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Abstract: Control design of power-assist systems has been widely applied to human-robot interactive
systems such as wearable exoskeleton systems, of which the range of motion limitation of human
joints in the power-assist systems is essential. This paper presents a virtual soft boundary design
for a human-robot cooperation system with a limited operating range. The proposed virtual soft
boundary is realized by impedance control and integrated into the power-assist robot arm system;
meanwhile, power-assist robot arm systems are typical human-in-the-loop systems, and the control
of the power-assist system in performing in accordance with a human’s perception is a significant
issue. Therefore, a model-based disturbance observer with a pseudo-derivative feedback feedforward
(PDFF) compensator is designed to effectively estimate the human’s torque for an appropriate motor
torque command. Experimental results show that the proposed control method can estimate the
human torque exerted on the robot arm system to achieve a power-assist system, and the virtual
soft boundary can be realized by the impedance control and integrated into the power-assist robot
arm system.

Keywords: disturbance estimation; PDFF controller; power-assist system; virtual soft boundary;
impedance control

1. Introduction

The concept of a power-assist system, which was first discussed by the Cornell Aero-
nautical Laboratory in 1968 [1], was a concept with the purpose of assisting people with
disabilities by using a wearable exoskeleton. The evolution of robotics research over the
last 50 years has also pointed out the significance of power-assist technology developed
in robotics research [2]. Hence, the control design of power-assist techniques is indeed
essential for the human-robot interactive system. Moreover, service robots incorporating
physical human-robot interaction (pHRI) have recently become an important trend outside
industrial applications for addressing the new needs and markets in daily human life [3–6].
The general ability of service robots makes it necessary to work closely with humans; thus,
researching control techniques for pHRI should be central in the development of service
robots [7]. Control design of power-assist devices is regarded as an essential technique for
dealing with pHRI because of its compliance design, and it has recently been investigated
in several service robots, such as power-assisted wheelchairs [5], cycle ergometers for stroke
rehabilitation [8], walking assisted robots [9], ankle rehabilitation robotic devices [10], and
so on.

Control design of a power-assist system can be defined as assistance to motions
for the purpose of enhancing user mobility or reducing user effort. Power assistance
supported by servo motors is not intended to entirely replace user effort. The power-
assist system is operated in accordance with a user’s perception; hence, the servo motor
should be sensitive to the force the user exerts on the system [11,12]. Force sensors are a
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straightforward solution for obtaining user force information. However, directly detecting
user force by sensors is not practical for implementation due to the problems of installation
and wiring. To overcome the sensing issue, several studies on sensing indirect force
have been developed, such as a strain gauge device equipped with a Wheatstone bridge,
which has been integrated into a robotic rehabilitation exoskeleton for a user’s tremor
force assessment [13]. Additionally, an angle sensor, a linear potentiometer, and touch
sensors were designed to monitor the torque of the user’s below-knee exoskeleton [14].
Furthermore, a load cell collocated with a linear encoder has been employed to develop a
torque-controllable actuator for the knee assistance device [15]. However, the structure of
those indirect sensing devices still involves issues of installation and wiring.

Therefore, using model-based observers instead of force sensors has been recom-
mended for estimating the human propel efforts of power-assist systems [5,6,8,16], in
which only the excitation signal (i.e., the current input of a servo motor) and a measurable
feedback signal (i.e., the motor position output information) are necessary for the presented
observer. Further, the structure of the model-based observer primarily consists of five
elements: excitation signal of the control system, sensor output, mathematical model of the
control plant, a mathematical model of the sensor, and an observer compensator. Although
the performance of an observer compensator with a pseudo-derivative feedback (PDF)
controller has been verified in [6,8,16], the pseudo-derivative feedback feedforward (PDFF)
controller is proposed to improve the transient response of the estimated external force in
this study.

Moreover, various power assist human-robot systems, especially in wearable exoskele-
tons, are performed in accordance with the user’s joint motion. Therefore, it is essential
to achieve the compliance characteristics in the power-assist system [17]. For example, an
admittance control of powered exoskeletons based on joint torque estimation was presented
to render a trajectory-free compliance control law [18]; then, to ensure recursive feasibility
and constraint compliance, the predictive control of a tube-based model was employed
to regulate a knee joint with functional electrical stimulation [19]. Further, the full-active
electro-hydrostatic powered ankle prosthesis was implemented to provide initiative com-
pliance while assisting push-off at the end of the stance phase [20]. However, the range
of motion (ROM) of human joints is generally operated with limitations while the joint
is flexing or extending. The demand of the virtual soft boundary must be realized in
the power-assist human-robot systems to avoid the risk of extreme flexing or extending.
Hence, the virtual soft boundary realized by the impedance control is integrated with the
disturbance estimation to achieve the compliant operation of the power assist human-robot
system, constrained by the ROM of the human joints.

