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Abstract: In order to effectively extract features and improve classification accuracy for hyperspectral
remote sensing images (HRSIs), the advantages of enhanced particle swarm optimization (PSO)
algorithm, convolutional neural network (CNN), and extreme learning machine (ELM) are fully
utilized to propose an innovative classification method of HRSIs (IPCEHRIC) in this paper. In the
IPCEHRIC, an enhanced PSO algorithm (CWLPSO) is developed by improving learning factor and
inertia weight to improve the global optimization performance, which is employed to optimize the
parameters of the CNN in order to construct an optimized CNN model for effectively extracting the
deep features of HRSIs. Then, a feature matrix is constructed and the ELM with strong generalization
ability and fast learning ability is employed to realize the accurate classification of HRSIs. Pavia
University data and actual HRSIs after Jiuzhaigou M7.0 earthquake are applied to test and prove
the effectiveness of the IPCEHRIC. The experiment results show that the optimized CNN can
effectively extract the deep features from HRSIs, and the IPCEHRIC can accurately classify the
HRSIs after Jiuzhaigou M7.0 earthquake to obtain the villages, bareland, grassland, trees, water, and
rocks. Therefore, the IPCEHRIC takes on stronger generalization, faster learning ability, and higher
classification accuracy.

Keywords: hyperspectral image classification; CNN; ELM; PSO; deep feature

1. Introduction

Remote sensing image (RSI) classification is to divide the image into several regions
by using specific rule or algorithm according to the spectral features, geometric texture
features, or other features [1–3]. Each region is a set of ground and objects with the same
characteristics, or a lot of RSIs are divided into several sets through some methods, and
each set represents a kind of ground or object category. It is a very important basic problem
and plays a very important position in the field of RSIs [4–6]. Therefore, the research on
remote sensing image classification method has become an important direction, which has
very important theoretical significance and practical application value.

In recent years, many classification methods of RSIs have been proposed, which can
be divided into two categories of manual visual interpretation and computer classifica-
tion [7]. The manual visual interpretation is the most traditional classification method,
which has large workload, low efficiency, and requires rich professional knowledge and
interpretation experiences [8–10]. With the rapid development of computer techniques, the
automatic classification method of RSIs replaces the manual visual interpretation classifica-
tion method. The more complex computer technology uses the spectral brightness value of
pixels and the spatial relationship between pixels and their surrounding pixels to realize
pixel classification. Tran et al. [11] presented a sub-pixel and per-pixel classification method
to analyze the impact of land cover heterogeneity. Khodadadzadeh et al. [12] presented a
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new hyperspectral spectral-spatial classifier. Li et al. [13] presented a novel classification
method of RSIs based on the probabilistic fusion of pixel-level and superpixel-level classi-
fiers. Li et al. [14] presented a novel pixel-pair method. Mei et al. [15] presented a novel
pixel-level perceptual subspace learning method. Pan et al. [16] presented a new central
pixel selection strategy based on gradient information to realize texture image classification.
Bey et al. [17] presented a new land cover assessment methodology. Yan et al. [18] pre-
sented a triple counter domain adaptation approach for learning domain invariant classifier.
Li et al. [19] presented a novel multi-view active learning approach based on sub-pixel and
super-pixel. Ma and Chang [20] presented a novel mixed pixel classification approach.

