019, 34, 3140–3155. [Google Scholar] [CrossRef]
- Prasad, R.; Joseph, L.; Deo, R.C. Modeling and Forecasting Renewable Energy Resources for Sustainable Power Generation: Basic Concepts and Predictive Model Results. In Translating the Paris Agreement into Action in the Pacific; Springer: Berlin/Heidelberg, Germany, 2020; pp. 59–79. [Google Scholar]
- Mahela, O.; Khan, B.; Alhelou, H.H.; Siano, P. Power quality assessment and event detection in distribution network with wind energy penetration using stockwell transform and fuzzy clustering. IEEE Trans. Ind. Inform. 2020, 16, 6922–6932. [Google Scholar] [CrossRef]
- Dehghanian, P.; Wang, B.; Tasdighi, M. New Protection Schemes in Smarter Power Grids with Higher Penetration of Renewable Energy Systems. In Pathways to a Smarter Power System; Elsevier: Amsterdam, The Netherlands, 2019; pp. 317–342. [Google Scholar]
- Abdulkhader, H.K.; Jacob, J.; Mathew, A.T. Robust type-2 fuzzy fractional order PID controller for dynamic stability enhancement of power system having RES based microgrid penetration. Int. J. Electr. Power Energy Syst. 2019, 110, 357–371. [Google Scholar] [CrossRef]
- El-Shennawy, M.A.; Farghal, S.A.S.; Amin, A.E.A.; Abdelkader, S.M. Impact of Renewable Energy Sources on Inertia and Frequency Response of Power Systems. Bull. Fac. Eng. Mansoura Univ. 2020, 43, 19–23. [Google Scholar] [CrossRef]
- Aftab, M.A.; Hussain, S.S.; Ali, I.; Ustun, T.S. Dynamic protection of power systems with high penetration of renewables: A review of the traveling wave based fault location techniques. Int. J. Electr. Power Energy Syst. 2020, 114, 105410. [Google Scholar] [CrossRef]
- Aquila, G.; de Oliveira Pamplona, E.; de Queiroz, A.R.; Junior, P.R.; Fonseca, M.N. An overview of incentive policies for the expansion of renewable energy generation in electricity power systems and the Brazilian experience. Renew. Sustain. Energy Rev. 2017, 70, 1090–1098. [Google Scholar] [CrossRef]
- Rietmann, N.; Lieven, T. How policy measures succeeded to promote electric mobility—Worldwide review and outlook. J. Clean. Prod. 2019, 206, 66–75. [Google Scholar] [CrossRef]
- Collins, S.; Deane, P.; Gallachóir, B.Ó.; Pfenninger, S.; Staffell, I. Impacts of inter-annual wind and solar variations on the European power system. Joule 2018, 2, 2076–2090. [Google Scholar] [CrossRef] [Green Version]
- Eltawil, M.A.; Zhao, Z. Grid-connected photovoltaic power systems: Technical and potential problems—A review. Renew. Sustain. Energy Rev. 2010, 14, 112–129. [Google Scholar] [CrossRef]
- Salman, U.T.; Al-Ismail, F.; Khalid, M. Optimal Sizing of Battery Energy Storage for Grid-Connected and Isolated Wind-Penetrated Microgrid. IEEE Access 2020, 8, 2169–3536. [Google Scholar] [CrossRef]
- Infield, D.; Freris, L. Renewable Energy in Power Systems; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Kundur, P.; Paserba, J.; Ajjarapu, V.; Andersson, G.; Bose, A.; Canizares, C.; Hatziargyriou, N.; Hill, D.; Stankovic, A.; Taylor, C.; et al. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans. Power Syst. 2004, 19, 1387–1401. [Google Scholar]
- Haes Alhelou, H.; Hamedani-Golshan, M.E.; Njenda, T.C.; Siano, P. A survey on power system blackout and cascading events: Research motivations and challenges. Energies 2019, 12, 682. [Google Scholar] [CrossRef] [Green Version]
- Grigsby, L.L. Power System Stability and Control; CRC Press: Boca Raton, FL, USA, 2012; Volume 5. [Google Scholar]
- Bompard, E.; Huang, T.; Wu, Y.; Cremenescu, M. Classification and trend analysis of threats origins to the security of power systems. Int. J. Electr. Power Energy Syst. 2013, 50, 50–64. [Google Scholar] [CrossRef]
- Li, W. Reliability Assessment of Electric Power Systems Using Monte Carlo Methods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Mahdad, B.; Srairi, K. Blackout risk prevention in a smart grid based flexible optimal strategy using Grey Wolf-pattern search algorithms. Energy Convers. Manag. 2015, 98, 411–429. [Google Scholar] [CrossRef]
