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Abstract: Predicting stock market prices is an important and interesting task in academic and
financial research. The volatile nature of the stock market means that predicting stock market prices
is a challenging task. However, recent advancements in machine learning, especially in deep learning
techniques, have made it possible for researchers to use such techniques to predict future stock trends
based on historical financial data, social media news, financial news, and stock technical indicators
(STIs). This work focused on the prediction of closing stock prices based on using ten years of
Yahoo Finance data of ten renowned stocks and STIs by using 1D DenseNet and an autoencoder.
The calculated STIs were first used as the input for the autoencoder for dimensionality reduction,
resulting in less correlation between the STIs. These STIs, along with the Yahoo finance data, were
then fed into the 1D DenseNet. The resultant features obtained from the 1D DenseNet were then
used as input for the softmax layer residing inside the 1D DenseNet framework for the prediction of
closing stock prices for short-, medium-, and long-term perspectives. Based on the predicted trends
of the stock prices, our model presented the user with one of three suggested signals, i.e., buy, sell, or
hold. The experimental results showed that the proposed approach outperformed the state-of-the-art
techniques by obtaining a minimum MAPE value of 0.41.

Keywords: deep learning; DenseNet; stock prediction; STIs; autoencoder

1. Introduction

Predicting stock market prices has always been challenging [1,2] because of their
long-term instability. The old market theory considers it difficult to forecast stock prices
and that stocks perform at random. However, current scientific investigations indicate
that high stock standards are reflected in earlier archives. Therefore, knowledge of the
change developments is required to forecast values efficiently [3]. Furthermore, stock
market companies and movements are influenced by numerous financial aspects, such as
governmental proceedings, common commercial circumstances, product value indicators,
stockholders’ anticipations, development of more stock markets, and the consciousness
of shareholders [4]. The cost of stock units is calculated through high-level market capi-
talization. Various scientific factors allow numerical facts regarding the stock values [5].
Usually, stock indicators are increased from rates of stocks, along with high-level market
assets, and they frequently evaluate the financial status in every nation. For instance,
discoveries demonstrated that financial development in countries is certainly squeezed
by stock market capitalization [6]. The description of a stock price change is vague and
becomes risky for shareholders. Additionally, it is generally hard to identify the market
significance for the administration. The stock principles are mostly vibrant, nonlinear, and
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non-parametric; hence, they regularly lead to the low performance of the mathematical
models and incapacity to forecast the correct principles and developments [7].

Generally, traditional time-series forecasting techniques are based on static devel-
opments; thus, estimating stock values is the fundamental problem [8]. Additionally,
predicting the stock trend is a major problem due to the included variables. Therefore, the
market performs like a voting machine in the short term [9]. However, in the longer term,
it acts as a weighing machine and, hence, there is scope for predicting the market move-
ments for a more extended timeframe [10]. Machine learning (ML) is the most effective
technique; it comprises various methods to improve a specific case study’s performance
efficiently. According to previous research, ML can identify different patterns and effective
information from the dataset [11]. Compared to traditional ML methods, the ensemble
techniques are ML-based, where several ordinary procedures are employed to solve a
specific challenge and were shown to outperform each of the approaches while calculating
a time series [12,13]. For prediction challenges, boosting and bagging are efficient and
prevalent techniques and ensemble methods.

The advancement of deep-learning-based methods in several fields, e.g., text analysis,
trends prediction, and image analysis, have urged researchers to explore them in the field
of stocks as well. Therefore, numerous DL-based approaches have been presented to
predict the future trends of stocks. DL is the extended form of multilayer ANN-based
ML approaches, which are empowered enough to enhance the prediction accuracy of
algorithms. Due to the extensive advantages and power of DL techniques, these methods
have shown better performance in stock price prediction.

Even though several studies [14–16] were presented regarding stock market prediction,
most of them were focused on future price prediction only. Such studies do not contribute
much to assist investors and buyers in their decision-making since the main focus of
investors is on the reversal points of stocks instead of each changing price. More specifically,
knowing whether a stock price will either increase or decrease quickly or remain constant
for a specific time can help investors make their decision. Therefore, there is a need for
such an automated system that can determine the future prices of several stocks and
assist humans in deciding whether to buy, sell, or hold a particular stock. However, the
ever-changing nature of stocks complicates the prediction process.

Several technical analysis approaches are extensively employed in determining the RP
by utilizing several STIs. The technical analysis-based approaches are focused on predicting
the stock behaviors by nominating several indicators and describing their evaluation
conditions. Several new STIs have emerged that can assist in improving prediction accuracy.
Taking advantage of DL and the latest STIs, we present a novel approach to predict closing
stock prices. More descriptively, the proposed approach consists of three main steps. In the
first step, ten years of stock data were gathered from Yahoo Finance, from which eighteen
STIs were computed. The computed STIs were passed as input into the autoencoder for
dimensionality reduction in the next step. Finally, the resultant STIs with lesser correlation
and the Yahoo Finance data were passed as input into a 1D framework to calculate the deep
features. Finally, the computed features were classified with the 1D DenseNet framework
for short-, medium-, and long-term stock trends prediction in the form of closing stock
prices. Here are the contributions of our work:

• Present a novel framework for stock price prediction, namely, AEI-DNET using 1D
DenseNet and an autoencoder, reducing the training and testing time complexities.

• Propose a method to predict the buy/sell/hold signal based on the short-, medium-,
and long-term predictions made by the 1D DenseNet framework.

• Propose a robust framework for stock market prediction due to efficient STIs selection
using an autoencoder.

• Present a framework that predicted the future stock prices and helped the decision-
makers decide their actions, i.e., buy, sell, or hold.

• Obtain state-of-the-art performance over the Yahoo Finance data due to the ability of
DenseNet to present the complex price transformations in a viable manner.
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The rest of the paper is organized as follows: Section 2 provides an overview of the
research already carried out. Section 3 has a detailed description of the proposed method.
Section 4 provides extensive dataset details, evaluation parameters, experimentation, and
obtained results. In Section 5, we conclude the paper.

2. Related Work

This section presents existing work performed for predicting stock market trends via
using stock technical indicators (STIs). The methods used for stock market price prediction
are classified into two types: an ML-based approach or DL-based methods.

Liang et al. [17] proposed an ML-based approach to predict future stock prices. Initially,
a detailed set of 40 financial ratios (FRs), along with 21 corporate governance indicators
(CGIs), were collected for US companies. To obtain more robust results for stock prediction,
six specific FRs and CGIs were selected to train the SVM classifier. The method [17] showed
better stock prediction results than other methods; however, the model should be evaluated
over a more challenging and larger dataset. In [18], 10 STIs were used to train three
classifiers: SVM, KNN, and ANN. This method attained the best performance with the
SVM classifier; however, the noisy samples severely affected forecasting accuracy. Chuna
et al. [19] proposed a framework to examine the relationship between one-day-ahead stock
instability and STIs. To accomplish this, the model-free implied volatility index (VKOSPI)
and STIs were used to predict stock behavior. This work was robust regarding stock price
prediction; however, performance still requires enhancements. Dai et al. [20] introduced
a method for stock return predictability by introducing new STIs. The work used three
recognized technical trading principles, i.e., exponential moving average rules, relative
strength indices, and KDJ, to predict buy/sell signals using a complicated mathematical
method that employed recent or previous data. Based on the new STIs, the work presented
a two-step economic constraint model to predict stock returns. The work shows better stock
movement prediction accuracy; however, evaluation is needed over a more challenging and
standard dataset. Fayek et al. [21] introduced an ML-based approach, namely, the multi-
objective genetic algorithm (MOGA) technique, to boost the parameters of four different
STIs. The main purpose of this work was to predict annual profit, along with the Sharpe
ratio. Over the 30 years of the DJIA (Dow Jones Industrial Average) stock index closing
prices, the proposed work was trained. Evaluations confirmed that the boosted parameters
could improve the model’s future stock movement prediction accuracy. However, this work
required extensive training data. Maguluri et al. [22] proposed an approach for stock trend
prediction. After performing the preprocessing step, 50 STIs were selected to train the non-
linear SVM classifier. This work presented a low-cost solution to stock prediction; however,
the performance degraded for noisy samples. Zhang et al. [23] introduced a technique
for stock price prediction. The work introduced a two-stage ensemble ML framework,
SVR-ENANFIS, to predict future stock movements by merging key points of support
vector regression (SVR) with ensemble adaptive neuro-fuzzy inference system (ENANFIS).
Initially, the SVR module was used for predicting the future values of STIs. In the next step,
the ENANFIS module was employed to determine the closing price by using the output
value of the first step. In the last step, the introduced framework, namely, SVRENANFIS,
was evaluated on several stock data sets. The work improved the stock forecasting accuracy;
however, it suffered from high computational costs due to its two-stage network.