The remainder of this paper is organized as follows: Section 2 discusses the dy-
namics model of a one-link robot arm and the design of the model-based disturbance
observer. Then, the range planning of ROM, control design of the power-assisted mode,
and impedance control are proposed to deal with the limited operating range in Section 3.
Further, the experiment results and discussion are presented in Section 4. A conclusion is
then provided in Section 5.

2. Dynamics Modeling and Disturbance Estimation
2.1. System Dynamic Modeling

In order to validate the assistant control approach, this study applied the proposed
control system to a one-link robot arm driven by an electric motor. The demonstration
set-up with a single degree-of-freedom is illustrated in Figure 1, where the end of the
robot arm can be forced by human force. Then, an electric motor can be used to amplify
the operator’s force for the driven loading. Further, the dynamic model of the controlled
system was conducted to investigate the power-assist system driven by the human force.
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Figure 1. Experimental setup of the power-assist system.

Based on Figure 1, Figure 2 shows a schematic view of the one-link robot arm model,
where C presents the mass center of the robot arm, L denotes the length of the original
point O to the handle of the robot arm, and Lc indicates the length of OC. Additionally,
θarm presents the angular position of the robot arm. Then, the total kinetic and potential
energy function can be employed to derive the dynamic equations of the system in Figure 2.
Here, the kinetic and potential energy function is considered by the Lagrangian function L
given by

L =
1
2

Mcvc
2 +

1
2

Ic
.
θ

2
arm + McLcg cos(θarm) (1)

where Mc denotes the total mass of the one-link robot arm, vc(= Lc
.
θarm) indicates the

tangent velocity of the center of mass of the robot arm, and Ic represents the inertia of the
one-link robot arm with respect to the vertical axis through C.
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Furthermore, to include the dissipated energy caused by viscous friction, the additional

term of the dissipation function D = Be
.
θ

2
arm/2 is obtained, where Be presents the equivalent
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viscous coefficient of the system. Thus, the dynamic equation of the one-link robot arm is
governed by:

d
dt

(
∂L

∂
.
θarm

)
− ∂L

∂θarm
+

∂D

∂
.
θarm

= τm (2)

where τm indicates the electric motor torque output. Let τm = ktnia, where kt is the torque
constant of the driving motor, n is the gear reduction ratio, and ia denotes the input current
of the driving motor. Solving the Lagrange equation will yield the dynamics model of the
one-link robot arm:

τm = Je
..
θ + Be

.
θ + McLcg sin(θarm) (3)

where Je(= McL2
c + Ic) is the equivalent inertia of the one-link robot arm. Then, the block

diagram of the one-link robot arm model is described in Figure 3. In order to obtain the
parameter of the system in Figure 3, the mathematical model is calculated by spectrum
analysis of the frequency response of the proposed system. Therefore, the parameters of
Je = 0.2379 kg·m2 and Be = 0.5545 Nm/(rad/s) can be obtained. Additionally, the friction
model recognized by [21] is depicted in Figure 4. The static and Coulomb friction is
described in Table 1 and applied to compensate for the friction in the control system.
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Table 1. Parameter of the friction model.

Static Friction (Nm) Viscous Coefficient (Nm/(rad/sec))

Clockwise 2.189 0.60
Counter clockwise 3.026 0.59

2.2. External Disturbance Estimation

According to previous analyses, the one-link robot arm system can be modeled as
in Figure 3, where Je and Be indicate the equivalent inertia and viscous coefficient of the
system. Then, kt and ia are the torque constant and current input of an electric motor.
Further, ωarm and θarm present the angular velocity and position information of the robot
arm. Suppose that Tdis denotes the external disturbance of the system, which consists of
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the external human propel torque Th, the friction Tf, and the gravity effect Tg. Thus, Tdis
can be expressed as:

Tdis = Th + Tf + Tg (4)

where Tg = McLcg sin(θarm). Since the parameter of the friction model Tf can be obtained
from Figure 4 and Table 1, the input of the propelled external human torque in the system
can be given by:

Th = Tdis − Tg − Tf (5)

Hence, the human propelled input can be estimated by Tdis. In this study, the model-
based observer applied for estimating the human’s propel effort was developed by [22].
In general, the model-based observer primarily consists of five elements: plant excitation
signal, real sensor output, an estimated model of the control plant, a model of the sensor,
and an observer compensator. Assume that the angular velocity of the robot arm system
can be measured. Then, the one-link robot arm system combined with the model-based
observer can be presented as in Figure 5, where ia indicates the system excitation signal,
ωarm is the real sensor output, 1/( Ĵes + B̂e) presents the estimated model of the control
plant, and Gco(s) denotes the observer compensator. Moreover, the model of the sensor is
assumed to be equal to one. Since converging the observed error, E = ωarm − ω̂arm is one
of the primary issues in the model-based observer and properly designing the observer
compensator Gco(s) is essential.
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From Figure 5, an appropriate design of the compensator Gco(s) is similar to regulat-
ing a compensator in a speed feedback control system, which can be found in Figure 6.
Although the performance of the compensator Gco(s) designed by a PDF controller [6,8,23]
has been verified, a PDFF controller is proposed to improve the transient response of
the external disturbance estimation in this study. The observer compensator formed by
the PDFF controller is illustrated in Figure 7, where Kp and Ki are the proportional and
integral gain of the observer compensator, respectively. Furthermore, K f f is an additional
feedforward gain. It can be seen that the PDFF controller constitutes a generalized PDF
controller K f f = 0. Suppose that Gv(s) is the transfer function from ωarm to ω̂arm. Thus,
we have

ω̂arm

ωarm
= Gv(s) =

K f f Kps + KiKp

Ĵes2 + (Kp + B̂e)s + KiKp
(6)
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To compare the PDF controller in [8] and the PDFF controllers in Figure 7, (6) can be
represented by a second-order low-pass filter with the desired natural frequency ωnOB and
damping ratio ςOB, such as:

Gv(s) =
K f f Kps/ Ĵe + KiKp/ Ĵe

s2 + (B̂e + Kp)s/ Ĵe + KiKp/ Ĵe
=

K f f (2ζOBωnOB − B̂e/ Ĵe)s + ωnOB
2

s2 + 2ζOBωnOBs + ωnOB
2 (7)

where {
ωnOB

2 = KiKp/ Ĵe
2ζOBωnOB = (B̂e + Kp)/ Ĵe

and
{

Kp = 2ζOBωnOB Ĵe − B̂e
Ki = ωnOB

2 Ĵe/Kp
(8)

From (7) and according to the definition of bandwidth in the second-order system,
we have: ∣∣∣∣∣K f f (2ζOBωnOB − B̂e/ Ĵe)(jωbwOB) + ω2

nOB

(jωbwOB)
2 + 2ζOBωnOB(jωbwOB) + ω2

nOB

∣∣∣∣∣ = 1√
2

(9)

Assume that B̂e can be initially compensated; thus the natural frequency ωnOB in the
observer is obtained by the relationship of (9) [24].

Suppose that the low-speed movement of the human robot-arm system is chosen
to avoid damage. The bandwidth and damping ratio in the second-order system of (7)
is designed by ωbwOB = 30 rad/s (≈4.77 Hz) and ζOB=1 (critically damped). Therefore,
the designed parameters of the observer are listed in Table 2. Further, the performance
of the step response in the observer design is depicted in Figure 8, where the solid line
presents the result of the observer while K f f = 0, and the dash-dotted line indicates the
performance of the observer with the feedforward gain tuned by K f f = 0.25. Since the PDFF
controller is equivalent to a generalized PDF controller of K f f = 0, the transient response of
PDFF 25 is better than that of the PDF (PDFF 0). Further, the rising time is improved from
0.072 s. (PDFF0) to 0.053 s. (PDFF25). Hence, in this study, the PDFF controller K f f = 0.25
is integrated into the model-based observer design for estimating external disturbance.
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Table 2. Parameters and transient response of the observer compensator.