The single pixel spectral classification method can obtain the hyperspectral spectral-
spatial classification results, but they still exist at low classification accuracy and high
time complexity. The signal processing method on computer has the characteristics of
large amount of calculation and can obtain high classification accuracy. However, the
high-resolution RSIs have high spatial resolution and complexity. It is very difficult to
classify high-resolution RSIs by using traditional classification methods. Therefore, it
is urgent to deeply study a fast classification approach that can be effectively applied
to high-resolution RSIs [21,22]. As a field of artificial intelligence, deep learning has at-
tracted extensive attention, and has gradually become one of the important technologies
to promote the development of artificial intelligence. Therefore, many scholars have ap-
plied deep learning to remote sensing image classification and proposed many features
extraction and classification methods. Romero et al. [23] presented a sparse feature unsu-
pervised learning approach based on greedy hierarchical unsupervised pretraining method.
Sharma et al. [24] presented a new deep patch-based CNN. Maggiori et al. [25] presented
a dense pixel-level classification model. Wang et al. [26] presented a HRSI classification
method using principal component analysis (PCA) and guided filtering, deep learning
architecture. Ji et al. [27] presented a novel three-dimensional CNN to automatically classify
crops. Ben et al. [28] presented 3-D deep learning approach. Xu et al. [29] presented a novel
RSI classification model using generative adversarial network. Tao et al. [30] presented a
novel reinforced deep neural network (DNN) with depth and width. Liang et al. [31] pre-
sented a new RSI classification approach using stacked denoising autoencoder. Li et al. [32]
presented a novel region-wise depth feature extraction model. Li et al. [33] presented an
adaptive multiscale deep fusion residual network. Yuan et al. [34] presented a classifi-
cation approach based on rearranged local features. Zhang et al. [35] presented a new
dense network with multi-scales. Zhang et al. [36] presented a new feature aggregation
model based on 3-D CNN. Chen et al. [37] presented a novel deep Boltzmann machine
based on the conjugate gradient update algorithm. Xiong et al. [38] presented a novel
deep multi-feature fusion network based on two different deep architecture branches.
Tong et al. [39] presented a channel-attention-based DenseNet network. Zhu et al. [40]
presented a new deep network with dual-branch attention fusion. Raza et al. [41] presented
a four-layer classification network based on visual attention mechanisms. Li et al. [42]
presented a classification approach by combining generative adversarial network (GAN),
CNN with long short-term memory. Gu et al. [43] presented a pseudo labeled sample
generation method. Guo et al. [44] presented a novel self-supervised gated self-attention
GAN. Li et al. [45] presented a novel locally preserving deep cross embedded classifica-
tion network. Lei et al. [46] presented a novel deep convolutional capsule network using
spectral-spatial features. Cui et al. [47] presented a dual-channel deep learning recognition
model. Peng et al. [48] presented an efficient search framework to discover optimal network
architectures. Guo et al. [49] presented a novel semi-supervised scene classification method
using GAN. Dong et al. [50] presented a pixel cluster CNN. Li et al. [51] presented a new
RSI classification approach using error-tolerant deep learning. Li et al. [52] presented a
gated recursive neural network. Dong et al. [53] explored the potential of the reference-
based super-resolution method. Wu et al. [54] presented a self-paced dynamic infinite
mixture model. Karadal et al. [55] presented automated classification of remote sensing
images based on multileveled MobileNetV2 and DWT. Ma et al. [56] presented a novel
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adaptive hybrid fusion network for multiresolution remote sensing images classification.
Cai et al. [57] presented a novel cross-attention mechanism and graph convolution in-
tegration algorithm. Zhang et al. [58] presented a convolutional neural architecture for
remote sensing image scene classification. Hilal et al. [59] presented a new deep transfer
learning-based fusion model for remote-sensing image classification. Li et al. [60] presented
a multi-scale fully convolutional network to exploit discriminative representations. In
addition, some new optimization algorithms are proposed [61–72], which can optimize the
parameters of classification models.

Because the CNN has good feature extraction ability, these classification methods based
on CNN have obtained better classification effects. It has attracted extensive attention
and has been widely applied in RSIs. However, the structure and parameter selection of
the CNN seriously affect its learning accuracy. Therefore, the enhanced PSO algorithm
with global optimization ability is employed to optimize and determine the parameters
of the CNN to obtain the optimized parameter values for constructing an optimized
CNN, which is applied to effectively extract the multi-layer features of HRSIs to form a
multi-feature fusion matrix. Then, the ELM is employed to realize the classification of
HRSIs. The effectiveness is verified by typical data set and actual HRSIs after Jiuzhaigou
M7.0 earthquake.