Agrawal et al. [24] proposed a DL-based approach, namely, optimized long short-term
memory (O-LSTM), to predict future stock movements by combining STIs. The model
generated two results: (i) stock market price prediction and (ii) a decision to buy or sell
something. The work presented a low-cost solution to stock market trend prediction;
however, the performance needs further improvements. Another enhancement of the
LSTM model was presented in [25], in which stock price reversal points were introduced
via employing upward/downward reversal point keypoint sets. Initially, 27 STIs were
generated by connecting the candlestick indicators and TIs. After this, a representative set
of key points against each stock was calculated using URP/DRP prediction. The computed
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key points were used to train the LSTM framework to predict future stock trends. The
approach was robust regarding stock price prediction; however, the prediction accuracy
requires enhancements. Similarly, LSTM based approach was presented in [26] to give the
prediction of stock prices using correlated STIs. This work improved the stock movement
prediction performance; however, this was at the expense of increased computational cost.
Lee et al. [27] introduced an approach for predicting stock prices by employing the concept
of reinforcement. This work exhibited better future stock movement prediction accuracy;
however, the concept should be evaluated over a large and challenging dataset.

Gu et al. [28] proposed an autoregressive RNN-based LSTM framework to incorporate
the prediction loss during each step of model training. Moreover, several STIs were used as
covariates to optimize the framework input at each step. This work took the stock price
prediction task as a regression problem instead of a straightforward binary classification
problem. The approach improved the stock price pattern prediction performance; however,
it is an economically inefficient. Similarly, in [29], a DL-based approach was presented
for stock prediction. After performing the preprocessing step, two approaches, namely,
hierarchical NN and bidirectional encoder representations from transformers (BERT), were
applied to deal with the textual representation of STIs. Then, the computed representa-
tions were used to train the LSTM framework to predict stock price patterns. The work
enhanced the stock movements determination performance; however, the approach still
lacks model qualitative interpretability. Vargas et al. [30] presented an approach for daily
directional movements prediction of stock prices via employing a hybrid approach, namely,
SI-RCNN. This model worked well for stock price prediction; however, the performance
could degrade over events with substantial price changes. In [31], a graph-embedding
layer-based LSTM approach was presented to predict a stock’s future prices. Several STIs
were used to train the LSTM framework to determine the stock movements. The work
was computationally efficient; however, the prediction accuracy needs further improve-
ments for denser graphs. A small-sized ANN framework comprising one hidden layer was
proposed in [32] to predict future stock behavior. The STIs from several published stock
data were used to train the proposed solution to determine the future stock movements.
The approach reduced the computational complexity; however, it lacks the generalization
ability. Nabipour et al. [1] proposed a method to predict future stock prices. Initially, ten
STIs from four stocks were selected, later used to train several ML- and DL-based models,
namely, Adaboost, XGBoost, ANN, RNN, and LSTM, to predict future stock behavior.
This approach obtained the best results using the LSTM model; however, evaluation was
performed on only four types of stocks. Yıldırım et al. [33] proposed a hybrid model
employing both technical and financial data to predict future stock trends. The framework
used two types of LSTM: macroeconomic LSTM and a technical LSTM framework. The
macroeconomic LSTM approach used numerous financial indicators, such as interest, funds,
and inflation rates, to perform the financial analysis. The second network was the technical
LSTM framework, which performed technical analysis using several technical indicators,
such as moving average and convergence. Initially, financial and technical analysis were
performed separately to check their impact on directional movement. The computed results
from both modules were joined to give the stock future price prediction in the next step.
The work was robust regarding stock price prediction; however, the performance degraded
for real trading.

3. Proposed Methodology: AEI-DNET

The presented solution comprised of three main steps: (i) Initially, we gathered ten
years of financial data from Yahoo Finance. Then we calculated eighteen stock technical
indicators (STIs) from the obtained stock data. (ii) The computed STIs were passed as input
into the autoencoder for dimensionality reduction in the next step. The resultant STIs with
lower correlations and the Yahoo Finance data were passed into a 1D DenseNet framework
to calculate the deep features. (iii) Finally, the computed features were used as input to
train the softmax layer residing in the 1D DenseNet framework for stock trends prediction.
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The entire framework is presented in Figure 1, and step-wise pseudo code is presented in
Algorithm 1.

Algorithm 1: Steps for Stock Market Prediction.

START
INPUT: STIs, StockData
OUTPUT: Price prediction, Decision recommendation
STIs: Stock technical indicators
StockData: Yahoo Finance data
Price prediction: Closing price of stocks
Decision recommendation: Recommending decision to buy, hold, or sell a stock
//STIs approximation
α←STIsEstimation (StockData)
//Dimension Reduction
RSTIs←DimensionReduction (α)
//Model training
Training ID-DenseNet over RSTIs and StockData, and measure training accuracy and time
r_dense, t_dense
r_dense, t_dense, TrainedModel←ID-DenseNet (RSTIs, StockData)
//Model testing
For each stock S in→TestData
(a) Compute keypoints
(b) [Price prediction, Decision recommendation]←Predict (TrainedModel)
(c) Compute test performance and time
End For
FINISH
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3.1. Data Acquisition and Preprocessing

In this work, we took data of ten companies from a renowned financial web portal,
namely, Yahoo Finance. For each stock, we took 2640 data points per trading day, where
each datapoint comprised high and low prices, daily open and close values, paid dividends,
trading volume, etc. After the data acquisition, we performed the data preprocessing step,
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which involved guessing the missing price values from the available adjacent price values
via employing a linear regression approach. After gathering the data, we split it into two
sets: the training and testing datasets.

3.2. Datapoints Labeling

Our work predicted the future stock prices by categorizing each stock into three classes:
buy, hold, and sell. We assigned a class label to each data point based on the upcoming
behavior of their closing prices and selected forecast horizon. Our work is based on a
three-class classification problem, three types of labels, namely, ‘buy’ indicated as 10, ‘sell’
indicated as 01, and ‘hold’ indicated as 00, were assigned to each data point.

The labels were assigned by using the equation.

Label(d, f ) =


′10′ i f (Pd+ f − Pd)/Pd > δ;

′00′ i f − δ ≤ (Pd+ f − Pd)/Pd ≤ δ;
′01′ i f (Pd+ f − Pd)/Pd < −δ

(1)

Here, d(t) is the initial day, while f (s) shows the selected forecast horizon. Moreover,
Pd+ f and Pd exhibit the closing prices on day d and d + f respectively, and δ indicates the
threshold value. The label ‘buy’ is assigned to a datapoint if the related closing stock price
goes up from the selected threshold, a data point is labeled as ‘sell’ if the corresponding
closing stock price goes down from the selected threshold, and a data point is assigned as
‘hold’ if the change in the stock price remains between the negative and positive thresholds.
The threshold value presents a slight relative change in the stock price, i.e., its rise or fall,
which can be considered a directional movement [18]. Various chosen threshold values
for our work over numerous forecast horizons are demonstrated in Table 1. The value of
the threshold was selected so that each class contains about one-third of the data points.
Moreover, the value of the threshold rises with the increase in the horizon as the price value
also increases with time, which needs a large threshold number to put one-third of the data
points into the ‘hold’ class.