PDFF0 (PDF) PDFF25

Bandwidth (rad/sec) ωbwOB = 30 ωbwOB = 30

Damping Ratio ζOB = 1 ζOB = 1

Nature Frequency
(rad/sec) ωnOB = 46.61 ωnOB = 141.42

Observer Parameter


Ki = 465.16
Kp = 19.96
K f f = 0


Ki = 282.84
Kp = 70.71
K f f = 0.25
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However, the actual sensor output of the one-link robot arm system is θarm (measured
by the incremental optical encoder). Further, the PDFF controller can be implemented
as in Figure 9a. To use the measured position information for speed control and torque
observer design, the structure of Figure 9a can be redrawn by the equivalent block diagram
illustrated in Figure 9b. Considering practical implementation, the proposed disturbance
observer integrated with the structure of Figure 9b is shown in Figure 10, in which only the
measured motor current (input) ia and position (output) θarm are utilized to estimate the
external disturbance Tdis. From Figure 10, the transfer function between actual disturbance
input Tdis and estimated disturbance T̂dis is given by:

T̂dis
Tdis

=

(
Ĵes + B̂e

)
(Jes + Be)

·
K f f Kps/ Ĵe + KiKp/ Ĵe

s2 +
(

B̂e + Kp
)
/ Ĵes + KiKp/ Ĵe

=

(
Ĵes + B̂e

)
(Jes + Be)

Gv(s) (10)

Assuming that the estimated equivalent inertia Ĵe and viscous coefficient B̂e of the
one-link robot arm is approximated to the actual equivalent inertia Je and viscous coefficient
Be, (10) can therefore be rewritten as:

T̂dis
Tdis
≈

K f f Kps/ Ĵe + KiKp/ Ĵe

s2 +
(

B̂e + Kp
)
/ Ĵes + KiKp/ Ĵe

= Gv(s) (11)



Electronics 2022, 11, 690 8 of 18

where the performance of Gv(s) can be analyzed by (7)–(9) in the previous description. In
other words, this indicates that the human propel effort Th can be obtained based on the
proposed observer as:

T̂h = T̂dis − T̂g − T̂f (12)

where the performance of the estimated T̂h can be conducted in the following experimental section.
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3. Control Design of Power-Assist System with Limited Operating Range

In general, the range of motion (ROM) of human joints is operated with limitations
while the joint is flexing or extending. Hence, it is necessary to consider the issue of limited
operation in a power-assist system. Figure 11 presents the control strategy of a power-assist
system with an operating limitation in the one-link robot arm system, where θROM indicates
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the ROM, θIMP shows the angle range of the impedance mode, and θPAC presents the angle
range of the power-assisted control mode. According to the control strategy in Figure 11,
the torque sensorless power-assist system integrated by the impedance control is proposed
in Figure 12, where the robot arm system is mentioned in the previous section. Further, Tsys
is the power-assisted control law and can be designed as

Tsys =

{
Timp, for 0 ≤ θarm < θIMP or (θIMP + θPAC) ≤ θarm < θROM

Tpac, for θIMP ≤ θarm < (θIMP + θPAC)
(13)

where Timp is the power-assisted command of the impedance mode in the intervals of
A and C. Then, Tpac = AT T̂h indicates the command of the power-assisted mode in the
interval of B with the power-assisted ratio AT .
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In the intervals of A and C, impedance control is applied to improve the safety of
human-robot interaction in the boundary of ROM [25]. Thus, the impedance control scheme
can be designed as Figure 13, where the inner-loop is the velocity loop control with the
adjustable parameters kimp1 and kimp2. The outer-loop dominates the position feedback
control with a proportional gain kimp3. Furthermore, the θ∗arm is the desired position
command generated by the required impedance model of the inertia Jimp, damping Bimp,
and stiffness Kimp.
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Moreover, due to the fact that Interval B presents the power-assisted mode, the power-
assisted control law Tsys in Interval B can be designed as:

Tsys = Tpac = AT T̂h (14)

where AT is represented as the power-assisted ratio and T̂h indicates the estimated human
propel input. To verify the stability of the power-assisted mode, the block diagram of the
power-assisted mode is illustrated in Figure 14. Thus, the estimated human input T̂h can be
expressed by

T̂h = Kp

(
K f f ωarm + KiE(s)− ω̂arm

)
(15)

where E(s) = θarm − θ̂arm = (ωarm − ω̂arm)/s. Assuming that the estimated equivalent
inertia Ĵe, viscous coefficient B̂e, and motor torque constant k̂t of the one-link robot arm are
approximated to the actual equivalent inertia Je, viscous coefficient Be and motor torque
constant kt, (15) can therefore be rewritten as:

T̂h =
KpK f f s + KpKi

Ĵes2 + (B̂e + Kp)s + KpKi
Th +

(K f f − 1)Kps

Ĵes2 + (B̂e + Kp)s + KpKi
Tpac (16)
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According to (14) and (16), the transfer function of the estimated human input T̂h in
the power-assisted control mode is conducted by:

T̂h
Th

=
KPPDFF K f s + KPPDFF KiPDFF

Ĵes2 +
[

B̂e + KPPDFF + (KPPDFF − K f )AT

]
s + KPPDFF KiPDFF

(17)

Meanwhile, the root locus and frequency response of (17) are shown in Figures 15 and 16,
respectively. Obviously, the system is stable with the design of the power-assisted ratio AT
= 0 ~ 10.
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4. Experimental Verification
4.1. Experimental System

Figure 17 presents an experimental system of this study, where a DSP-based controller
is an intelligent motion control platform with a PowerPC 400 embedded processor. The
one-link robot arm is driven by a 400 W electric motor with the resolution 2500 pulses/rev
of the encoder and a gear ratio n = 40 of the gearbox. Further, the ADXL335 accelerometer
is utilized to measure the position θarm of the robot arm. The parameters of the robot arm
in Figure 3 are obtained by spectrum analysis of the frequency response of the proposed
system, where k̂t = 1.3/3 Nm/A, Ĵe = 0.2379 kg·m2, and B̂e = 0.5545 Nm/(rad/s).
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4.2. Verification of Disturbance Estimating

The effectiveness of the proposed disturbance observer is confirmed by experiments
with a load weight mload on the end of the robot arm. Thus, the load torque Tload can be
obtained by:

Tload = mloadgL sin(θarm) (18)

Then, the experimental progress is that the robot arm makes a circular motion with a
fixed angular velocity ωarm as shown in Figure 18. Further, the estimated load torque of the
experimental results is similar to (12) and can be described by:

T̂load = T̂dis − T̂g − T̂f (19)
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Subsequently, theoretical and experimental results were compared to examine validity.
The load torque following the three cases at ω

re f
arm = 10 RPM with the proposed disturbance

observer was conducted by three cases, i.e., case A: mload = 0 kg, case B: mload = 0.5 kg, and
case C: mload = 1 kg. Figure 19 shows the velocity control structure utilized to verify the
disturbance estimation, where the transfer function from ω

re f
arm to ωarm is formulated as:

ωarm

ω
re f
arm

=
kiv k̂tn/ Ĵe

s2 + (B̂e + kpv k̂tn)s/ Ĵe + kiv k̂tn/ Ĵe
=

ωn
2

s2 + 2ζωns + ωn2 (20)
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It can be seen from (20), that the controller parameters are related to a standard second-
order system. Choosing the natural frequency ωn = 2π × 10 rad/s and the damping ratio
ζ = 1, the integral and proportional gains kiv and kpv, respectively, of the velocity control
are given by: {

kiv = (ωn
2 Ĵe)/(k̂tn) = 54.18

kpv = (2ζωn Ĵe − B̂e)/(k̂tn) = 1.69
(21)

Experimental results corresponding to the three cases are presented in Figures 20–22.
First, the velocity response is anticipated to be 10 RPM with insignificant variation in each
condition. From (19), the estimated load torque should be equal to zero while mload = 0
kg of case A. Thus, the dashed line presents the theoretical value shown in Figure 20c,
whereas the dotted line is the load torque estimated by the proposed disturbance observer
in case A. Obviously, the dotted line is approximate to the dashed line. Then, the estimated
load torques tested by standard weights in case B (mload = 0.5 kg) and case C (mload = 1 kg)
are shown in Figures 21c and 22c, where the estimated load torque (dotted line) is close
to the theoretical results (dashed line). Eventually, the root mean square error is adopted
to further evaluate the performance of the proposed torque observer in all three cases, of
which all incidences with RMS errors are 0.17 Nm, 0.23 Nm, and 0.25 Nm.
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4.3. Realize the Control of the Power-Assist System and Impedance Control

