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Abstract: This article aims to present a comprehensive approach with corresponding software that
uses index matrices. They have been developed by the authors for an automated model-based design.
One of the main goals of this paper is to propose a simple model solving technique for powering
electronic devices (particularly, for all subsystems: power supplies, static power converters, electric
filters, electrical loads, control systems, etc.). Index matrices, which contain first-order discrete
dynamical system parameters, with real numbers as elements, are constructed in order so that
voltages, amperages, and discrete values can be calculated. Simulations on a three-phase converter,
as well as simulations on buck and boost DC-DC converters with PI controllers, are presented. The
function of the proposed software (with examples on the aforementioned devices) is considered,
and diagrams of its basic programming classes are shown. The latter draws electronic schemes and
their respective graphics, and provides important characteristics. Simulink is used to verify results.
Advantages of the proposed approach are a higher speed of calculations (compared to Simulink,
due to a lack of differential equations) and a simpler handling of various electronic components.
Additionally, a computational scalability is demonstrated.

Keywords: index matrices; power electronics; model-based design; software; modeling

1. Introduction

Techniques of solving differential equations solving are widely applied in software for
model-based design of real-life systems. For example, power electronic components and
devices are modeled in the libraries of one of the most popular graphical programming
environments, Simulink, which uses a large number of simulation parameters and model
solving modes [1,2]. Theoretically, many classes of dynamical systems can be represented
by differential equations.

The first-order discrete dynamical systems have been described by linear systems,
which concern consecutive time moments; there exist autonomous (time-independent)
simple models (based on constant matrices), in which stability can be easy checked [3].
An example of the application of such a system on a DC-DC boost converter operation
is demonstrated in [4]. Software implementations (see [5,6]) are useful with changing
dependencies, because many estimations cannot be performed simply in this case; however,
generally, power converters can be modeled with straightforward algorithms so that
suitable simulations (based on non-constant matrices) can be performed [7–9].

The index matrices have arisen as extensions of the classical matrices. They provide a
clear correspondence between elements and indices [10,11]. The index matrices represent
a description tool for mathematical and real-life objects. The properties and applications
of index matrices have been studied and summarized in [10]. The following types of
their elements have been defined: integers, real numbers, Boolean values, predicates,
fuzzy vales, etc., and additionally, three-dimensional index matrices have been introduced.
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Index matrices with real numbers as elements have been used by the authors in power
electronic system modeling and simulation [6,12]; for example, single-ended primary-
inductor converter example have been considered in [13].

Most of the results in the present paper are obtained by using the authors’ .NET
software, with its features additionally considered in [5]. It automates the construction
and solving of models based on index matrices. The graphics on electronic components
(including on their time dependencies) in the presented software are similar to Simulink
graphics, but the Simulink models and the proposed index matrix models differ significantly.
Differential equations are used in Simulink, in which model configurations are relatively
slow processes. The avoidance of the last ones is an important goal of the presented
software, because the model-based design techniques, generally, require a large number of
simulations (for example, as a part of optimization procedures). Such procedures can be
performed faster with the proposed approach (since the linear systems are simpler than the
differential equation systems, time-consuming model configurations are reduced).

2. Mathematical Methods and Models

Generally, all dynamical systems are simulated by estimating states at consecutive
model time moments. The obtaining of values on system states (which usually are presented
by one-dimensional or multidimensional arrays) is known as model solving [1]. No single
solving method is optimal for all systems. For example, a typical power conversion system
is constituted by subsystems, which have very different levels of detail [2]. Simulink
provides a set of solvers, each of which uses a specific technique. According to the way in
which the step size is calculated, they are divided into fixed-step and variable-step ones.
The fixed-step solvers estimate values at regular model time intervals from the beginning to
the end of the simulation. The step size can be specified, and it can be additionally chosen
automatically. Generally, decreasing the step size increases the accuracy. The variable-step
solvers vary the step size during the simulation. They reduce the step size to increase
accuracy when model states are changing rapidly and increase the step size when model
states are changing slowly. The approach, which is proposed in the present paper, uses a
constant step size.