- Pourbeik, P.; Kundur, P.S.; Taylor, C.W. The anatomy of a power grid blackout-Root causes and dynamics of recent major blackouts. IEEE Power Energy Mag. 2006, 4, 22–29. [Google Scholar] [CrossRef]
- Farzin, H.; Fotuhi-Firuzabad, M.; Moeini-Aghtaie, M. Enhancing power system resilience through hierarchical outage management in multi-microgrids. IEEE Trans. Smart Grid 2016, 7, 2869–2879. [Google Scholar] [CrossRef]
- Eltohamy, M.S.; Moteleb, M.S.A.; Talaat, H.; Mekhemer, S.F.; Omran, W. Overview of Power System Flexibility Options with Increasing Variable Renewable Generations. In Proceedings of the 2019 6th International Conference on Advanced Control Circuits and Systems (ACCS) & 2019 5th International Conference on New Paradigms in Electronics & information Technology (PEIT), Hurgada, Egypt, 17–20 November 2019; pp. 280–292. [Google Scholar]
- Ramaswamy, P.C.; Leyder, S.; Rapoport, S.; Picart, B.; De Grève, Z.; Vangulick, D. Impact of Load and Generation Flexibility on the Long Term Planning of YLPIC Distribution Network; IET: Stevenage, UK, 2016. [Google Scholar]
- Liu, Y.; Fan, R.; Terzija, V. Power system restoration: A literature review from 2006 to 2016. J. Mod. Power Syst. Clean Energy 2016, 4, 332–341. [Google Scholar] [CrossRef] [Green Version]
- Kabalci, E. Power System Flexibility and Resiliency. In Power Systems Resilience; Springer: Berlin/Heidelberg, Germany, 2019; pp. 81–100. [Google Scholar]
- Jiang, Z.; Ai, Q. Agent-based simulation for symmetric electricity market considering price-based demand response. J. Mod. Power Syst. Clean Energy 2017, 5, 810–819. [Google Scholar] [CrossRef] [Green Version]
- Derakhshan, G.; Shayanfar, H.A.; Kazemi, A. The optimization of demand response programs in smart grids. Energy Policy 2016, 94, 295–306. [Google Scholar] [CrossRef]
- Bahrami, S.; Wong, V.W.; Huang, J. Data center demand response in deregulated electricity markets. IEEE Trans. Smart Grid 2018, 10, 2820–2832. [Google Scholar] [CrossRef]
- Barton, J.P.; Infield, D.G. A probabilistic method for calculating the usefulness of a store with finite energy capacity for smoothing electricity generation from wind and solar power. J. Power Sources 2006, 162, 943–948. [Google Scholar] [CrossRef] [Green Version]
- Bloom, J.A. Probabilistic production costing with dependent generating sources. IEEE Trans. Power Appar. Syst. 1985, PER-5, 2064–2071. [Google Scholar] [CrossRef]
- Billinton, R.; Chowdhury, A. Incorporation of wind energy conversion systems in conventional generating capacity adequacy assessment. In IEE Proceedings C (Generation, Transmission and Distribution); IET: Stevenage, UK, 1992; Volume 139, pp. 47–56. [Google Scholar]
- Makarov, Y.V.; Loutan, C.; Ma, J.; De Mello, P. Operational impacts of wind generation on California power systems. IEEE Trans. Power Syst. 2009, 24, 1039–1050. [Google Scholar] [CrossRef]
- Cui, M.; Zhang, J.; Feng, C.; Florita, A.R.; Sun, Y.; Hodge, B.M. Characterizing and analyzing ramping events in wind power, solar power, load, and netload. Renew. Energy 2017, 111, 227–244. [Google Scholar] [CrossRef]
- Sreekumar, S.; Sharma, K.C.; Bhakar, R. Gumbel copula based multi interval ramp product for power system flexibility enhancement. Int. J. Electr. Power Energy Syst. 2019, 112, 417–427. [Google Scholar] [CrossRef]
- Tuohy, A.; Meibom, P.; Denny, E.; O’Malley, M. Unit commitment for systems with significant wind penetration. IEEE Trans. Power Syst. 2009, 24, 592–601. [Google Scholar] [CrossRef] [Green Version]
- Gai, W.; Qu, C.; Liu, J.; Zhang, J. An improved grey wolf algorithm for global optimization. In Proceedings of the 2018 Chinese Control And Decision Conference (CCDC), Shenyang, China, 9–11 June 2018. [Google Scholar]
- Saint-Pierre, A.; Mancarella, P. Active distribution system management: A dual-horizon scheduling framework for DSO/TSO interface under uncertainty. IEEE Trans. Smart Grid 2016, 8, 2186–2197. [Google Scholar] [CrossRef]
- Ela, E.; Milligan, M.; O’Malley, M. A flexible power system operations simulation model for assessing wind integration. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–8. [Google Scholar]