Table 1. Horizon with thresholds.

Forecast Horizon Threshold (%)

1 0.65
3 1.15
5 1.50
7 1.80
10 2.15
15 2.70
20 3.10
25 3.50
30 4.00

3.3. Stock Technical Indicators

Stock technical indicators are statistical features of stock data calculated by incorpo-
rating various mathematical formulas to establish a fair estimation of prices and volumes.
Some of the most used technical indicators are various variants of a moving average, mo-
mentum oscillators, and various flow indices. The following subsections provide a brief
description of each STI incorporated in our work.
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3.3.1. Simple Moving Average (MA)

A common STI presents the price average over a selected range, mostly containing
closing prices (Cp), using the total number of days in that range [20].

MAN = 1/N
N−1

∑
i=0

Cp−i (2)

3.3.2. Weighted Moving Average (WMA)

This STI is used to generate the trade direction and make a buy or sell decision [34].
The WMA is calculated by multiplying each data observation by a predetermined weighting
factor, which is described as

WMA =
Cp1 × N + Cp2 × (N − 1) + . . . CpN

N × (N + 1)/2
(3)

Here, Cp is the closing price each day over N days.

3.3.3. Exponential Moving Average (EA)

This STI is an enhanced form of the WMA, giving more importance to recent price
data. It is used to track the stock prices at a specific time interval [35].

EAN =
N−1

∑
i=0

νiCp−i (4)

where EAN =
N−1
∑

i=0
νi is equal to 1.

3.3.4. Relative Strength Index (RSI)

It provides a comparison of the current gains with losses. The main aim of this
indicator is to show the ups and downs in the price trends of stock by considering its
closing prices in a specified time interval [36]. The mathematical representation of STI
computation is given by

RSIN = 100−
[

100
1 + EAN(DM+ve)/EAN(DM−ve)

]
(5)

where EAn(DM+ve) and EAn(DM−ve) are calculated over a time interval of the N previous
days equal to the IWL.

3.3.5. Chande Momentum Oscillator (CMO)

The CMO is another well-known STI that employs momentum to locate the relative
behavior of stock by demonstrating its strengths and weaknesses in a particular period [37].
The CMO is computed using

CMO =
Sh − Sl
Sh − Sl

× 100 (6)

Here, for N days, the Sh and Sl are the summations of the higher and lower closes.

3.3.6. Williams Percent Range (Williams %R)

This STI is used to measure the overbought and oversold levels and to identify the
entry and exit points in the market using the following equation [18]:

RN =
HN − Cp

HN − LN
× 100 (7)
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Here, Cp is closed price, and HN and LN show the high and low prices over N days,
respectively.

3.3.7. Price Rate of Change (PRC)

This STI is used to demonstrate the correlated differences between the Cp on forecasted
data and the Cp computed on N previous days [38]. The PRC is given by

PRCN =
Cp − Cp−N

Cp−N
(8)

3.3.8. Hull Moving Average (HMA)

The HMA is a directional trend indicator that captures the current state of the market
by using the recent price action to determine whether conditions are bullish or bearish [39].
The HMA is computed using

HMA = WMA(2×WMA(N/2)−WMA(N)), sqrt(N)) (9)

3.3.9. Triple Exponential Moving Average (TEA)

This STI smoothens the price fluctuation to make the trend identification easier, with-
out the lag associated with the MA [40].

TEA = (3× EA1)− (3× EA2) + EA3 (10)

where EA1 = EA, EA2 = EA + EA1, EA3 = EA + EA2.

3.3.10. Directional Movement Index (DMI)

This STI identifies the direction of price movement by comparing prior highs and
lows [41].

Dx = 100×
(
|DI+ve − DI−ve|
|DI+ve + DI−ve|

)
(11)

where DI+ve = 100×
(

Smoothed+DM
ATR

)
, DI−ve = 100×

(
Smoothed−DM

ATR

)
, +DM = Current

High− PositiveHigh, and −DM = PositiveLow− CurrentLow.

3.3.11. Psychological Line (PL)

This STI indicates the buying capability compared to selling by showing the fraction
of numbers of rising days with the total days.

PL =
Up movements in the last intervalN

intervalN
× 100 (12)

3.3.12. Commodity Channel Index (CCI)

This STI is employed to check the strength and trend direction of stocks, which can
assist the buyers in decision making to avail a trade opportunity or not and to hold on to
an existing trade [42]. The CCI is computed using

CCIN =
(Ts −MAN(Ts))(

0.015
N
∑

i=1
|Ts−i+1 −MAN(Ts)|/N

) (13)

Here, Ts is the total sum of the closing high and low prices on day s. Moreover, the
MAN is the MA of Ts calculated for N days.
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3.3.13. Chaikin Money Flow Index (CMF)

This STI indicates the difference between the 3-day EA and the 10-day EA of the
accumulation/distribution line [43].

CMF = NDay Sum o f [(((Cp − Sl)− (Sh − Cp))/(Sh − Sl))×Volume]/NDay Sum o f Volume (14)

3.3.14. Moving Average Convergence Divergence (MAD)

This is another influential STI that shows the relationship between two running
averages of stock prices [44]. This STI is calculated by taking the difference of the EA of 26
days from the EA of 12 days.

MAD = 12periodEA− 26periodEA (15)

3.3.15. Stochastic Oscillator %K (SO)

The SO indicator [45] shows the comparison of a specific closing price of a stock to a
range of its prices for a specific period T and determines whether a stock is highly sold or
bought, as given in the following equation:

KN =
Cp − LM

HM − LM
× 100 (16)

Here, HM and LM are the mean highest high and low values over N days, respectively.

3.3.16. Moving Average Deviation (MD)

The MD indicator shows the deviation in price from the moving average (MA), and the
computed deviated value is shown by histogram bars [46]. The mathematical calculation
of MD is done using the following equation:

MD =

√
(Cp1 −MA)2 + (Cp2 −MA)2 + . . . + (CpN −MA)2

N
(17)

3.3.17. Rank Correlation Index (RCI)

The RCI indicator [47] is used to identify potential changes in market sentiment to
expose turning points. RCI is the combination of price change data and time change data,
which is given in the following equation:

RCI =
{

1− 6d
N(N2 − 1)

}
× 100 (18)

3.3.18. Bollinger Bands (BB)

The BB STI [48] is a powerful indicator of stock market prediction that enables investors
to properly identify the time when an asset is oversold or overbought. The mathematical
description of BB is given as

BBUpper = MA + 2MD (19)

BBMiddle = MA (20)

BBLower = MA− 2MD (21)

3.4. Dimensionality Reduction

Once the STIs were calculated, the next step was to reduce the dimensions of the
data features. This step is important in the sense that it helps reduce the required time
for model training and storage space requirements. It helps remove multi-collinearity,
which improves the interpretation of the parameters of the model. A model with very low
dimensions is generally easier to train; it is also easier to visualize the output data.
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Autoencoder

Despite the usage of DenseNet results in an efficient set of STI representations, the
data still suffered from a high dimensional space. To deal with this issue, we employed
the autoencoder technique. Autoencoder networks are feedforward NNs that can contain
more than one hidden layer. This approach tends to reconstruct the input data to reduce
the dimensions of input samples.

In an autoencoder [49], the input and output layers have similar dimensions; however,
the hidden layers have different data dimensions since the data reduction occurs here. The
encoder takes xj ∈ Idx and compressed it to yj ∈ Idy in the hidden layers via employing an
activation function f (x) given by the following equation:

f (x) =
1

1 + e−Wx (22)

Here, W is a weight matrix.
The encoding process is achieved using the following equation:

yj = f
(
W xj

)
(23)

while the decoding process is achieved using the following equation:

x′ j = g
(
Wt xj

)
(24)

Here, g() is an activation function similar to f (x), and Wt is another weighted matrix.
Furthermore, x′ j denotes the decoded compressed input string.