The apparatus of the indexed matrices (IMs) is not very popular. The respective
concept was introduced in 1984 [14]. IMs have been used for a long time as an auxiliary tool
for describing transitions of generalized nets only; their values are Boolean and predicate
in case of conditions on token passes, and in integers in case of arc capacities [15–17].
Generalized nets are present in areas where modeling with Petri nets is not typical (for
example, medicine and biotechnology). Indeed, it is impossible for generalized nets
developed for their purposes to be replaced by Petri nets; the difference in the possibilities
provided by the two formalisms is especially clear—the classes of tasks to be solved are
completely different. The latter fact is also due to the use of IMs. Although basic properties
of IMs have been studied in [10,11], a full review on their application is unpublished. Their
usage in modeling of electrical circuits is very rare (an example is given in [18]), and their
implementation requires additional training and the development of process automation
software [19–25].

2.1. Basic Definitions on Index Matrices with Real Number Elements

Proper indices, which determine objects and features, cannot be included in classical
matrices; usually respective identifiers are associated to columns of classical matrices. Since
the classical matrices of different sizes cannot be summed, the index matrices operation
ensures more compact representation. In similar way, there are no limitations on size of
IMs in the case of their multiplication.

Generally, each index matrix with real numbers as elements (R-IM) has form

A =
〈

K, L, {ak,l}k∈K, l∈L ⊂ R
〉

, (1)
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where
K = {k1, k2, · · · , km}, L = {l1, l2, · · · , ln}, (2)

are finite sets of indices [10,11]. In the present paper the following notation on the first and
the second index sets of A (K and L respectively) is used:

I1
(
A
)
= K, I2

(
A
)
= L. (3)

The usual graphical representation of the above R-IM is

A =

| l1 l2 · · · ln
k1

∣∣ak1,l1 ak1,l2 · · · ak1,ln
k2

∣∣ ak2,l1 ak2,l2 · · · ak2,ln
...

∣∣∣∣ ...
...

. . .
...

km
∣∣akm,l1 akm,l2 · · · akm,ln

. (4)

Here and below, all R-IMs are denoted by capital letters with additional lines (in order
to be deferred from the classical matrices), and their elements by respective small letters.
Each element of R-IM A is in the same row with its index from I1

(
A
)
, and it is in the

same column with its index from I2
(
A
)
. Lines divide indices from elements. Additionally,

in (4), the considered indices are included as lower indices of elements of A. In all classical
matrices, such lower indices are formed by row and column numbers.

Any swap of rows (or columns) of a classical matrix, which participates in a matrix
equation, must correspond to a swap of rows (or columns) in other matrices from this
equation in order that dependencies can be saved. Conversely, swaps of rows (or columns)
in any index matrix do not change. In the context of the present paper, a R-IM on a resistor
with resistance R can be represented by

FR =
|ucu

R icu
R

cR |1 −R
≡ | icu

R ucu
R

cR | − R 1
. (5)

where ucu
R and icu

R point to current voltage and current amperage respectively on the resistor.
Let another R-IM

B =
〈

P, Q,
{

bp,q
}

p∈P, q∈Q

〉
(6)

be given. Sum (in index matrix theory the summation is denoted by “⊕”)

C = A⊕ B =
[
K∪ P, L∪Q, {cr,s}r∈K∪P, s∈L∪Q

]
, (7)

cr,s =


ar,s, if r ∈ K ∧ s ∈ L−Q∨ r ∈ K− P∧ s ∈ L;

br,s, if r ∈ P ∧ s ∈ Q− L∨ r ∈ P−K∧ s ∈ Q;

ar,s + br,s, if r ∈ K∩ P ∧ s ∈ L∩Q;

0, otherwise;