- Koltsaklis, N.E.; Dagoumas, A.S.; Panapakidis, I.P. Impact of the penetration of renewables on flexibility needs. Energy Policy 2017, 109, 360–369. [Google Scholar] [CrossRef]
- Notton, G.; Nivet, M.L.; Voyant, C.; Paoli, C.; Darras, C.; Motte, F.; Fouilloy, A. Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting. Renew. Sustain. Energy Rev. 2018, 87, 96–105. [Google Scholar] [CrossRef]
- Abdolahi, A.; Gazijahani, F.S.; Alizadeh, A.; Kalantari, N.T. Chance-constrained CAES and DRP scheduling to maximize wind power harvesting in congested transmission systems considering operational flexibility. Sustain. Cities Soc. 2019, 51, 101792. [Google Scholar] [CrossRef]
- Chen, H.; Cong, T.N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- Cao, Y.; Wei, W.; Wang, C.; Mei, S.; Huang, S.; Zhang, X. Probabilistic estimation of wind power ramp events: A data-driven optimization approach. IEEE Access 2019, 7, 23261–23269. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, J.; He, M. Regional Wind Power Ramp Forecasting through Multinomial Logistic Regression. In Proceedings of the 2020 IEEE Green Technologies Conference (GreenTech), Oklahoma City, OK, USA, 1–3 April 2020; pp. 36–41. [Google Scholar]
- Ouyang, T.; Zha, X.; Qin, L.; He, Y.; Tang, Z. Prediction of wind power ramp events based on residual correction. Renew. Energy 2019, 136, 781–792. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, M.; Hodge, B.M.; Florita, A.; Freedman, J. Ramp forecasting performance from improved short-term wind power forecasting over multiple spatial and temporal scales. Energy 2017, 122, 528–541. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Zhang, J.; Florita, A.R.; Hodge, B.M.; Ke, D.; Sun, Y. An optimized swinging door algorithm for identifying wind ramping events. IEEE Trans. Sustain. Energy 2015, 7, 150–162. [Google Scholar] [CrossRef]
- Zhu, X.; Zeng, B.; Dong, H.; Liu, J. An interval-prediction based robust optimization approach for energy-hub operation scheduling considering flexible ramping products. Energy 2020, 194, 116821. [Google Scholar] [CrossRef]
- Lee, T.Y. Optimal spinning reserve for a wind-thermal power system using EIPSO. IEEE Trans. Power Syst. 2007, 22, 1612–1621. [Google Scholar] [CrossRef]
- Hedayati-Mehdiabadi, M.; Zhang, J.; Hedman, K.W. Wind power dispatch margin for flexible energy and reserve scheduling with increased wind generation. IEEE Trans. Sustain. Energy 2015, 6, 1543–1552. [Google Scholar] [CrossRef]
- Cornejo-Bueno, L.; Cuadra, L.; Jiménez-Fernández, S.; Acevedo-Rodríguez, J.; Prieto, L.; Salcedo-Sanz, S. Wind power ramp events prediction with hybrid machine learning regression techniques and reanalysis data. Energies 2017, 10, 1784. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Feng, C.; Wang, Z.; Zhang, J.; Wang, Q.; Florita, A.; Krishnan, V.; Hodge, B.M. Probabilistic wind power ramp forecasting based on a scenario generation method. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; p. 1. [Google Scholar]
- Han, L.; Zhang, R.; Chen, K. A coordinated dispatch method for energy storage power system considering wind power ramp event. Appl. Soft Comput. 2019, 84, 105732. [Google Scholar] [CrossRef]
- Liu, W.; Gong, Y.; Geng, G.; Jiang, Q. Refined ramp event characterisation for wind power ramp control using energy storage system. IET Renew. Power Gener. 2019, 13, 1731–1740. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, Z.; Ye, R.; Lin, Z.; Tang, Y. An ordered curtailment strategy for offshore wind power under extreme weather conditions considering the resilience of the grid. IEEE Access 2019, 7, 54824–54833. [Google Scholar] [CrossRef]
- Apostolakos, S.; Grammatikakis, I.; Mexis, D.; Karras, I.; Sakellariou, A.V. Centralized Monitoring and Power Plant Controller Targeting Smart-Grids: The Inaccess Platform. In IoT for Smart Grids; Springer: Berlin/Heidelberg, Germany, 2019; pp. 225–251. [Google Scholar]