The main contributions of this paper are described as follows.

(1) For the slow convergence and low accuracy of the PSO, an enhanced PSO based
on fusing multi-strategy (CWLPSO) is proposed by adding new acceleration factor
strategy and inertia weight linear decreasing strategy.

(2) For the difficultly determining the parameters of the CNN, an optimized CNN model
using CWLPSO is developed to effectively extract the deep features of HRSIs.

(3) The ELM with strong generalization ability, fast learning ability, and the constructed
feature vector are combined to realize the accurate classification of HRSIs.

(4) An innovative classification method of HRSIs based on CWLPSO, CNN, and ELM,
namely, IPCEHRIC is proposed.

2. Basic Methods
2.1. CNN

The CNN is a feedforward neural network, which includes convolution calculation
and representative algorithm. It has the representation learning ability and can classify the
input information according to its hierarchical structure. The CNN includes input layer,
hidden layer, and output layer, which is shown in Figure 1.

Figure 1. The structure of the CNN.

The structure of the CNN is described in detail as follows.
Input layer. It can deal with multidimensional data, and the input features need to

be standardized.
Hidden layer. It includes convolution operation, pooling operation, and full connection

layer. The convolution layer is used to extract features from input data through the
convolution operation of multiple convolution cores to obtain and construct the feature
map. The pooling layer is to select features and filter information from the feature map



Electronics 2022, 11, 775 4 of 16

to retain important features, and preset the pooling function. The full connection layer is
equivalent to the hidden layer in the network. The output is obtained.

Convolution kernel. When the convolution kernel works, it will regularly scan input
features, multiply and sum the input features, and superimpose the deviation. The output
of the l + 1 layer is described as follow.

Zl+1(i, j) = [Zl ⊗ wl+1](i, j) + b =
Kl
∑

k=1

f
∑

x=1

f
∑

y=1
[Zl

k(s0i + x, s0 j + y)wl+1
k (x, y)] + b

(i, j) ∈ {0, 1, . . . , Ll+1} Ll+1 = Ll+2p− f
s0

+ 1
(1)

where, b is the offset, Zl and Zl+1 represents the convolution input and output of the
l + 1 layer, Ll+1 is the size of Zl+1. In here, it is assumed that the length and width of the
characteristic graph are the same. Z(i, j) corresponds the pixels of the feature map, K is the
number of channels, f , s0 and p are the convolution layer parameters, which correspond
to the kernel size, convolution step size and number of filling layers. Especially, when
the kernel is f = 1, the step size is s0 = 1, and when a filled unit convolution kernel is not
included, the cross-correlation calculation is equivalent to matrix multiplication, and a fully
connected network is established between the convolution layers.

Zl+1 =
Kl

∑
k=1

L

∑
x=1

L

∑
y=1

(Zl
i,jw

l+1
k ) + b = wT

l+1Zl+1 + b, Ll+1 = L (2)

Output layer. The output layer is the same, and the output result is obtained.

2.2. PSO

The PSO is an intelligent algorithm, which was proposed by Eberhart and Kennedy
in 1995 [73]. At first, it was to study the predation behavior of birds. Inspired by this, it
carried out modeling research on bird activities. In PSO, the update formula of the particle
velocity and position are described as follows.

vm+1 = ωvm + c1r1(pbestm − xm) + c2r2(gbestm − xm) (3)

xm+1 = xm + vm+1 (4)

where, vm+1 represents the velocity of particles, ω is the inertia weight factor, c1 and c2
are learning factors, ω, c1, and c2 are usually preseted in advance. r1 and r2 represent a
random number, pbestm is the optimal value of individual, gbestm is the optimal value of
swarm. The function used to evaluate the fitness value of particles is called fitness function,
i.e., objective function. In most cases, the fitness value is smaller, the particle is better. The
optimal value of the individual and the optimal value of swarm are generally updated by
the following formula.