(8)

is a R-IM too. A sum of two index matrices, which have form (5), is presented below:

|ucu
R1

icu
R1

cR1 |1 −R1
⊕

|ucu
R2

icu
R2

cR2 |1 −R2
=

|ucu
R1

icu
R1

ucu
R2

icu
R2

cR1 |1 −R1 0 0
cR2 |0 0 1 −R2

. (9)
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Since classical matrices of different sizes cannot be summed, it is obvious that in the
case of their usage in matrix equations such compact expressions cannot be obtained. The
following example supports the last assertion:(

1 −R1 0 0
0 0 0 0

)
+

(
0 0 0 0
0 0 1 −R2

)
=

(
1 −R1 0 0
0 0 1 −R2

)
. (10)

Indices, which point to resistors, and voltages and amperages, cannot be included
in (10); usually, identifiers are associated to the columns in such matrix equations.

In [10,11] a product of R-IMs (their multiplication is denoted by “�”) is defined. In
case of index matrices A and B:

D = A� B =
〈

K∪ (P− L), Q∪ (L− P), {dr,s}r∈K∪(P−L), s∈Q∪(L−P)

〉
, (11)

dr,s =



ar,s, if r ∈ K ∧ s ∈ L− P−Q;

br,s, if r ∈ P−K− L ∧ s ∈ Q;

∑
t∈ L∩ P

ar,tbt,s , if r ∈ K ∧ s ∈ Q;

0, otherwise.

(12)

The last sum has a well-known analog in classical matrices theory; in case of L ≡ P
such sums are calculated for all elements of A� B (see (10)), i.e.,

L ≡ P ⇒
(

D = A� B =
〈

K, Q, {dr,s}r∈K, s∈Q

〉
, dr,s = ∑

t∈ L≡ P
ar,tbt,s

)
. (13)

For each multiplication in the present paper, the second index set of its first R-IM is a
subset of the first index set of its second R-IM, and the second index set of its second R-IM
has one element, denoted by o, only. In case of A and B it means that L ⊆ P and Q = {o};
the following statement holds:

(L ≡ P∧Q = {o}) ⇒
(

D = A� B =
〈

K∪ (P− L), {o}, {dr,o}r∈K∪(P−L)

〉
, (14)

dr,o =

 br,o, if r /∈ K;

∑
t∈ L

ar,tbt,o, otherwise.

)
. (15)

An example is given below:

|ucu
R icu

R
cR |1 −R

�

| o
ucu

R |uR(t)
icu
R |iR(t)

ucu
E |uE (t)

=
| o

cR |uR(t)− R iR(t)
ucu

E |uE (t)
. (16)

The elements of the first R-IM are coefficients of linear dependency; the elements of the
second R-IM—voltage or amperage values; and the elements of the third R-IM—resultant
values. In the third R-IM, one element is a linear combination and one element (which can
be considered as constant voltage in ideal DC voltage source) remains unchanged (index
ucu

E is not presented in set I2
(
FR
)
).

2.2. Classical Matrix Models on First-Order Discrete Dynamical Systems

In [3] a time-independent first-order discrete dynamical system is defined by

X(t + ∆t) = AX(t) + B, X(t) =
[

x1(t) x2(t) . . . xn(t)
]T, (17)
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where matrices A and B are constant, and

t ∈ Θ ≡
{

t0, t0 + ∆t , t0 + 2∆t , . . .
}

, t0, ∆t ∈ R, ∆t =
1

Fd
> 0. (18)

Here time set Θ has sampling step ∆t and discretization frequency Fd. State vector X(t + ∆t)
depend on its previous one X(t) only. The matrix equation from (17) is replaced by its
equivalent one below:

C X(t + ∆t) + D X(t) + E = O, A = −(C)−1 D, B = −(C)−1 E, (19)

where O is a zero matrix, and C is non-singular. It is obvious that the next two matrix
equations are equivalent to those ones in (17) and (19):

X(t + ∆t) = A′ X′(t), A′ =
[

A B
]
, X′(t) =

[
X(t)

1

]
; (20)

F X′′ (t + ∆t) = O, F = [ C D E ], X′′ (t + ∆t) =

 X(t + ∆t)
X(t)

1

. (21)

In the next section, R-IM analogs of (20) and (21) model proper first-order discrete
dynamical systems.