The autoencoder computes the total reconstruction error for all samples using the
following equation:

E = ∑n
j=1 ej(W, Wt) (25)

where ej is the weighted reconstruction error for an individual sample.

3.5. Model Training

After calculating the STIs, we used them as the autoencoder input for dimensionality
reduction and a reduction in correlation among STIs. For this purpose, we used the 1D
DenseNet framework instead of 2D vectors because of the textual nature of our dataset.

1D DenseNet

The 1D DenseNet framework was used for deep features extraction in the presented
approach. The main reason to select the DenseNet framework over the ResNet approach
is that, although the ResNet network is capable of dealing with the problem of vanishing
gradient descent to some extent, the ResNet approach is computationally complex, as the
network parameters increase exponentially with the increase in the depth of architecture.
In contrast, DenseNet can better overcome the issues of the ResNet approach by intro-
ducing densely connected CNNs. Therefore, the main motivation for using the DenseNet
framework is to present an efficient and effective solution for stock price prediction.

The DenseNet framework comprises a dense block, which is a transition layer along
with the bottleneck layer. The architecture of the DenseNet framework is presented in
Figure 2, where it can be seen that it consists of an (N− 1)-layered network and a composite
function (CF). The CF further contains ReLU, batch normalization, and the convolution
function. More specifically, the input data from the Yahoo Finance dataset was passed to
the 1D DenseNet framework for feature computation. The convolution layers computed
the deep features from the sample data by using a kernel window size of 3. The entire
DenseNet framework contained four dense blocks, with each block comprising four con-
volution layers. Furthermore, each convolution layer applied four methods named batch
normalization, ReLU activation, and squeeze and excite operations, as discussed in [50].
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Initially, the number of filters was set to 32 and increased by 16 after each step, which, in
turn, caused an increase in the feature vector size due to the concatenation operation. The
transition layer was introduced after each DB to perform the down-sampling step to deal
with this.
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The Nth layer of the framework had N inputs, as the Nth layer took the outputs of all
previous N − 1 layers, as seen in Equation (26):

IN = HN([I0, I1, I2, . . . ..IN−1]) (26)

Here, [I0, I1, I2, . . . ..IN−1] are the feature maps from the previous N − 1 layers, which
were joined to the Nth layer and indicated by IN .

Furthermore, the transition layer comprised convolution and pool layers. The bottle-
neck layer contained a 1 × 1 convolution layer, which was employed to minimize the size
of feature maps and enhance computational efficiency.

4. Experimental Results

This section provides a detailed overview of the incorporated dataset, performed
experiments, and evaluation parameters used for the evaluation of the experimental results.
The model was implemented using the Python platform. The proposed technique was
further evaluated by providing a comparative analysis with other models as well.

4.1. Dataset

This research work incorporated publicly available historical financial stock market
data available at Yahoo Finance. The historical financial data obtained from the said
platform has a total of seven columns containing Date, Open, High, Low, Close, Adj Close,
and Volume. Description of these attributes is provided in Table 2.

Table 2. Description of the historical stock dataset.

S. No. Column Description

1. Date Day of the month, e.g., 3/12/2012
2. Open The opening price of the stock.
3. High The highest price at which the stock was traded during a day.
4. Low The lowest price at which the stock was traded during a day.
5. Close The closing price of the stock.

6. Adj. Close The adjusted closing price of the stock, factoring in corporate actions,
such as stock splits, dividends, and rights offerings.

7. Volume The number of shares traded in the stock.

Additionally, we also calculated H − L (stock high minus low price) and O − C (stock
open minus close price) for calculation purposes. Moreover, we also calculated some
important stock technical indicators (STIs) and used them as input features for training
the model. A detailed discussion regarding STIs was already done in the previous section.
The dataset under consideration consisted of the ten previous years’ financial records of
ten different stocks. Detail of the stocks and dataset is provided in Table 3. We took the
historical stock price data and STIs as input to the training model. We selected the Standard
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and Poor’s 500 index series (S&P 500) as the base time-series measure related to financial
time-series data. This series was built using the Yahoo Finance data posted over the past
ten years. The information gained from this series served as the base for calculating the
technical indicators and the target output, and the same was used as input into the training
model. We created binary variables to indicate the expected output related to the target
output. The value 10 indicated that the closing price was expected to go up compared with
the closing price during the current day, meaning that the model shall indicate a buy signal.
Similarly, the value 01 indicated that the close price was expected to go down the next day
compared with the closing price reported on the current day, meaning that the model shall
indicate a sell signal. Similarly, a 00 signal indicated that no significant short-term change
in the closing price was expected, meaning that the model shall indicate a sell signal.

Table 3. Brand-wise distribution of the dataset.

Sr. No. Stock Market Symbol From
(Training)

To
(Training)

From
(Testing)

To
(Testing)

1. Meta Platforms, Inc. FB 19-May-2012 30-September-2018 1-October-2018 30-September-2021
2. Twitter, Inc. TWTR 11-July-2013 30-September-2018 1-October-2018 30-September-2021
3. Intel Corporation INTC 1-October-2011 30-September-2018 1-October-2018 30-September-2021
4. Apple Inc. AAPL 1-October-2011 30-September-2018 1-October-2018 30-September-2021
5. Microsoft Corporation MSFT 1-October-2011 30-September-2018 1-October-2018 30-September-2021
6. Alphabet Inc. (Google) GOOG 1-October-2011 30-September-2018 1-October-2018 30-September-2021
7. Tesla Inc. TSLA 1-October-2011 30-September-2018 1-October-2018 30-September-2021
8. Walmart Stores, Inc. WMT 1-October-2011 30-September-2018 1-October-2018 30-September-2021
9. Amazon.com, Inc. AMZN 1-October-2011 30-September-2018 1-October-2018 30-September-2021

10. PayPal Holdings, Inc. PYPL 1-October-2011 30-September-2018 1-October2018 30-September-2021

We present a case study based on the S&P 500 with ten US stocks: FB, TWTR, INTC,
AAPL, MSFT, GOOG, TSLA, WMT, AMZN, and PYPL. As discussed earlier, we obtained
ten years of stock trading data from Yahoo Finance posted during the past ten years, i.e.,
from 1 October 2011 to 30 September 2021 (subject to availability). The experimental data
consisted of daily trade information including LO, HI, OP, CL, AD, and VO, representing
low, high, opening price, closing price, adjusted close price, and volume.

For the sake of understanding, Figure 3 presents a visualization of the dataset distri-
bution. Trading data for all stocks were divided into two parts, i.e., training and testing
data with a 30%:70% ratio (approximately), resulting in 1760 trading days’ data for training
and 756 trading days’ data for testing purposes, except for FB and TWTR, as these stocks
started posting their stock data from 19 May 2012 and 11 July 2013, respectively. This
resulted in 1601 and 1316 trading days’ data for FB and TWTR, respectively. We suspect
that a relatively lower amount of training data for these two stocks may slightly affect the
model performance.
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4.2. Evaluation Parameters

We measured the reliability of the experimental results by incorporating several
criteria, including the mean absolute error (MAE), root mean square error (RMSE), mean
absolute percentage error (MAPE), average mean absolute percentage error (AMAPE), and
percentage of correct trend (PCT). The first performance metric, i.e., MAE was presented in,
where it is a commonly used approach in forecasting; it can be calculated using Equation
(27). The RMSE can be calculated using Equation (28). The third performance evaluation
parameter was MAPE, which was used to calculate the percentage error between the actual
and predicted values. MAPE is described using Equation (29). The next parameter, i.e.,
AMAPE is given in Equation (30). Finally, the metric named PCT is used to evaluate the
accuracy of predicted ups and downs and can be calculated using Equation (31).