pbestm+1 =

{
xm+1, f (xm+1) < f (pbestm)
pbestm, otherwise

(5)

gbestm+1 =

{
pbestm+1, f (pbestm+1) < f (gbestm+1)
gbestm+1, otherwise

(6)

If the value of xm+1 is smaller than the value of the individual extreme value, then
pbestm+1 is equal to xm+1. On the contrary, the individual extreme value is not updated.
If the value of gbestm+1 is greater than the value of the individual extreme value, then
gbestm+1 is equal to gbestm+1.
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2.3. ELM

The ELM is one of the commonly used neural network models in machine learning. Its
essence is a machine learning method based on single-hidden layer feed forward network
(SLFN). Compared with back propagation (BP) neural network model that uses gradient
descent algorithm to update the weight in the field of machine learning, the ELM can
randomly generate the threshold value. It has low computational complexity and less
time-consuming. In the classification and regression problems, the structure of the ELM
model is generally divided into the input layer, hidden and output layers. The specific
structure is shown in Figure 2.

Figure 2. The structure of ELM.

3. Improved Learning Factor and Inertia Weight

Although many researchers have proposed some effective researches and improve-
ments on the shortcomings of PSO, the PSO still has the problems of slow convergence, high
time complexity, and low accuracy. Therefore, the acceleration factor strategy and the iner-
tia weight linear decreasing strategy are introduced to propose an enhanced PSO(CWLPSO)
in this paper. That is, aiming at the slow convergence speed, a fast convergence strategy
with small deviation angle of particle speed and position is adopted to accelerate the
convergence of particles. Aiming at the poor search ability, a new improvement strategy of
learning factor is proposed in here. That is, different c1 and c2 values are selected in order
to improve the local search ability of particles in the early stage, enhance the optimization
ability of particle swarm and strengthen the overall search ability of particles in the later
stage. Aiming at the premature in the later stage, a new linear decreasing strategy of
inertia weight is adopted to linearly reduce the inertia weight from the maximum value to
the minimum value, so as to avoid the premature and the oscillation in the later stage of
the algorithm.

3.1. Improve Learning Factors

The learning factors c1 and c2 in the PSO represent the function of the particle itself
and the remaining particles removed from the particle itself on the motion route of moving
particles. At the same time, they also represent the information exchange between particles,
which result in different motion trajectories of particles. Therefore, an improvement strategy
of learning factor is designed to improve the local search ability of particles, enhance the
optimization ability of particle swarm and strengthen the overall search ability of particles
in here. That is, in the early stage of the algorithm, the c1 value is larger and the c2 value
is smaller, so that the particles can enhance the ability of self-cognition and weaken the
swarm cognition of the particles. However, in the later stage of the algorithm, the c1 value
decreases and the c2 value increases, it can improve the search ability by increasing the c1
value in the early stage, the proportion of particle swarm will be strengthened in the later
stage, so that more particles can learn from the swarm optimum. At the same time, the
fewer particles can learn from individual optimum, which is conducive to enhancing the
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optimization ability, and strengthening the overall search ability of particles. The improved
strategy of learning factor is described as follows.

c1 = c1max + (c1max − c1min) ∗
(

i
k

)
(7)

c2 = c2min + (c2max − c2min) ∗
(

i
k

)
(8)

where, c1max and c1min represent the maximum and minimum values of learning factor
c1.c2min and c2max represent the maximum and minimum values of learning factor c2,
i represents the current iterations, and k represents the maximum iterations.

3.2. Linear Decreasing of Inertia Weight

Inertia weight plays an important role in PSO. Generally, the inertia weight is generally
set to a fixed value between 0.6 and 0.9. The improper selection of inertia weight will cause
errors. If the inertia weight is larger, on the one hand, it will help to jump out from the local
minimum point and facilitate the global search, on the other hand, it will weaken the local
search ability. Therefore, for the premature in the later stage of the algorithm, a new linear
decreasing strategy of inertia weight is developed. That is, the inertia weight is linearly
reduced from ωmax to ωmin, which is described as follows.