2.3. R-IM Models of Electronic Components, Circuits and Devices

Let an electronic device be modelled and be denoted by D, and let MD be a finite set
of unique indices associated to its components. It is obvious that various divisions can be
performed in non-trivial devices, and appropriate hierarchies, which include sub-devices,
can be defined. In [12] a two-terminal electronic component cm, m ∈ MD, is modelled by
R-IM Fm(t) so that a relation between its voltages um(t), um(t− ∆t) and its amperages
im(t), im(t− ∆t) at consecutive time moments can be obtained (respective indices ucu

m , upr
m ,

icu
m and ipr

m , which do not depend on time, are used); here t ∈ Θ − t0. This relation is
given by

Fm(t) � X′′m(t) = O, I2
(
Fm(t)

)
≡ I1

(
X′′m(t)

)
. (22)

Both values and their respective indices are presented in X′′m(t) (see (24)). Here and
below O denotes a zero R-IM (all its elements are zeros). Examples on basic components
are given in [12] and below.

Let an electronic component, denoted by cL, be an inductor with inductance L.
Approximation

uL(t) = L
iL(t)− iL(t− ∆t)

∆t
(23)

is a consequence of

FL �

| o
ucu

L |uL(t)
icu
L | iL(t)

ipr
L | iL(t− ∆t)

= O, FL =

| ucu
L icu

L ipr
L

cL

∣∣∣∣ 1 − L
∆t

L
∆t

(24)

Similarly, for a capacitor, denoted by cC, with capacitance C,

FC =
| ucu

C icu
C upr

C
cC | − C

∆t 1 C
∆t

(25)

gives approximation

iC(t) = C
uC(t)− uC(t− ∆t)

∆t
. (26)
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It is obvious that (5) models a resistor, denoted by cR, with resistance R. For an ideal
DC voltage source, denoted by cE, constant voltage E is determined by

FE �
| o

ucu
E |uE(t)

o | 1
= O, FE =

|ucu
E o

cE | 1 E
. (27)

The upper parameters L, C, R and E, do not depend on time. However, their time depen-
dences can be presented instead of constants. Let the component, denoted by cS, be an
ideal electronic switch; a joint representation of its two states is

FS(t) =
| ucu

S icu
S

cS | sS(t) 1− sS(t)
, (28)

where sS : Θ→ {0; 1} is a switching function. According to (28), in the closed state of the
switch uS(t) = 0, and in its opened state iS(t) = 0.

Nodes are modeled by IMs below according to Kirchhoff’s current law in a similar
manner. Each component index in the left side of the next three equations denotes an
electronic component which is not presented in previous such equations. For the scheme
with two-terminal components from Figure 1 the respective R-IMs are

FnE =
| icu

E icu
S2

nE | 1 −1
; FnS2

=
| icu

S2
icu
S1

icu
L

nS2 | 1 1 −1
; FnL =

| icu
L icu

C icu
R

nL | 1 −1 −1
. (29)
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They model

iE(t)− iS2
(t) = 0; iS2

(t) + iS1
(t)− iL(t) = 0; iL(t)− iC(t)− iR(t) = 0. (30)

The R-IM on the fourth node is omitted, because it gives a linear combination of R-IMs
from (29); all elements of MCirc = {“E”; “S2”; “S1”; “L”; “C”; “R”} are represented in
these three R-IMs (the circuit is denoted by “Circ”). For each component, the positive
direction of voltage and amperage is from its first to its second terminal, and it determines
respective signs in the index matrices from (29) and (31).