MAE =
1
N

n

∑
i=1

∣∣ϕ′i ′ − ϕi
∣∣ (27)

RMSE =

√
1
N

n

∑
i

(
ϕ′i − ϕi

)2 (28)
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MAPE = 100× 1
N

n

∑
i=1

∣∣ϕ′i − ϕi
∣∣

ϕi
(29)

AMAPE = 100× 1
N

n

∑
i=1

∣∣ϕ′i ′ − ϕi
∣∣

(1/n)∑n
i=1 ϕi

(30)

PCT =
1
N

n

∑
i=1

µiand µi =

{
1 i f

(
ϕ′i+1 − ϕi

)(
ϕi+1 − ϕi

)
> 0

0, otherwise
(31)

where ϕ denotes the actual value, ϕ′ denotes the predicted value, and a total number of
data points is represented by n.

4.3. Experimental Results

The utility of our proposed system was demonstrated by testing six models: autoregres-
sive moving average (ARMA), generalized autoregressive conditional heteroskedasticity
(GARCH), support vector machine (SVM), feed-forward neural network (FFNN), long
short-term memory (LSTM), and the proposed 1D DenseNet. The value to be predicted was
the closing price of the next day. We performed predictive experiments using Anaconda
(Python), TensorFlow, and scikit-learn packages. There are various approaches for feeding
the input variables into the model. The basic stock trading data (LO, HI, OP, CL, AD, and
VO) were fed into the above-mentioned models as the input variables. Talking about the
models, LSTM used four variations of input method: LSTIM-I, LSTIM-II, LSTIM-III, and
LSTIM-IV. The LSTIM-I used the basic trading data. LSTIM-II took the trading data and
technical indicators after being processed by the autoencoder. LSTIM-III took the trading
data and technical indicators after all variables were processed by autoencoder. LSTIM-I
and LSTIM-III did not involve any processing by the autoencoder. LSTIM-IV and the
proposed 1D DenseNet took the trading data and technical indicators after processing only
the STIs by the autoencoder.

These variations in the input method of LSTM are depicted in Figure 4. The first
experiment aimed to predict the next day’s closing price in the S&P 500. The experiment
mainly involved four variations of test data: 75 days for short-term prediction, 150 days
for medium-term prediction, and 300 days for long-term prediction. For each type of test,
the remaining data were used as training data. The experimental results obtained from the
short-, medium-, and login-term trading data are presented in Tables 4–18. It is evident
from the results that our proposed model had better accuracy compared with other models
while predicting the closing price for short-, medium-, and long-term trading data. It is
obvious that our model had the best performance regarding RMSE, MAPE, MAE, and
AMAPE, which had the smallest values, and PCT, which had the highest values.
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Table 4. Prediction performance for 75 days: FB and TWTR.

Model FB TWTR

MAPE AMAPE MAE RMSE PCT MAPE AMAPE MAE RMSE PCT

ARMA 0.6991 0.6715 21.5340 20.9230 0.57 0.6930 0.6191 21.5657 20.9721 0.55
GARCH 0.5914 0.6402 15.4358 21.0913 0.56 0.5751 0.6549 15.4352 21.0517 0.56

SVM 0.6101 0.6492 16.2345 23.9194 0.66 0.5727 0.6256 16.2598 23.8510 0.68
FFNN 0.5912 0.5163 16.6578 23.3912 0.56 0.5816 0.5373 16.6780 23.3454 0.57

LSTIM-I 0.5731 0.5612 14.9340 18.9211 0.61 0.6022 0.5699 14.9251 18.9427 0.59
LSTIM-II 0.5823 0.5862 14.2309 15.8814 0.61 0.6733 0.5719 14.2855 15.8890 0.62
LSTIM-III 0.5411 0.5844 14.9325 17.8432 0.65 0.5100 0.5758 14.8919 17.8281 0.66
LSTIM-IV 0.5101 0.5165 12.0328 17.4556 0.64 0.5148 0.5517 12.0328 17.5491 0.64
Proposed 0.4212 0.4118 10.0121 12.1240 0.71 0.4236 0.3933 10.0314 12.1314 0.71

Table 5. Prediction performance for 75 days: INTC and AAPL.

Model INTC AAPL

MAPE AMAPE MAE RMSE PCT MAPE AMAPE MAE RMSE PCT

ARMA 0.7052 0.6664 21.5537 20.9885 0.60 0.7372 0.7022 21.5398 20.9207 0.56
GARCH 0.5740 0.6690 15.4870 21.0956 0.57 0.5853 0.6001 15.4393 21.1419 0.50

SVM 0.6375 0.6260 16.2267 23.9582 0.66 0.6271 0.6536 16.2273 23.9023 0.65
FFNN 0.6063 0.4974 16.6578 23.3871 0.56 0.5879 0.5083 16.6671 23.4911 0.51

LSTIM-I 0.5502 0.6069 14.9236 18.9129 0.64 0.5748 0.6372 14.9279 18.9194 0.53
LSTIM-II 0.5980 0.5919 14.2190 15.9504 0.68 0.5727 0.5735 14.2525 15.8690 0.58
LSTIM-III 0.5576 0.5794 14.9412 17.8231 0.65 0.5356 0.5950 14.9993 17.8337 0.66
LSTIM-IV 0.5521 0.5481 12.0347 17.4469 0.64 0.4968 0.4682 12.0276 17.4665 0.61
Proposed 0.4191 0.4473 9.9788 12.1853 0.68 0.4580 0.3485 10.0541 12.1099 0.75
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Table 6. Prediction performance for 75 days: MSFT and GOOG.

Model MSFT GOOG

MAPE AMAPE MAE RMSE PCT MAPE AMAPE MAE RMSE PCT

ARMA 0.7232 0.7066 21.5037 20.9514 0.55 0.6746 0.6612 21.5272 20.8947 0.61
GARCH 0.6015 0.6340 15.4829 21.1250 0.62 0.5989 0.6108 15.4530 21.0858 0.58

SVM 0.6375 0.6484 16.2223 23.9089 0.60 0.6387 0.6433 16.2316 23.9531 0.74
FFNN 0.5078 0.5113 16.6696 23.2935 0.50 0.6278 0.5263 16.6638 23.4126 0.57

LSTIM-I 0.5190 0.5604 14.9340 18.8891 0.60 0.5770 0.5541 14.9401 18.9550 0.64
LSTIM-II 0.5492 0.5776 14.2800 15.8668 0.53 0.5752 0.5842 14.2309 15.8211 0.59
LSTIM-III 0.5391 0.5749 14.9083 17.8432 0.66 0.5310 0.6189 14.8620 17.9011 0.64
LSTIM-IV 0.5936 0.5429 12.0138 17.4010 0.61 0.4548 0.5490 12.0135 17.4785 0.63
Proposed 0.4376 0.4081 9.9614 12.1406 0.66 0.4347 0.5113 9.9831 12.0880 0.68

Table 7. Prediction performance for 75 days: TSLA and WMT.

Model TSLA WMT

MAPE AMAPE MAE RMSE PCT MAPE AMAPE MAE RMSE PCT

ARMA 0.7129 0.7189 21.5161 20.8240 0.50 0.7682 0.6374 21.5340 20.9241 0.52
GARCH 0.5914 0.6212 15.4414 21.0299 0.58 0.5687 0.5962 15.4015 21.1252 0.64

SVM 0.6101 0.6022 16.2401 23.9101 0.67 0.5329 0.7042 16.2526 23.9287 0.64
FFNN 0.6651 0.4949 16.6775 23.3709 0.53 0.6204 0.4903 16.6887 23.3818 0.56

LSTIM-I 0.5449 0.5627 14.8779 18.8791 0.59 0.5708 0.5642 14.8968 18.9283 0.61
LSTIM-II 0.5722 0.5551 14.2586 15.8410 0.58 0.5516 0.5902 14.2040 15.8050 0.59
LSTIM-III 0.5821 0.6312 14.9305 17.9023 0.64 0.5163 0.5752 14.9487 17.9031 0.62
LSTIM-IV 0.4874 0.5040 11.9746 17.3821 0.66 0.4626 0.5165 12.0551 17.4619 0.64
Proposed 0.3520 0.5079 10.0428 12.1240 0.64 0.4069 0.4304 10.0335 12.0697 0.71

Table 8. Prediction performance for 75 days: AMZN and PYPL.