- Huber, M.; Dimkova, D.; Hamacher, T. Integration of wind and solar power in Europe: Assessment of flexibility requirements. Energy 2014, 69, 236–246. [Google Scholar] [CrossRef] [Green Version]
- Navid, N.; Rosenwald, G. Market solutions for managing ramp flexibility with high penetration of renewable resource. IEEE Trans. Sustain. Energy 2012, 3, 784–790. [Google Scholar] [CrossRef]
- Hill, C.A.; Such, M.C.; Chen, D.; Gonzalez, J.; Grady, W.M. Battery energy storage for enabling integration of distributed solar power generation. IEEE Trans. Smart Grid 2012, 3, 850–857. [Google Scholar] [CrossRef]
- Abuella, M.; Chowdhury, B. Forecasting of solar power ramp events: A post-processing approach. Renew. Energy 2019, 133, 1380–1392. [Google Scholar] [CrossRef]
- Li, J.; Xu, Z.; Zhao, J.; Chai, S.; Yu, Y.; Xu, X. Model predictive control based ramp minimization in active distribution network using energy storage systems. Electr. Power Components Syst. 2019, 47, 201–211. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, Z.; Yang, M.; Jia, D.; Pei, W.; Xu, B. Overview of energy storage in renewable energy power fluctuation mitigation. CSEE J. Power Energy Syst. 2019, 6, 160–173. [Google Scholar]
- He, Y.; Wang, M.; Xu, Z. Coordinative low-voltage-ride-through control for the wind-photovoltaic hybrid generation system. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 1503–1514. [Google Scholar] [CrossRef]
- Wu, Y.K.; Chang, S.M.; Mandal, P. Grid-connected wind power plants: A survey on the integration requirements in modern grid codes. IEEE Trans. Ind. Appl. 2019, 55, 5584–5593. [Google Scholar] [CrossRef]
- Meegahapola, L.; Sguarezi, A.; Bryant, J.S.; Gu, M.; Conde, D.E.R.; Cunha, R.B.A. Power System Stability with Power-Electronic Converter Interfaced Renewable Power Generation: Present Issues and Future Trends. Energies 2020, 13, 3441. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, H.; Kong, X.; Wang, Q.; Cui, H. Intelligent wind turbine blade icing detection using supervisory control and data acquisition data and ensemble deep learning. Energy Sci. Eng. 2019, 7, 2633–2645. [Google Scholar] [CrossRef]
- Menemenlis, N.; Huneault, M.; Robitaille, A. Thoughts on power system flexibility quantification for the short-term horizon. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–8. [Google Scholar]
- van Stiphout, A.; De Vos, K.; Deconinck, G. The impact of operating reserves on investment planning of renewable power systems. IEEE Trans. Power Syst. 2016, 32, 378–388. [Google Scholar] [CrossRef]
- de Mars, P.; O’Sullivan, A.; Keppo, I. Estimating the impact of variable renewable energy on base-load cycling in the GB power system. Energy 2020, 195, 117041. [Google Scholar] [CrossRef]
- Salman, A.M.; Li, Y. Age-dependent fragility and life-cycle cost analysis of wood and steel power distribution poles subjected to hurricanes. Struct. Infrastruct. Eng. 2016, 12, 890–903. [Google Scholar] [CrossRef]
- He, G.; Chen, Q.; Kang, C.; Xia, Q. Optimal operating strategy and revenue estimates for the arbitrage of a vanadium redox flow battery considering dynamic efficiencies and capacity loss. IET Gener. Transm. Distrib. 2016, 10, 1278–1285. [Google Scholar] [CrossRef]
- Martinot, E. Grid integration of renewable energy: Flexibility, innovation, and experience. Annu. Rev. Environ. Resour. 2016, 41, 223–251. [Google Scholar] [CrossRef]
- Salman, U.; Khan, K.; Alismail, F.; Khalid, M. Techno-Economic Assessment and Operational Planning of Wind-Battery Distributed Renewable Generation System. Sustainability 2021, 13, 6776. [Google Scholar] [CrossRef]
- Kelly, J.J.; Leahy, P.G. Optimal investment timing and sizing for battery energy storage systems. J. Energy Storage 2020, 28, 101272. [Google Scholar] [CrossRef]
- Alhammad, H.I.; Khan, K.A.; Konash, O.F.; Khalid, M. Deployment of Battery Energy Storage System in a Renewable Integrated Distribution Network Based on Long-Term Load Expansion. In Proceedings of the 2021 31st Australasian Universities Power Engineering Conference (AUPEC), Perth, Australia, 26–30 September 2021; pp. 1–6. [Google Scholar]
