Design of Ultra-Low Voltage/Power Circuits and Systems
Funding
Conflicts of Interest
References
- Alioto, M. Enabling the Internet of Things: From Integrated Circuits to Integrated Systems; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Kim, B.; Lee, S.; Trivedi, A.R.; Song, W.J. Energy-Efficient Acceleration of Deep Neural Networks on Realtime-Constrained Embedded Edge Devices. IEEE Access 2020, 8, 216259–216270. [Google Scholar] [CrossRef]
- Seok, M.; Kim, G.; Blaauw, D.; Sylvester, D. A portable 2-transistor picowatt temperature-compensated voltage reference operating at 0.5 V. IEEE J. Solid-State Circuits 2012, 47, 2534–2545. [Google Scholar] [CrossRef]
- Fassio, L.; Lin, L.; De Rose, R.; Lanuzza, M.; Crupi, F.; Alioto, M. Trimming-Less Voltage Reference for Highly Uncertain Harvesting Down to 0.25 V, 5.4 pW. IEEE J. Solid-State Circuits 2021, 56, 3134–3144. [Google Scholar] [CrossRef]
- Nguyen, V.; Schembari, F.; Staszewski, R.B. A Deep-Subthreshold Variation-Aware 0.2-V Open-Loop VCO-Based ADC. IEEE J. Solid-State Circuits 2021. [Google Scholar] [CrossRef]
- Fassio, L.; Lin, L.; De Rose, R.; Lanuzza, M.; Crupi, F.; Alioto, M. A 0.6-to-1.8 V CMOS Current Reference with Near-100% Power Utilization. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3038–3042. [Google Scholar] [CrossRef]
- Abdelraheem, M.; Abdelhafeez, M.; Nassr, A. IoT-Based Interdigital Capacitance Sensing System for Damage Detection in CFRP-Concrete Structures. IEEE Access 2021, 9, 138658–138667. [Google Scholar] [CrossRef]
- Wang, X.; Wang, P.H.P.; Cao, Y.; Mercier, P.P. A 0.6 V 75nW all-CMOS temperature sensor with 1.67 m° C/mV supply sensitivity. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 2274–2283. [Google Scholar] [CrossRef]
- Zambrano, B.; Garzón, E.; Strangio, S.; Crupi, F.; Lanuzza, M. A 0.05 mm2, 350 mV, 14 nW Fully-Integrated Temperature Sensor in 180-nm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 2021. [Google Scholar] [CrossRef]
- Taco, R.; Levi, I.; Lanuzza, M.; Fish, A. An 88-fJ/40-MHz [0.4 V]–0.61-pJ/1-GHz [0.9 V] Dual-Mode Logic 8 × 8 bit Multiplier Accumulator with a Self-Adjustment Mechanism in 28-nm FD-SOI. IEEE J. Solid-State Circuits 2019, 54, 560–568. [Google Scholar] [CrossRef]
- Gebregiorgis, A.; Tahoori, M.B. Fine-Grained Energy-Constrained Microprocessor Pipeline Design. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2018, 26, 457–469. [Google Scholar] [CrossRef]
- Shavit, N.; Stanger, I.; Taco, R.; Lanuzza, M.; Fish, A. A 0.8-V, 1.54-pJ/940-MHz dual-mode logic-based 16× 16-b booth multiplier in 16-nm FinFET. IEEE Solid-State Circuits Lett. 2020, 3, 314–317. [Google Scholar] [CrossRef]
- Garzón, E.; Greenblatt, Y.; Harel, O.; Lanuzza, M.; Teman, A. Gain-Cell Embedded DRAM Under Cryogenic Operation—A First Study. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2021, 29, 1319–1324. [Google Scholar] [CrossRef]
- IRDS-IEEE. International Roadmap for Devices and Systems—Cryogenic Electronics and Quantum Information Processing. Available online: https://irds.ieee.org/editions/2021 (accessed on 1 February 2022).
- Yang, Y.; Park, J.; Song, S.C.; Wang, J.; Yeap, G.; Jung, S.O. Single-Ended 9T SRAM Cell for Near-Threshold Voltage Operation with Enhanced Read Performance in 22-nm FinFET Technology. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2015, 23, 2748–2752. [Google Scholar] [CrossRef]
- Garzón, E.; De Rose, R.; Crupi, F.; Teman, A.; Lanuzza, M. Exploiting STT-MRAMs for cryogenic non-volatile cache applications. IEEE Trans. Nanotechnol. 2021, 20, 123–128. [Google Scholar] [CrossRef]
- Brunetti, A.M.; Choubey, B. A low dark current 160 dB logarithmic pixel with low voltage photodiode biasing. Electronics 2021, 10, 1096. [Google Scholar] [CrossRef]
- Ria, A.; Catania, A.; Bruschi, P.; Piotto, M. A Low-Power CMOS Bandgap Voltage Reference for Supply Voltages Down to 0.5 V. Electronics 2021, 10, 1901. [Google Scholar] [CrossRef]
- Garzón, E.; Teman, A.; Lanuzza, M. Embedded Memories for Cryogenic Applications. Electronics 2022, 11, 61. [Google Scholar] [CrossRef]
- Vatalaro, M.; Moposita, T.; Strangio, S.; Trojman, L.; Vladimirescu, A.; Lanuzza, M.; Crupi, F. A low-voltage, low-power reconfigurable current-mode softmax circuit for analog neural networks. Electronics 2021, 10, 1004. [Google Scholar] [CrossRef]
- Vicuña, K.; Mosquera, C.; Musello, A.; Benedictis, S.; Rendón, M.; Garzón, E.; Prócel, L.M.; Trojman, L.; Taco, R. Energy Efficient Self-Adaptive Dual Mode Logic Address Decoder. Electronics 2021, 10, 1052. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanuzza, M.; De Rose, R.; Strangio, S. Design of Ultra-Low Voltage/Power Circuits and Systems. Electronics 2022, 11, 607. https://doi.org/10.3390/electronics11040607
Lanuzza M, De Rose R, Strangio S. Design of Ultra-Low Voltage/Power Circuits and Systems. Electronics. 2022; 11(4):607. https://doi.org/10.3390/electronics11040607
Chicago/Turabian StyleLanuzza, Marco, Raffaele De Rose, and Sebastiano Strangio. 2022. "Design of Ultra-Low Voltage/Power Circuits and Systems" Electronics 11, no. 4: 607. https://doi.org/10.3390/electronics11040607
APA StyleLanuzza, M., De Rose, R., & Strangio, S. (2022). Design of Ultra-Low Voltage/Power Circuits and Systems. Electronics, 11(4), 607. https://doi.org/10.3390/electronics11040607