Model AMZN PYPL

MAPE AMAPE MAE RMSE PCT MAPE AMAPE MAE RMSE PCT

ARMA 0.6535 0.6707 21.5445 20.8952 0.56 0.6965 0.6980 21.5564 20.9418 0.62
GARCH 0.6116 0.6015 15.4304 21.1274 0.53 0.5800 0.6973 15.3990 21.0654 0.59

SVM 0.6002 0.6543 16.2026 23.9272 0.63 0.6019 0.6342 16.2276 23.8832 0.66
FFNN 0.6161 0.5034 16.7265 23.3541 0.63 0.6070 0.4614 16.6776 23.4186 0.51

LSTIM-I 0.5740 0.5561 14.9369 18.9211 0.66 0.6041 0.5354 14.9334 18.8882 0.60
LSTIM-II 0.5498 0.5977 14.1558 15.8814 0.67 0.5779 0.5842 14.1925 15.8853 0.67
LSTIM-III 0.5033 0.5960 14.9149 17.8432 0.60 0.5023 0.5745 14.9951 17.9332 0.63
LSTIM-IV 0.4948 0.4424 12.0280 17.4695 0.62 0.5848 0.5094 12.0078 17.4174 0.59
Proposed 0.4099 0.3669 10.0126 12.0926 0.66 0.4378 0.4572 9.9720 12.0916 0.67

Table 9. Prediction performance for 150 days: FB and TWTR.

Model FB TWTR

MAPE AMAPE MAE RMSE PCT MAPE AMAPE MAE RMSE PCT

ARMA 0.6034 0.6992 21.5196 20.8407 0.55 0.6839 0.6850 21.5383 20.9232 0.52
GARCH 0.5990 0.6925 15.4136 21.1364 0.53 0.5585 0.6819 15.4951 21.0117 0.57

SVM 0.6032 0.5910 16.2411 23.9099 0.65 0.5745 0.7106 16.2554 23.8811 0.64
FFNN 0.5717 0.4978 16.6317 23.3912 0.51 0.5890 0.5182 16.6520 23.3695 0.53

LSTIM-I 0.5682 0.5989 14.9072 18.9216 0.60 0.5618 0.6151 14.9606 18.9191 0.62
LSTIM-II 0.5993 0.5445 14.2198 15.8595 0.61 0.5914 0.5273 14.2248 15.8658 0.66
LSTIM-III 0.5431 0.5926 14.9290 17.8451 0.59 0.5467 0.6741 14.9276 17.8231 0.69
LSTIM-IV 0.5101 0.5850 11.9941 17.4556 0.57 0.4847 0.5342 12.0501 17.3908 0.61
Proposed 0.4324 0.3846 10.0713 12.1716 0.66 0.5028 0.3965 10.0340 12.1266 0.71
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Table 10. Prediction performance for 150 days: INTC and AAPL.

Model INTC AAPL

MAPE AMAPE MAE RMSE PCT MAPE AMAPE MAE RMSE PCT

ARMA 0.7029 0.7096 21.5686 20.9230 0.50 0.7155 0.6360 21.5361 20.9610 0.60
GARCH 0.5688 0.6675 15.4349 21.1040 0.54 0.5554 0.6703 15.4727 21.0994 0.57

SVM 0.6428 0.6659 16.2317 23.9040 0.67 0.5688 0.7064 16.2495 23.9140 0.66
FFNN 0.6147 0.5125 16.6682 23.3845 0.59 0.5832 0.5105 16.7393 23.4160 0.56

LSTIM-I 0.5999 0.5656 14.9599 18.8555 0.63 0.5170 0.5413 15.0002 18.8424 0.60
LSTIM-II 0.5491 0.5812 14.2219 15.8859 0.59 0.5708 0.6072 14.1622 15.9004 0.59
LSTIM-III 0.5375 0.5929 14.9325 17.8161 0.71 0.5792 0.5812 14.9423 17.8231 0.62
LSTIM-IV 0.4581 0.4922 11.9599 17.4334 0.61 0.4740 0.5439 12.0765 17.4697 0.56
Proposed 0.4230 0.4168 10.0716 12.1240 0.73 0.4636 0.4270 10.0874 12.0962 0.75

Table 11. Prediction performance for 150 days: MSFT and GOOG.

Model MSFT GOOG

MAPE AMAPE MAE RMSE PCT MAPE AMAPE MAE RMSE PCT

ARMA 0.7104 0.7329 21.5436 20.9068 0.55 0.7087 0.6919 21.4872 20.8581 0.66
GARCH 0.5829 0.6360 15.4575 21.0498 0.58 0.6056 0.7367 15.4831 21.0988 0.56

SVM 0.5916 0.6128 16.2769 23.9025 0.66 0.5758 0.7115 16.1692 24.0096 0.68
FFNN 0.6463 0.5163 16.7184 23.4875 0.60 0.5775 0.5165 16.6634 23.3049 0.56

LSTIM-I 0.5530 0.5694 14.9583 18.8427 0.55 0.6587 0.5802 14.9199 18.9418 0.64
LSTIM-II 0.5980 0.5928 14.2207 15.8373 0.69 0.5290 0.5665 14.1741 15.8536 0.62
LSTIM-III 0.5197 0.6190 14.9301 17.8465 0.65 0.5684 0.5844 14.9204 17.8932 0.64
LSTIM-IV 0.5038 0.5633 12.0546 17.4920 0.64 0.4892 0.5278 12.0706 17.5009 0.66
Proposed 0.4179 0.3725 10.0702 12.0358 0.75 0.4757 0.3941 10.0058 12.1318 0.71

Table 12. Prediction performance for 150 days: TSLA and WMT.

Model TSLA WMT

MAPE AMAPE MAE RMSE PCT MAPE AMAPE MAE RMSE PCT

ARMA 0.6950 0.6741 21.4991 20.9202 0.57 0.7729 0.6820 21.5499 20.9202 0.59
GARCH 0.6565 0.5658 15.4277 21.0249 0.56 0.6006 0.6664 15.4358 21.0728 0.56

SVM 0.5742 0.6154 16.2539 23.8896 0.73 0.5932 0.6645 16.2160 23.8512 0.64
FFNN 0.5822 0.4792 16.6531 23.3822 0.59 0.5551 0.5111 16.6537 23.3963 0.59

LSTIM-I 0.5466 0.5511 14.9502 18.9997 0.53 0.5421 0.5384 14.9270 18.9237 0.66
LSTIM-II 0.5898 0.5862 14.1619 15.8236 0.60 0.5846 0.6032 14.2457 15.8663 0.59
LSTIM-III 0.5745 0.6550 14.9365 17.8281 0.69 0.6270 0.5847 14.9430 17.8882 0.65
LSTIM-IV 0.4767 0.4824 11.9781 17.4168 0.55 0.5143 0.5138 12.0712 17.4554 0.68
Proposed 0.4711 0.3988 10.0198 12.1213 0.76 0.4321 0.4215 9.9987 12.1240 0.73

Table 13. Prediction performance for 150 days: AMZN and PYPL.