- Alhammad, H.I.; Khan, K.A.; Alismail, F.; Khalid, M. Capacity Optimization and Optimal Placement of Battery Energy Storage System for Solar PV Integrated Power Network. In Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 10–14 October 2021; pp. 847–852. [Google Scholar]
- Arabzadeh, V.; Mikkola, J.; Jasiūnas, J.; Lund, P.D. Deep decarbonization of urban energy systems through renewable energy and sector-coupling flexibility strategies. J. Environ. Manag. 2020, 260, 110090. [Google Scholar] [CrossRef]
- Das, P.; Mathuria, P.; Bhakar, R.; Mathur, J.; Kanudia, A.; Singh, A. Flexibility requirement for large-scale renewable energy integration in Indian power system: Technology, policy and modeling options. Energy Strategy Rev. 2020, 29, 100482. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, Y. The flexibility pathways for integrating renewable energy into China’s coal dominated power system: The case of Beijing-Tianjin-Hebei Region. J. Clean. Prod. 2020, 245, 118925. [Google Scholar] [CrossRef]
- Guo, Z.; Zheng, Y.; Li, G. Power system flexibility quantitative evaluation based on improved universal generating function method: A case study of Zhangjiakou. Energy 2020, 205, 117963. [Google Scholar] [CrossRef]
- Impram, S.; Nese, S.V.; Oral, B. Challenges of renewable energy penetration on power system flexibility: A survey. Energy Strategy Rev. 2020, 31, 100539. [Google Scholar] [CrossRef]
- Zhou, Y.; Cao, S.; Hensen, J.L.; Hasan, A. Heuristic battery-protective strategy for energy management of an interactive renewables–buildings–vehicles energy sharing network with high energy flexibility. Energy Convers. Manag. 2020, 214, 112891. [Google Scholar] [CrossRef]
- Hunter, C.A.; Penev, M.M.; Reznicek, E.P.; Eichman, J.; Rustagi, N.; Baldwin, S.F. Techno-economic analysis of long-duration energy storage and flexible power generation technologies to support high-variable renewable energy grids. Joule 2021, 5, 2077–2101. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Li, G.; Wang, J.; Zhao, D.; Chen, C. Improving operational flexibility of integrated energy system with uncertain renewable generations considering thermal inertia of buildings. Energy Convers. Manag. 2020, 207, 112526. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Muratori, M.; Eichman, J.; Wei, M.; Saxena, S.; Zhang, C. Quantifying the flexibility of hydrogen production systems to support large-scale renewable energy integration. J. Power Sources 2018, 399, 383–391. [Google Scholar] [CrossRef]
- Wang, Q.; Hodge, B. Enhancing Power System Operational Flexibility with Flexible Ramping Products: A Review. IEEE Trans. Ind. Informatics 2017, 13, 1652–1654. [Google Scholar] [CrossRef]
- Siano, P. Demand response and smart grids—A survey. Renew. Sustain. Energy Rev. 2014, 30, 461–478. [Google Scholar] [CrossRef]
- Rosso, A.; Ma, J.; Kirschen, D.S.; Ochoa, L.F. Assessing the contribution of demand side management to power system flexibility. In Proceedings of the 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, 12–15 December 2011; pp. 4361–4365. [Google Scholar]
- Arteconi, A.; Polonara, F. Assessing the demand side management potential and the energy flexibility of heat pumps in buildings. Energies 2018, 11, 1846. [Google Scholar] [CrossRef] [Green Version]
- Stavrakas, V.; Flamos, A. A modular high-resolution demand-side management model to quantify benefits of demand-flexibility in the residential sector. Energy Convers. Manag. 2020, 205, 112339. [Google Scholar] [CrossRef]
- Lizana, J.; Friedrich, D.; Renaldi, R.; Chacartegui, R. Energy flexible building through smart demand-side management and latent heat storage. Appl. Energy 2018, 230, 471–485. [Google Scholar] [CrossRef] [Green Version]
- Ayón, X.; Gruber, J.K.; Hayes, B.P.; Usaola, J.; Prodanović, M. An optimal day-ahead load scheduling approach based on the flexibility of aggregate demands. Appl. Energy 2017, 198, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gruber, J.K.; Prodanovic, M. Residential energy load profile generation using a probabilistic approach. In Proceedings of the 2012 Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation, Malta, Malta, 14–16 November 2012; pp. 317–322. [Google Scholar]