Kirchhoff’s voltage law can be applied through index matrices too. For the scheme
from Figure 1, respective R-IMs on three loops are

FpR
=

|ucu
R ucu

C
pR | 1 −1

; FpE
=

|ucu
E ucu

S2
ucu

S1

pE | 1 1 −1
; FpL

=
|ucu

L ucu
C ucu

S1

pL | 1 1 1
. (31)

They model

uR(t)− uC(t) = 0; uE(t) + uS2
(t)− uS1

(t) = 0; uL(t) + uC(t) + uS1
(t) = 0. (32)
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For the considered circuit, denoted by “Circ”, statements

FCirc(t) =
(
⊕

m∈MCirc

Fm(t)
)
⊕
(
⊕

n∈NCirc

Fn

)
⊕
(
⊕

p∈PCirc

Fp

)
; (33)

⊕
m∈MCirc

Fm(t) =FE(t)⊕ FS1(t)⊕ FS2(t)⊕ FL ⊕ FC ⊕ FR; (34)

⊕
n∈NCirc

Fn = FnE ⊕ FnS2
⊕ FnL ; ⊕

p∈PCirc

Fp = FpR
⊕ FpE

⊕ FpL
. (35)

combine models of components, nodes, and loops. Sparse R-IM FCirc(t) contains 12 columns,
which have indices with subscript “cu”, and 12 rows. It is a part of a bigger model in the
present paper. Resistances are associated to the inductor, the capacitor, the DC voltage
source and the switches (voltages on closed switches are juxtaposed to amperages), and
therefore FL, FC, FE, FS1(t) and FS2(t) are modified. Devices, which are connected to the
upper circuit, are depicted in Figure 2 and described below. Their circuits are not consid-
ered; only important inputs and outputs are taken into account and shown graphically;
voltages on all devices are denoted in the figures. The digital signals are denoted by “s”.
The considered buck converter uses five blocks: a constant voltage block, a subtraction
block, a proportional-integral (PI) controller, a pulse width modulation (PWM) block, and
a logical NOT gate.
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The constant voltage block is represented by

FA1 =
|ucu

A1 ucu
A1,1

cA1 | − 1 U
. (36)

All input and output signals are marked by the respective component names, and the
input ones are numbered. In the shown example U = 10V.

The subtraction block is represented by

FA2 =
|ucu

A2 ucu
A2,1 ucu

A2,2

cA2 | − 1 1 −1
. (37)
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The proportional-integral (PI) controller is modeled by

FA3 =

| ucu
A3 upr

A3 ucu
A3,1 upr

A3,1

cA3

∣∣∣∣− 1
∆t

1
∆t

Kp
∆t + Ki −Kp

∆t
. (38)

The last index matrix approximates

duA3(t)
dt

= Kp
duA3,1(t)

dt
+ KiuA3,1(t), (39)

which is obtained from basic definition

uA3(t) = KpuA3,1(t) + Ki

∫ t

0
uA3,1(θ)dθ (40)

via differentiation. Proper values of Kp and Ki are shown in Figure 2.
The PWM block is modeled by

FAD(t) =


| scu

AD o

cAD | − 1 1
, if uAD,1(ts) > uTriang(t− ∆t);

| scu
AD

cAD | − 1
, otherwise;

(41)

where
ts =

{
0, ±∆ts, ±2∆ts, ±3∆ts, . . .

}
∩ (t− ∆t− ∆ts , t− ∆t] . (42)

Here the signal
uTriang : Θ → [0, A] (43)

has a triangular form, period ∆ts =
1
Fs

and amplitude A. Тhe output of the PI controller is
checked with switching frequency Fs. The voltage on the output of the PI controller and the
triangular function forms a duty cycle. The last two index matrices represent alternatives
sAD(t) = 1 and sAD(t) = 0, i.e., they form a digital signal. Proper values of Fs and A are
shown in Figure 2.