Model AMZN PYPL

MAPE AMAPE MAE RMSE PCT MAPE AMAPE MAE RMSE PCT

ARMA 0.6866 0.6715 21.5140 20.9785 0.50 0.6395 0.6717 21.5480 20.8882 0.58
GARCH 0.5945 0.6338 15.4364 21.0479 0.56 0.6463 0.6308 15.4366 21.1151 0.56

SVM 0.6108 0.6492 16.2802 23.9132 0.60 0.6701 0.6545 16.2427 23.9028 0.61
FFNN 0.6486 0.5354 16.5899 23.3813 0.56 0.5772 0.5163 16.6691 23.3712 0.56

LSTIM-I 0.5786 0.5708 14.9123 18.9329 0.65 0.5731 0.5916 15.0036 18.9105 0.64
LSTIM-II 0.6415 0.5760 14.2394 15.8939 0.63 0.5933 0.6125 14.1930 15.8659 0.61
LSTIM-III 0.6144 0.5631 14.9356 17.8745 0.58 0.5373 0.5877 14.9372 17.8564 0.61
LSTIM-IV 0.5126 0.4755 12.0184 17.4647 0.68 0.5026 0.5262 12.0251 17.4391 0.61
Proposed 0.4126 0.4332 10.0121 12.1160 0.75 0.4212 0.4312 10.0112 12.0704 0.70
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Table 14. Prediction performance for 300 days: FB and TWTR.

Model FB TWTR

MAPE AMAPE MAE RMSE PCT MAPE AMAPE MAE RMSE PCT

ARMA 0.6991 0.6122 21.5169 20.8912 0.54 0.6613 0.6715 21.4789 20.9228 0.49
GARCH 0.5255 0.6402 15.4567 21.0963 0.56 0.5961 0.6492 15.4929 21.1492 0.56

SVM 0.6101 0.6432 16.2343 23.9348 0.69 0.5741 0.5811 16.2213 23.8868 0.67
FFNN 0.5761 0.5575 16.7123 23.4271 0.55 0.6299 0.5489 16.6107 23.3798 0.55

LSTIM-I 0.5177 0.5619 14.9061 18.8724 0.61 0.5888 0.5880 14.9227 18.8767 0.56
LSTIM-II 0.6068 0.5221 14.1880 15.9091 0.61 0.5879 0.5506 14.2577 15.9282 0.59
LSTIM-III 0.5920 0.5417 14.9819 17.8552 0.60 0.5106 0.6013 14.8884 17.8988 0.64
LSTIM-IV 0.4589 0.5526 12.0196 17.4632 0.69 0.4859 0.5998 11.9735 17.4650 0.63
Proposed 0.4578 0.4991 9.9908 12.1450 0.73 0.4336 0.4471 9.9681 12.1240 0.72

Table 15. Prediction performance for 300 days: INTC and AAPL.

Model INTC AAPL

MAPE AMAPE MAE RMSE PCT MAPE AMAPE MAE RMSE PCT

ARMA 0.7963 0.7381 21.5244 20.8940 0.57 0.7239 0.6542 21.5172 20.8843 0.57
GARCH 0.5857 0.6864 15.3993 21.0979 0.54 0.5674 0.6452 15.4480 21.0992 0.52

SVM 0.6665 0.6383 16.2285 23.9194 0.70 0.6920 0.6724 16.2783 23.9179 0.67
FFNN 0.5982 0.5910 16.7374 23.3415 0.50 0.6002 0.4882 16.6184 23.3894 0.53

LSTIM-I 0.5936 0.5666 14.8640 18.9152 0.61 0.5584 0.5513 14.9354 18.9048 0.57
LSTIM-II 0.6535 0.5787 14.2177 15.8814 0.56 0.5823 0.5816 14.2037 15.8553 0.61
LSTIM-III 0.5865 0.4995 14.9325 17.8268 0.69 0.5592 0.5538 14.9949 17.8004 0.63
LSTIM-IV 0.5198 0.5316 12.0942 17.4198 0.64 0.5101 0.5602 12.0519 17.4741 0.65
Proposed 0.4817 0.4118 9.9376 12.1925 0.79 0.3420 0.4355 10.0287 12.0549 0.73

Table 16. Prediction performance for 300 days: MSFT and GOOG.

Model MSFT GOOG

MAPE AMAPE MAE RMSE PCT MAPE AMAPE MAE RMSE PCT

ARMA 0.7035 0.6358 21.5183 20.8891 0.59 0.7406 0.6758 21.5579 20.8795 0.55
GARCH 0.5914 0.6374 15.4706 21.0935 0.58 0.5945 0.5977 15.4540 21.1027 0.57

SVM 0.6039 0.6123 16.2345 23.9194 0.65 0.6021 0.6600 16.2471 23.9286 0.65
FFNN 0.6190 0.4557 16.7375 23.3613 0.57 0.5882 0.4672 16.5675 23.3520 0.58

LSTIM-I 0.5530 0.5783 14.9340 18.9271 0.61 0.6414 0.5596 14.9624 18.9666 0.61
LSTIM-II 0.6189 0.5164 14.1845 15.8597 0.63 0.5704 0.5905 14.2707 15.8459 0.60
LSTIM-III 0.5586 0.5704 14.8661 17.8591 0.65 0.5220 0.5877 14.9455 17.8418 0.66
LSTIM-IV 0.4992 0.5213 12.0247 17.5331 0.64 0.5076 0.5124 12.0468 17.3993 0.62
Proposed 0.3534 0.3414 9.9518 12.1307 0.69 0.3991 0.3938 10.0033 12.1576 0.72

Table 17. Prediction performance for 300 days: TSLA and WMT.

Model TSLA WMT

MAPE AMAPE MAE RMSE PCT MAPE AMAPE MAE RMSE PCT

ARMA 0.6732 0.6921 21.5885 20.8902 0.59 0.6927 0.6455 21.6083 20.9263 0.64
GARCH 0.5900 0.6371 15.4710 21.0351 0.55 0.5847 0.6402 15.4885 21.0918 0.58

SVM 0.5848 0.6478 16.2649 23.9875 0.63 0.6583 0.7133 16.1774 23.8636 0.70
FFNN 0.6187 0.5147 16.6696 23.4075 0.53 0.5787 0.4701 16.7209 23.3912 0.56

LSTIM-I 0.6039 0.5583 14.8379 18.9425 0.61 0.5983 0.4932 15.0195 18.9273 0.62
LSTIM-II 0.6664 0.5826 14.2336 15.8736 0.62 0.5786 0.6096 14.2437 15.8664 0.66
LSTIM-III 0.5261 0.5265 14.9826 17.8712 0.69 0.5670 0.6625 14.9282 17.8530 0.62
LSTIM-IV 0.4483 0.5809 12.0166 17.4753 0.64 0.5014 0.4185 12.0200 17.4913 0.70
Proposed 0.4306 0.4983 9.9317 12.0965 0.79 0.3856 0.4207 10.0684 12.0889 0.66
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Table 18. Prediction performance for 300 days: AMZN and PYPL.

Model AMZN PYPL

MAPE AMAPE MAE RMSE PCT MAPE AMAPE MAE RMSE PCT

ARMA 0.6497 0.6314 21.5368 20.8613 0.56 0.6817 0.6469 21.5631 20.9030 0.56
GARCH 0.5512 0.6645 15.4721 21.0545 0.55 0.5752 0.6331 15.3681 21.0913 0.65

SVM 0.5399 0.6456 16.2383 23.8421 0.65 0.6635 0.7062 16.2480 23.9355 0.66
FFNN 0.5463 0.5482 16.7257 23.3905 0.54 0.6015 0.4629 16.6625 23.4707 0.63

LSTIM-I 0.4923 0.5562 14.9340 18.9439 0.60 0.6011 0.6385 14.9982 18.8929 0.68
LSTIM-II 0.6059 0.5953 14.2852 15.8827 0.64 0.5065 0.5998 14.2148 15.8041 0.61
LSTIM-III 0.4642 0.5240 14.9325 17.8301 0.67 0.6180 0.5839 14.9445 17.8596 0.72
LSTIM-IV 0.5144 0.5247 12.0077 17.4556 0.68 0.5554 0.5498 12.0215 17.4396 0.70
Proposed 0.3846 0.3949 10.0161 12.1924 0.70 0.4428 0.3229 10.0062 12.1432 0.70

It was also evident from the results that the fourth input method of LSTM, i.e., LSTIM-
IV, had the overall second-best performance regarding MAPE, AMAPE, MAE, RMSE, and
PCT. This was due to the involvement of the autoencoder for the dimensionality reduction
of STIs before forwarding to the model.