- Marneris, I.G.; Biskas, P.N.; Bakirtzis, E.A. An integrated scheduling approach to underpin flexibility in European power systems. IEEE Trans. Sustain. Energy 2015, 7, 647–657. [Google Scholar] [CrossRef]
- Min, C.G.; Kim, M.K. Flexibility-based reserve scheduling of pumped hydroelectric energy storage in Korea. Energies 2017, 10, 1478. [Google Scholar] [CrossRef] [Green Version]
- Niu, J.; Tian, Z.; Lu, Y.; Zhao, H. Flexible dispatch of a building energy system using building thermal storage and battery energy storage. Appl. Energy 2019, 243, 274–287. [Google Scholar] [CrossRef]
- Richter, M.; Oeljeklaus, G.; Görner, K. Improving the load flexibility of coal-fired power plants by the integration of a thermal energy storage. Appl. Energy 2019, 236, 607–621. [Google Scholar] [CrossRef]
- Ji, H.; Wang, C.; Li, P.; Song, G.; Yu, H.; Wu, J. Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators. Appl. Energy 2019, 239, 706–714. [Google Scholar] [CrossRef]
- Shahmohammadi, A.; Sioshansi, R.; Conejo, A.J.; Afsharnia, S. The role of energy storage in mitigating ramping inefficiencies caused by variable renewable generation. Energy Convers. Manag. 2018, 162, 307–320. [Google Scholar] [CrossRef]
- Loisel, R. Power system flexibility with electricity storage technologies: A technical–economic assessment of a large-scale storage facility. Int. J. Electr. Power Energy Syst. 2012, 42, 542–552. [Google Scholar] [CrossRef]
- Min, C. Impact Analysis of Transmission Congestion on Power System Flexibility in Korea. Energies 2020, 13, 2191. [Google Scholar] [CrossRef]
- Vincent, R.; Houari, A.; Ait-Ahmed, M.; Benkhoris, M.F. Influence of different time horizon-based battery energy management strategies on residential microgrid profitability. J. Energy Storage 2020, 29, 101340. [Google Scholar] [CrossRef]
- Wu, X.; Hu, X.; Moura, S.; Yin, X.; Pickert, V. Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array. J. Power Sources 2016, 333, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Lokeshgupta, B.; Sivasubramani, S. Multi-objective home energy management with battery energy storage systems. Sustain. Cities Soc. 2019, 47, 101458. [Google Scholar] [CrossRef]
- Nayak, C.K.; Kasturi, K.; Nayak, M.R. Economical management of microgrid for optimal participation in electricity market. J. Energy Storage 2019, 21, 657–664. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Wang, X. An improved charging/discharging strategy of lithium batteries considering depreciation cost in day-ahead microgrid scheduling. Energy Convers. Manag. 2015, 105, 675–684. [Google Scholar] [CrossRef]
- Sarker, M.R.; Murbach, M.D.; Schwartz, D.T.; Ortega-Vazquez, M.A. Optimal operation of a battery energy storage system: Trade-off between grid economics and storage health. Electr. Power Syst. Res. 2017, 152, 342–349. [Google Scholar] [CrossRef]
- Almaghrebi, A.; Aljuheshi, F.; Rafaie, M.; James, K.; Alahmad, M. Data-driven charging demand prediction at public charging stations using supervised machine learning regression methods. Energies 2020, 13, 4231. [Google Scholar] [CrossRef]
- Alahmed, A.S.; Taiwo, S.U.; Abido, M.A.; Almuhaini, M.M. Intelligent flexible priority list for reconfiguration of microgrid demands using deep neural network. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; pp. 3490–3495. [Google Scholar]
- Guo, Y.; Wang, J.; Chen, H.; Li, G.; Liu, J.; Xu, C.; Huang, R.; Huang, Y. Machine learning-based thermal response time ahead energy demand prediction for building heating systems. Appl. Energy 2018, 221, 16–27. [Google Scholar] [CrossRef]
- Paterakis, N.G.; Mocanu, E.; Gibescu, M.; Stappers, B.; van Alst, W. Deep learning versus traditional machine learning methods for aggregated energy demand prediction. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Turin, Italy, 26–29 September 2017; pp. 1–6. [Google Scholar]