ω = ωmax −
(

i ∗ (ωmax −ωmin)

k

)
(9)

where, ω is inertia weight, ωmax is maximum value of inertia weight, ωmin is minimum
value of inertia weight, i is current iteration, and k is maximum iterations.

4. Optimize CNN Using CWLPSO
4.1. Optimized Idea for CNN

The CNN with combining weight sharing and local area connection reduces the
complexity of the model and the values of parameters. However, the selection of the
number of filters, activation function, and learning rate of the CNN seriously affects the
learning accuracy. The parameters of the CNN are trained by the steepest gradient descent
method, which has a great impact on the learning performance. The proposed CWLPSO
has the characteristics of global search ability, population diversity, and fast convergence.
Therefore, the CWLPSO is employed to optimize the parameters of the CNN, and an
optimized CNN model based on the CWLPSO algorithm is developed in this paper. That is,
each particle is a network structure of the CNN. After the CNN calculates the error between
the expected value and the actual value, each particle considered the number of filters,
activation function learning rate, initial weight, and initial offset of the CNN as particle
dimensions. The obtained test error is taken as the fitness function value, the optimal CNN
model is selected through the iteration of the CWLPSO.

4.2. Model of Optimized CNN

The optimization process of the CNN using CWLPSO is shown in Figure 3.
The specific optimization process of the CNN using CWLPSO are described as follows.
Step 1. Initialize the parameters of the CNN, which include the number of nodes in

hidden layer, the learning rate, and so on.
Step 2. Initialize the parameters of the CWLPSO, which include the number of the

population, the maximum number of iterations, and the initial learning factor and inertia
weight, and so on.

Step 3. Construct the optimization objective function.
Step 4. Calculate the individual fitness values in the population in order to obtain the

initial fitness values of the population.
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Step 5. Determine whether the end condition is met. If the end condition is met, then
the optimal individual is regarded as the optimal parameter value of the CNN and loop
Step 7. Otherwise execute Step 6.

Step 6. The velocity and position are updated, then the learning factor and the weight
factor is updated. Then return to Step 4.

Step 7. Obtain the optimal parameter values of the CNN and an optimized CNN
model is output.

Figure 3. The optimization process of the CNN using CWLPSO.

5. An Innovative Classification Method of HRSIs Using Optimized CNN and ELM

Classification accuracy is important indicators to evaluate the classification model for
HRSIs. Therefore, the effective feature extraction of HRSIs is the key factor for affecting
classification accuracy. As a deep learning method, the CNN can effectively mine the multi-
layer representation feature information. Different levels of representation correspond to
different feature attributes of the recognition object. For example, the shallow network
mainly represents the texture, edge and other local information of the recognition object,
while the deep network represents the more abstract semantics, structure, and other global
information. This feature matrix composes of the multi-layer feature attributes of the HRSIs.
As a fast machine learning algorithm, the weight parameters of the ELM and the offset
parameters on the hidden layer do not need to be adjusted repeatedly through iteration,
which can reduce the amount of calculation and shorten the training time. Therefore,
in order to make full use of the feature extraction ability of the optimized CNN, the
comprehensiveness of multi-layer features and the fast-training speed of the ELM, an
innovative classification model of HRSIs based on combining the optimized CNN and
ELM, namely IPCEHRIC is developed to improve the robustness and classification effect of
the model. The classification process of HRSIs is shown in Figure 4.
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Figure 4. The innovative classification model of HRSIs.

The classification process of the IPCEHRIC is described as follows.

(1) Preprocess HRSIs

Some preprocessed methods, such as whitening processing, normalization processing,
gray transformation, image smoothing, interpolation method, and so on are used to elim-
inate irrelevant information in hyperspectral remote sensing images, restore useful real
information, enhance the detectability of relevant information, and simplify the data to the
greatest extent, including image denoising, enhancement, smoothing, and sharpening, so
as to improve the reliability of feature extraction, image matching, and so on.