Finally, the logical NOT gate is modeled by

FD =
| scu

D scu
D,1 o

cD | − 1 −1 1
, (44)

Values sInv,1(t) and sInv(t) belong to set {0, 1} too.
All junctions of the considered five blocks are represented by

|ucu
A2,1 ucu

A1

pA2,1 | − 1 1
;

|ucu
A2,2 ucu

R

pA2,2 | − 1 1
;

|ucu
A3,1 ucu

A2

pA3,1 | − 1 1
;

|ucu
AD,1 ucu

A3

pAD,1 | − 1 1
;

| scu
D,1 scu

AD

pD,1 | − 1 1
;

| scu
S1

scu
AD

pS1,1 | − 1 1
;

| scu
S2

scu
D

pS2,1 | − 1 1
. (45)

The last two index matrices determine values of the switching functions.
The controller (denoted by “Contr” below) can be modeled by

FContr(t) =
(
FA1 ⊕ FA2 ⊕ FA2 ⊕ FAD(t) ⊕ FD

)
⊕ FPConr , (46)
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where the last index matrix is calculated as a sum of the R-IMs in (45). A common model
(denoted by “Buck Conv”) is

FBuckConv(t) = FCirc(t) ⊕ FContr(t). (47)

A relation between voltages and amperages can be obtained through R-IM equation

FBuckConv(t)� X′′ BuckConv(t) = O, I2
(
FBuckConv(t)

)
≡ I1

(
X′′ BuckConv(t)

)
, (48)

where both values and their respective indices are presented in X′′ BuckConv(t).
The equation in (48) is a proper R-IM analog of the matrix equation in (21), i.e., it

represents a first-order discrete dynamical system. Sparse R-IM FBuckConv(t) contains
24 columns, which have indices with subscript “cu”, and 24 rows (there are 12 R-IMs in
FContr(t) with 12 indices with subscript “cu”, which are not presented in FCirc(t)

)
. All

R-IM models in the present section are automatically simplified (since the index matrices in
(45) are trivial, all 24 respective variables are automatically reduced to 15 analog ones and
4 discrete ones), generated and solved by the software, which is developed by the authors
(see next section).

3. Software Implementation Based on R-IMs

In [5], programming classes, which implement electronic circuit design techniques,
and which are based on R-IMs, are presented. Class diagrams of their recent versions are
shown in this section. One of the main purposes is the automation of processes of modeling
and simulation. An example of joint modeling and simulation of a power circuit and a PI
controller is given. All electronic component images in the present paper, except the ones
which use Simulink, are obtained by labeling the authors’ methods as Draw().

Each object of class IndexMatrix represents a R-IM through two lists of indices and
a two-dimensional array. Static methods Sum() and Multiplication() implement the op-
erations, which are considered in (7) and (11). The method Solve() transforms a R-IM
analog of discrete dynamical system model (21) (see (48)) to a R-IM analog of equation (20)
in order that state variables can be calculated in a step-wise manner at each simulation
step. In this process, the auxiliary method Parts() is used in distinguishing current values
from previous ones. Class ClassicalMatrices contain static methods, which implement
well-known operations over classical matrixes (multiplication, inversion, and calculation
of the sub-matrix), which are used in model solving. Class diagrams of IndexMatrix and
ClassicalMatrices are presented in Figure 3.
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Class EC and its subclasses for the considered electronic components are presented
in Figure 4. Various specific properties (L, C, R, E, Ki, Kp, etc.) are defined. The method
CalculateIM() forms RI-Ms according to the statements, which are given in the paper. The
common properties of Position, Rotation and ConnectionPositions are used in drawing
(method Draw() is overridden). The members of interfaces, which are used in subclasses of
EC, are shown in Figure 4 too.
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Figure 4. Class diagrams of EC, its subclasses and auxiliary interfaces.

Class diagrams of Circuit and its auxiliary classes are shown in Figure 5. Each object
of class Junction represents a connection between two electronic components, and each
object of class Node implements a connection (such as the ones modeled in (29)) between
two or more components. Finally, class Circuit defines collections of instances of types EC
and Junction.
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Class Simlation determines in each instance an electronic circuit, a discretization
frequency, and a model time interval. Its method Do() invokes private methods in order for
proper R-IMs to be constructed and handled; notes on these methods and results of their
functioning in case of the considered example are given below:

CalculateConstantIMOnComponents(): performs in field IMAnalog all IMs on objects,
which implement interface WithTerminals, and for which property HasConstantIM has
value true. A respective view of IMAnalog is given below:

|ucu
R icu

R ucu
E icu

E o ucu
L icu

L ipr
L ucu

C i cu
C upr

C
cR | 1 −0.5 0 0 0 0 0 0 0 0 0
cE | 0 0 1 −0.1 24 0 0 0 0 0 0
cL | 0 0 0 0 0 −1 200.02 −200 0 0 0
cC | 0 0 0 0 0 0 0 0 −1 2.01 1

. (49)

CalculateIMOnNodes(): represents in IMAnalog a sum of R-IMs on nodes (see (29)). A
view of the respective sum is given below:

| icu
E icu

S2
icu
S1

icu
L icu

C icu
R

nE | 1 −1 0 0 0 0
nS2 | 0 1 1 −1 0 0
nL | 0 0 0 1 −1 −1

. (50)

CalculateIMOnLoops(): adds in field IMAnalog a sum of R-IMs on loops (see (31)). A view
of this sum is given below:

|ucu
R ucu

C ucu
E ucu

S2
ucu

S1
ucu

L

pR | 1 −1 0 0 0 0
pE | 0 0 1 1 −1 0
pL | 0 1 0 0 1 1

. (51)

CalculateConstantIMsOnVoltages(): adds in field IMAnalog a sum of all IMs on objects,
which implement interface WithVoltages, do not implement WithDigitalInput and With-
DigitalOutput, and for which HasConstantIM has value true (see (36)–(38)). A respective
view is given below:

|ucu
A1

o ucu
A2

ucu
R ucu

A3
upr

A3
upr

A2

cA1 | 1 −10 0 0 0 0 0
cA2 | 1 0 −1 −1 0 0 0
cA3 | 0 0 1.004 0 −1 1 −1

. (52)
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Objects of type Junction are used here in order trivial R-IMs from (45) on analog signals to
be taken into account in other R-IMs.

CalculateDigitalValues(): performs in the field IMDigital a summation of all IMs on
objects, which implement interfaces WithVoltages, WithDigitalInput and WithDigitalOut-
puts, and for which HasConstantIM has value true (in the considered example there is one
such instance of type NotGate).

| sD sAD o sS1 sS2

sD | 1 1 −1 0 0
sS1 | 0 −1 0 1 0
sS2 | 1 0 0 0 1

. (53)

An invoking of Solve() gives the following result in in field solvedDigital:

| sAD o
sD | − 1 1
sS1 | 1 0
sS2 | − 1 1

. (54)

The latter two R-IMs determine two solutions, which are presented by

| o
sAD | 0
sD | 1
sS1 | 0
sS2 | 1

;

| o
sAD | 1
sD | 0
sS1 | 1
sS2 | 0

. (55)

CalculateNonConstantIMs(): sums in each element of array iMsAnalog[] IMs on
IMAnalog and a sum of all IMs on objects, for which HasConstantIM has the value false.
For the described converter, IMs on the switches are added according to the values of sS1
and sS2 in the upper two cases:

|ucu
S2

icu
S2

o ucu
S1

icu
S1

cS2 | 1 −0.05 −0.05 0 0
cS1 | 0 0 0 0 1

;
|ucu

S2
icu
S2

o ucu
S1

icu
S1

cS2 | 0 0 0 0 1
cS1 | 0 0 −0.05 1 −0.05

. (56)

In such a way, various R-IMs are constructed at first in iMsAnalog[]. Method Solve()
is invoked on its elements in order the values to be calculated in step-wise manner later,
and the results of functioning of Solve() are saved in array solvedAnalog[].

SimulateInModelTime(): calculates for each sampling step non-handled digital values.
In the presented example, the signal on the output of the PWM block must be handled (all
digital signals depend on it only). The method uses the upper discrete values and elements
of solvedAnalog[] in the R-IM analog of state vector estimation (see (17)). For the described
converter, all voltages um(t) and amperages im(t), where m ∈ MCirc, as well as voltages
(or respective values “0” and “1”) of the components, which are indexed in MContr, are
estimated through their previous ones.