- Saputra, Y.M.; Hoang, D.T.; Nguyen, D.N.; Dutkiewicz, E.; Mueck, M.D.; Srikanteswara, S. Energy demand prediction with federated learning for electric vehicle networks. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Almasoud, A.; Gandayh, H.M. Future of solar energy in Saudi Arabia. J. King Saud-Univ.-Eng. Sci. 2015, 27, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Yuan, Y.; Chen, H.; Wang, J.; Guo, Y.; Ahmad, T. A novel energy demand prediction strategy for residential buildings based on ensemble learning. Energy Procedia 2019, 158, 3411–3416. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, S. Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities. Appl. Energy 2020, 262, 114416. [Google Scholar] [CrossRef]
- Brijs, T.; De Jonghe, C.; Hobbs, B.F.; Belmans, R. Interactions between the design of short-term electricity markets in the CWE region and power system flexibility. Appl. Energy 2017, 195, 36–51. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Kezunovic, M. Impact on power system flexibility by electric vehicle participation in ramp market. IEEE Trans. Smart Grid 2015, 7, 1285–1294. [Google Scholar] [CrossRef]
- Zhang, Y.; Farnoosh, A. Analyzing the dynamic impact of electricity futures on revenue and risk of renewable energy in China. Energy Policy 2019, 132, 678–690. [Google Scholar] [CrossRef]
- Woo, C.K.; Moore, J.; Schneiderman, B.; Ho, T.; Olson, A.; Alagappan, L.; Chawla, K.; Toyama, N.; Zarnikau, J. Merit-order effects of renewable energy and price divergence in California’s day-ahead and real-time electricity markets. Energy Policy 2016, 92, 299–312. [Google Scholar] [CrossRef]
- Hui, W.; Xin-gang, Z.; Ling-zhi, R.; Fan, L. An agent-based modeling approach for analyzing the influence of market participants’ strategic behavior on green certificate trading. Energy 2021, 218, 119463. [Google Scholar] [CrossRef]
- Bunn, D.; Yusupov, T. The progressive inefficiency of replacing renewable obligation certificates with contracts-for-differences in the UK electricity market. Energy Policy 2015, 82, 298–309. [Google Scholar] [CrossRef]
- Saboori, H.; Mohammadi, M.; Taghe, R. Virtual power plant (VPP), definition, concept, components and types. In Proceedings of the 2011 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 25–28 March 2011; pp. 1–4. [Google Scholar]
- Zhang, G.; Jiang, C.; Wang, X. Comprehensive review on structure and operation of virtual power plant in electrical system. IET Gener. Transm. Distrib. 2019, 13, 145–156. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, B.; Pan, Z.; Sun, H.; Guo, Q.; Xue, Y. Aggregating additional flexibility from quick-start devices for multi-energy virtual power plants. IEEE Trans. Sustain. Energy 2020, 12, 646–658. [Google Scholar] [CrossRef]
- Yavuz, L.; Önen, A.; Muyeen, S.; Kamwa, I. Transformation of microgrid to virtual power plant—A comprehensive review. IET Gener. Transm. Distrib. 2019, 13, 1994–2005. [Google Scholar] [CrossRef]
- Zajc, M.; Kolenc, M.; Suljanović, N. Virtual power plant communication system architecture. In Smart Power Distribution Systems; Elsevier: Amsterdam, The Netherlands, 2019; pp. 231–250. [Google Scholar]
- Yan, Q.; Ai, X.; Li, J. Low-Carbon Economic Dispatch Based on a CCPP-P2G Virtual Power Plant Considering Carbon Trading and Green Certificates. Sustainability 2021, 13, 12423. [Google Scholar] [CrossRef]
- Ullah, Z.; Mokryani, G.; Campean, F.; Hu, Y.F. Comprehensive review of VPPs planning, operation and scheduling considering the uncertainties related to renewable energy sources. IET Energy Syst. Integr. 2019, 1, 147–157. [Google Scholar] [CrossRef]
- Marinescu, B.; Gomis-Bellmunt, O.; Dörfler, F.; Schulte, H.; Sigrist, L. Dynamic virtual power plant: A new concept for grid integration of renewable energy sources. arXiv 2021, arXiv:2108.00153. [Google Scholar]