Based on the above examination of torque estimation, the torque sensorless power-
assist system based on the observer can be verified with the configuration in Figure 23a,
where the extra load attached at the end of the robot is 1 kg. Furthermore, the assistance
power is realized by (14) with AT = 0, 1, and 2. Since the experimental configuration is cate-
gorized in the power-assisted mode mentioned in Section 2, the results of the power-assisted
ratio AT = 0, 1, and 2 are depicted in Figure 24 with the operating range θROM = 0 ∼ 75◦

(0~1.31 rad). With AT = 0 (without the assistance power) as shown in Figure 24a, the initial
disturbance estimation is around –3.91 Nm, which occurs because of the extra load. To oper-
ate the one-link robot in the range of θROM, the maximum human torque is 6.94 Nm. Then,
the maximum human torque is reduced to 5.38 Nm due to the increased power-assisted
ratio AT = 1 as shown in Figure 24b. Eventually, the maximum human torque is decreased
to 4.51 Nm at AT = 2. Therefore, the human effort can be alleviated with the proposed
torque sensorless power-assist system.

Further, the soft boundary based on the impedance control can be verified by the
experimental setup in Figure 23b. The user pulls the handle attached to the end of the
robot arm and the control system provides the impedance torque Timp gently against the
user’s effort. Hence, the haptic effect of the soft boundary between the human and machine
can be achieved. The parameters of the three cases for the impedance model are listed in
Table 3, and the results of the impedance model are shown in Figure 25, where the dashed
line indicates the variation of the robot arm position and the solid line presents the human
torque T̂h.

Since stiffness κ is the extent to which an object resists deformation in response to an
applied force, the definition of κ is expressed as κ = f orce on the body (T̂h)/ displacement
in this study. In other words, the complementary perception is flexibility, compliance,
or softness. The softer an object is, the less stiff it is. The result of case A is shown in
Figure 25a; the human torque is smoothly increased according to the position information
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and impedance parameters Bimp and Kimp, and the maximum T̂h is around 19.2 Nm with the
maximum position variation. Further, the stiffness κ gradually approaches 100 (Nm/rad).
Then, Kimp in case B is two times that of case A, in other words, the stiffness in case B
is slightly larger than in case A. Hence, the maximum T̂h is about 23.2 Nm of the soft
boundary in the maximum position variation in Figure 25b, and the stiffness κ gradually
approaches 200 (Nm/rad). Finally, Bimp in case C is four times that of case A; to put it
another way, it is difficult for the user to facilitate pulling the robot arm, and the result is
presented in Figure 25c. Meanwhile, the stiffness κ is gradually approaching 100 (Nm/rad).
To indicate the stiffness variation for presenting the characteristics of the soft boundary,
the results are illustrated in Figure 26 during the position displacement close to the ROM
limitation.
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Table 3. Parameters of the impedance mode.

Item Parameters of the Impedance Model

Case A Bimp = 10 (N ·m · sec /rad), Kimp = 100 (N ·m/rad)
Case B Bimp = 10 (N ·m · sec /rad), Kimp = 200 (N ·m/rad)
Case C Bimp = 40 (N ·m · sec /rad), Kimp = 100 (N ·m/rad)
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5. Conclusion and Future Work

This paper proposes a model-based disturbance observer based on a PDFF type com-
pensator to enhance the transient response of torque estimation. The transient response of
PDFF 25 is better than that of the PDF typed compensator since the rising time is improved
by about 26.4% from 0.072 s (PDF compensator) to 0.053 s (PDFF25 compensator). Then,
the PDFF compensator was integrated into the model-based observer for estimating the
external disturbance. The performance of torque estimation is verified in the experimental
section. Evidently, the estimated load torque is approximately equal to the theoretical
results, and the human effort is available to be alleviated with a proposed torque sensorless
power-assist robot arm system based on torque estimation.

Further, due to the ROM limitation of the human joints, the risk of extreme flexing
or extending in the power-assist robot arm system should be avoided. Thus, the virtual
soft boundary was realized by the impedance control and integrated into the power-assist
system. The compliance characteristic is comprehended in the boundary of the ROM
according to the desired impedance model. Hence, the experimental results not only show
the capability of the torque estimation and soft boundary but also ensure the stability of
the power-assist robot arm system. Future work will focus on the experiment with a more
powerful electric motor and heavy loads since the power-assist robot arm system may be
operated for hard work in the future.
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