4. Results

Graphics and respective characteristics on the output voltage of the considered con-
verter, which are obtained by authors’ software, are presented in [5,6]. Such a graph and
the respective characteristics are shown in Figure 6, and similar statistics can be estimated
for other values (see the checkbox in this figure).
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Figure 6. Output voltage of the buck DC-DC converter from Figure 2: (a) graphics; (b) characteristics.

The Simulink model is presented in Figure 7. The same parameters, for example
resistance, inductance, capacitance, etc., of the considered buck DC-DC converter are
used. The result of its simulation coincides with the result shown in Figure 6. Simulation
durations in the authors’ software and Simulink (automatic solver selection is performed
in the last one) are presented in Table 1. The same parameters are used in order for step
responses to be shown in two ways. Whereas there are many configuration parameters in
Simulink, there are only two such ones in the authors’ software: model time duration and
discretization frequency (the last one is chosen to be 10 times greater than the switching
frequency in the PWM block). Microsoft Visual Studio Community 2017 and MATLAB
2017a are used, and 10,000 and 1000 simulations (in the authors’ software and for the
Simulink model, respectively) were performed for each case. All initial values are zero.
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converter; (b) graphical model of the PWM block; (c) output voltage.

Table 1. Simulation durations for the buck DC-DC converter from Figure 2.

Model time duration [ms] 0.2 0.4 0.6 0.8 1

Simulation duration in Simlink [ms] 510 530 547 567 595

Simulation duration in the authors’ software [ms] 18.1 19.9 21.9 23.9 26.1
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The Simulink model of a three-phase converter is presented in Figure 8. The scheme
contains a boost DC-DC converter, in which the positions of a switch and an inductor are
shifted (compared to Figure 7). The devices of the same name have the same functionality;
their parameters are shown more clearly in Figure 9, which presents the respective model
in the authors’ software. Simulation durations in the latter one and Simulink (the same
circuit parameters are used) are presented in Table 2. 1000 and 100 simulations (in the
authors’ software and for a Simulink model, respectively) were performed for each case.
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Table 2. Simulation durations for the three−phase converter from Figures 8 and 9.

Model time duration [ms] 20 40 60 80 100

Simulation duration in Simlink [s] 2.93 5.03 7.47 9.37 11.54

Simulation duration in the authors’ software [ms] 333 448 544 637 751

5. Discussion

The presented approach effectively automates electronic circuit modeling. The com-
ponents, junctions, nodes, and loops are represented by index matrices with real number
elements, and sums of such matrices are implemented in the proposed .NET application for
power systems’ design. The operation of PID-regulator, which theoretically can be modeled
by second order differential equation, has likewise been properly implemented by the
authors; the achieved results are identical to the results obtained by Simulink. The chosen
approach is appropriate in power electronics since the number of components in circuits
is not large, and the number of switches is not high, and furthermore, the combinations
of closed and opened switch states raise exponentially with raison of their number in the
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case of non-interaction, but many of these combinations are forbidden by the operation of
the circuits. For example, there are two combinations of switch states for the buck DC-DC
converter from Figure 2 (the respective number in case of non-interaction of its two switches
is four) and there are six such combinations of switch states for the three-phase converter
from Figure 9 (the respective number in case of non-interaction of its 8 switches is 256). The
presented approach suggests a fast simulation, and results can be obtained automatically in
an exhaustive way. It can be extended to handle problems in the wide area of the first-order
discrete dynamical systems and their applications.

6. Conclusions

The paper presents an integrated approach to the modeling and design of power
electronic devices, based on an index matrix tool. Compared to other applied methods for
studying the behavior of electronic converters [19–25], the proposals are characterized by
versatility, reduced requirements for computational resources, robustness of the solution,
and a high potential for algorithmization. Thus, it is highly suitable for the purposes of
training in power electronics, as well as in research and engineering practice. However, an
open-source software system, which users can customize according to their knowledge,
capabilities, and needs, is proposed. One natural development of this approach is its
incorporation into an expert system that automates the design of power electronic devices
and systems.
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