- Liu, Z.; Zheng, W.; Qi, F.; Wang, L.; Zou, B.; Wen, F.; Xue, Y. Optimal dispatch of a virtual power plant considering demand response and carbon trading. Energies 2018, 11, 1488. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Qin, J.; Liang, J.; Zhao, M.; Wang, H.; Liu, K. Operation optimization of integrated energy system with green certificate cross-chain transaction. Power Syst. Technol. 2021, 2, 1–11. [Google Scholar]
- Helgesen, P.I.; Tomasgard, A. An equilibrium market power model for power markets and tradable green certificates, including Kirchhoff’s Laws and Nash-Cournot competition. Energy Econ. 2018, 70, 270–288. [Google Scholar] [CrossRef]
- Hongliang, W.; Benjie, L.; Daoxin, P.; Ling, W. Virtual Power Plant Participates in the Two-Level Decision-Making Optimization of Internal Purchase and Sale of Electricity and External Multi-Market. IEEE Access 2021, 9, 133625–133640. [Google Scholar] [CrossRef]
- Mei, T.; Bian, Q.; Xie, J. Low-carbon power dispatch and revenue sharing considering carbon emission rights. Autom. Electr. Power Syst. 2016, 40, 49–55. [Google Scholar]
- Guo, J.; Gu, F.; Liu, Y.; Liang, X.; Mo, J.; Fan, Y. Assessing the impact of ETS trading profit on emission abatements based on firm-level transactions. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
References | Model Applied/Method | Highlights/Strategy |
---|---|---|
[69,78,79,80] | ANN | Studied WPREs and classifications |
[81,82,83] | improved swinging door algorithm | Prediction of WPREs |
[84,85,86] | Feature selections | Ramping in wind power generation |
[87,88] | ANN, stochastic process | WPRE forecast |
[89,90,91] | WPRE with ESS | |
[96,97,98] | SPRE, SIRE with ESS | |
[69,92,93] | Definition and characteristics of SIRE | |
[95,98] | SIRE with ESS |
References | Model Applied/Method | Highlights/Strategy |
---|---|---|
[122,125,126,127] | Review | DSM classification, market flexibility |
[123] | Review | DR applied in grid flexibility, automation, PEV |
[128,129,130] | Probabilistic approach | Flexibility in residential and non-residential sector |
[124] | MILP | Flexibility with DSM, model optimization for short-term and long-term |
References | Model Applied/Method | Highlights/Strategy |
---|---|---|
[136] | Simulation | Classification of ESS flexibility capabilities |
[133] | Dynamola | Used integrated thermal energy storage to improve flexibility |
[132] | linear model, MILP | Dispatch of building energy using TES and ESS |
[134] | Simulation | ESS in distribution network based on quantification analysis |
[135] | MILP | Role of ESS in between RE and conventional generation in a market environment |
[131] | RSE | PHES for improving power system flexibility |
[131,137] | RSE | Ramping capabilities in power system |
References | Model Applied/Method | Highlights/Strategy |
---|---|---|
[145] | ANN | Load prioritization during power system restoration after fault. |
[146] | SVM, MLR, MLP | Prediction of demand based meteorological parameters |
[144,148] | SVM, RF, XGB, | Charging demand in PEV in V2G and G2V applications |
[150,151] | SVM, BPN, MLR, MLP | Prediction of residential demand based on energy parameters and weather factors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salman, U.T.; Shafiq, S.; Al-Ismail, F.S.; Khalid, M. A Review of Improvements in Power System Flexibility: Implementation, Operation and Economics. Electronics 2022, 11, 581. https://doi.org/10.3390/electronics11040581
Salman UT, Shafiq S, Al-Ismail FS, Khalid M. A Review of Improvements in Power System Flexibility: Implementation, Operation and Economics. Electronics. 2022; 11(4):581. https://doi.org/10.3390/electronics11040581
Chicago/Turabian StyleSalman, Umar Taiwo, Saifullah Shafiq, Fahad S. Al-Ismail, and Muhammad Khalid. 2022. "A Review of Improvements in Power System Flexibility: Implementation, Operation and Economics" Electronics 11, no. 4: 581. https://doi.org/10.3390/electronics11040581
APA StyleSalman, U. T., Shafiq, S., Al-Ismail, F. S., & Khalid, M. (2022). A Review of Improvements in Power System Flexibility: Implementation, Operation and Economics. Electronics, 11(4), 581. https://doi.org/10.3390/electronics11040581