Pictorial representations of the comparison between the predictive result and actual
values are presented in Figures 5–9 in the form of time-series charts. These charts show the
performance on the testing data of 75, 150, and 300 trading days, respectively.
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Figure 9. Future Price determination for (a) AMZN and (b) PYPL.

Closer predicted results to the actual line present a more accurate prediction. The
performance of the proposed model regarding accuracy is presented in Figures 5–9. Addi-
tionality, an accuracy timeline for 300 trading days is presented in Figure 10. As expected,
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the model performance for the stock named FB was slightly degraded due to fewer training
data for the said stock. As discussed earlier, this slight degradation in model training for
the said class was due to the fact that FB and TWTR started appearing in the US stock
markets from May 2012 and July 2013, respectively.
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Although the short-term and medium-term predictions in stock data are more de-
sirable in the stock market, the long-term prediction is also significant, as a prediction of
the direction of stock prices is normally more important for value investing in the long
term, resulting in wiser decisions in the short- and medium-term perspectives. For the
classification part, the trained model provides suggestions to the investor using one of the
three signals, i.e., buy, hold, and sell, depending on the short-, medium-, and long-term
stock trends under consideration. For instance, if the prices are expected to go up in the
short- and medium-term, the model may generate a buy signal. Similarly, if the prices are
expected to go up in the short term but they are expected to go down in the medium- and
long-term, the model may generate a sell signal. Finally, if the prices are expected to go
down in the short term but are expected to go up in the medium term, then the model
may generate a hold signal. Again, the above scenario is just an example scenario, and it
is presented only for the sake of understanding. The model may generate a signal purely
based on short-, long-, and medium-term stock trends.

4.4. Comparison with ML-Based Methods

In this section, we compare our results against well-known ML-based approaches,
namely, random forest, gradient boosting, and XGBoost, where the obtained results are
reported in Table 19. We compared the approaches both in terms of precision results
and computational time. It is quite clear from Table 19 that our approach was more
robust regarding stock market prediction, both in terms of forecasting and computational
complexity. More specifically, the random forest approach showed the lowest prediction
results with MAPE and MAE values of 3.18 and 54.06, respectively, along with the execution
time of 1.316 ms. Meanwhile, the second-lowest values were acquired by the gradient
boosting approach, with the MAPE and MAE scores of 2.54 and 43.59, respectively, with
the execution time of 1.483 ms. In comparison, the proposed approach attained MAPE
and MSE values of 0.41 and 8.12, respectively, with an execution time of 1.051 ms. The
main reason for our approach’s better stock prediction performance was its more accurate
feature extraction power, which improved its recognition ability.
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Table 19. Comparison with ML-based methods.

Method MAPE MAE Time (ms)

Random forest 3.18 54.06 1.316
Gradient boosting 2.54 43.59 1.483

XGBoost 2.48 42.85 2.373
Proposed 0.41 8.12 1.051

4.5. Comparison with Other Techniques

In this section, we present the comparison of our technique with other existing methods
using the same dataset. To demonstrate the performance comparison, we accomplished
the comparative analysis by comparing our methods through metrics, namely, MAPE and
MAE, with the reported results of the approaches [1,49–51]. The comparative results are
given in Table 20. The reason for selecting the MAPE and MAE evaluation metrics was
that researchers heavily explore these to demonstrate the stock prediction performance of
the models. It is quite clear from the results reported in Table 20 that our work was more
robust regarding stock market future trends predictions, as it shows lower MAPE and MAE
values in comparison to the other latest approaches stated in [1,49–51]. The main reason for
the better performance of the proposed solution was due to the reliable feature extraction
power of the 1D DenseNet, which presents the complex price transformations in a viable
manner. In comparison, the competitor approaches [1,51] deploy very complex network
architectures, which causes the production of over-fitted training data, ultimately reducing
their performance. Therefore, it can be said that our work is more effective regarding stock
market prediction.

Table 20. Comparison with state-of-the-art approaches.

Reference Method MAPE MAE

Nabipour et al. [1] LSTM 0.77 10.03
Nabipour et al. [1] RNN 2.11 20.20
Chung et al. [51] GA-LSTM 0.91 10.21

Lu et al. [52] CNN- BiLSTM - 23.19
Lu et al. [52] BiLSTM-AM - 22.33
Lu et al. [52] CNN-BiLSTM-AM - 21.95

Majumder et al. [53] EVWCA-MKRVFLM 1.06 -
Proposed AEI-DNET 0.41 8.12

4.6. Discussion

Stock trends prediction is an important topic of research and a challenging one due to
the volatile, diverse, and dynamic nature of the stock market. Studies presented in recent
years have revealed that STIs are a significant set of predictors for stock market future
price estimation. However, the selection of more suitable STIs becomes a challenging task,
as highly correlated STIs do not perform well in reliable feature extraction. To deal with
the mentioned challenges, we presented a novel approach that employed both the STIs
and stock data to make the final prediction. The main novelty of this work is that we
are employing both STIs and finance data with a DL-based framework, which results in
computing a more representative set of stock features. The evaluation results confirmed that
the proposed approach attained robust prediction performance with reduced computational
complexity. Therefore, we can say that our work can assist the business community in
making timely beneficial decisions. The following are the advantages and limitations of
our proposed method.

4.6.1. Advantages

• A novel framework employs STIs and stock data to predict future stock trends.
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• Computationally efficient, as we employed an autoencoder framework for dimension-
ality reduction.

• A robust approach that can assist the business community in making timely beneficial
decisions.

• The proposed approach predicts stock trends and provides intelligent decisions to
hold, buy, or sell a product.

• Our method’s processing or prediction time was 1.051 ms, which is remarkable.
• Proposed a novel approach that opened a new research area in the field of natural

language processing or text analysis.

4.6.2. Limitations

• The model needs evaluation on an unseen database to show its generalization ability
better.

• This study is currently limited to the US stock market only. Therefore, a more gener-
alized model shall enable us to include other stock markets, such as the Asian and
European stock markets.

• More DL-based frameworks can be tested with the employed technique to enhance
the prediction accuracy further.

5. Conclusions

Stock market price prediction is a challenging and interesting task regarding financial,
scientific, and academic research. Recent developments in machine learning, especially
DL, have made it possible to predict future stock price trends based on historical events.
Advanced machine learning algorithms have enabled researchers to use intelligent methods
to predict stock prices based on social media posts, financial news, and stock technical
indicators (STIs). The main focus of this work is to predict the stock market prices by using
STIs and stock market data, such as daily closing prices.

As already mentioned, this work focuses on predicting the stock market closing prices
based on the STIs by using 1D DenseNet, followed by dimensionality reduction using an
autoencoder. We first gathered ten years of financial stock trading data from Yahoo Finance,
then calculated eighteen STIs from these data and then fed these STIs, along with the
stock trading data, into the 1D DenseNet model after dimensionality reduction of the STIs
from the autoencoder. Finally, the computed feature set obtained from the 1D DenseNet
framework was used as input for training the softmax layer residing in the 1D DenseNet
framework for short-, medium-, and long-term prediction of the closing stock prices.
Although the prediction of short- and medium-term predictions in stock data are more
desirable in the stock market, the long-term prediction is also significant as a prediction of
the direction of stock prices and is normally more important for value investing in the long
term, resulting in wiser decisions in short- and medium-term perspectives. Based on the
predicted trends of the stock prices, our model provides suggestions to the user using one
of three signals, i.e., buy, sell, or hold.

This research focused on predicting the stock prices of US stock markets. We aim to
extend this study to Asian and European stock markets in the future. Additionally, this
study was limited to the prediction of closing prices at daily intervals. We are investigating
the possibility of predicting the stock price fluctuation on a time interval shorter than
one day. This investigation will require more fine-grained historical stock market data,
which was unavailable in the current dataset. This task demands implementing a separate
investigation and a different set of experiments, which can be considered future work.
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