(2) Optimize parameters of CNN

The CWLPSO with global optimization capability is employed to optimize and de-
termine the parameters of the CNN, including the number of filters, activation function,
learning rate, initial weight, and initial bias as particle dimension. The optimized parameter
values are obtained, and an optimized CNN model is constructed.

(3) Extract features

The optimized CNN is essentially a multi-layer perceptron, which is mainly character-
ized by its local connection and weight sharing mode. When the input data are images, the
alternated convolution layer and maximum pool layer by layer are used to automatically
complete the feature extraction.

(4) Construct feature matrix

The extracted local features are input into the full connection layer of the first layer
in order to form the global features. These images are taken from different feature ranges.
Then these extracted features are selected to construct a feature matrix in order to provide
feature matrix for the classifier.

(5) Establish ELM classifier

The feature matrix is taken as the input of the ELM, elmtrain( ) function and training
sets are created to train the ELM. Then, the trained parameters and elmpredict( ) function
are used to test the test set, and finally the classification results are obtained.

6. Experiment Verification and Result Analysis
6.1. Experimental Environment and Parameter Setting

The experimental environment is Intel i7-11700 HQ_CPU_@ _ 2.5GHz, 16G RAM with
Windows 10, and the programming language is Matlab 2018b. The IPCEHRIC network
structure consists of two convolution layers, two pooling layers and an ELM classifier. The
nonlinear activation function of CNN is RELU function, and the ELM classifier uses Sigmoid
function. The initial parameters of CWLPSO are c1max = 2.0, c1min = 0.5, ωmax = 0.9, ⊗,
maximum number of iterations K = 200. The initial parameters of the CNN are the number
of convolution kernels (6), and the size of convolution kernels (1 * 3). The initial parameters
of the ELM are σ = 0.1, regularity coefficient C = 0.5.
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6.2. Pavia University Data
6.2.1. Data Description

Pavia University data set is a hyperspectral remote sensing image data set collected
from the University of Pavia in northern Italy by using the airborne reflection optical
spectrum imager of Germany. The size of image is 610 × 340, including 42,776 pixels and
9 types of features through excluding a large number of backgrounds. Basic information
of Pavia University data is shown in Table 1. A total of 20% of the samples are randomly
selected as the training set and 80% of the samples are used as the test set. The number of
samples for training and test is shown in Table 2, and the describing of the HRSIs is shown
in Figure 5.

Table 1. Basic information of Pavia University data.

Data Pavia University

Collection location Northern Italy
Acquisition equipment ROSIS
Spectral coverage (µm) 0.43–0.86
Data size (pixel) 610 × 340
Spatial resolution (m) 1.3
Number of bands 115
Number of bands after denoising 103
Sample size 42,776
Number of categories 9

Table 2. The number of samples in Pavia University.

Types Class Training Samples Test Samples Samples

1 Asphalt 1326 5305 6631
2 Meadows 3722 14,927 18,649
3 Gravel 418 1681 2099
4 Trees 612 2452 3064
5 Painted metal sheets 268 1077 1345
6 Bare Soil 1004 4025 5029
7 Bitumen 266 1064 1330
8 Self-Blocking Bricks 736 2946 3682
9 Shadows 188 759 947

Total 8540 34,236 42,776

Figure 5. The HRSIs of Pavia University. (a) False color composite of HRSI. (b) Surface observations.
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6.2.2. Experimental Results and Analysis

To verify the effectiveness of the IPCEHRIC, the CNN, local binary pattern (LBP) and
CNN (LBP-CNN), CNN and ELM (CNN-ELM), LBP, CNN and ELM (LBP-CNN-ELM), LBP,
PCA, CNN and ELM (LBP-PCA-CNN-ELM) are selected in here. The experiment results
of the Pavia university data are shown in Table 3. The overall accuracy (OA), average
accuracy (AA), and standard deviation (STD) of classification results are calculated for each
algorithm.

Table 3. The experiment results of the Pavia University data (%).

Types Class CNN LBP-CNN CNN-ELM LBP-CNN-ELM LBP-PCA-CNN-ELM IPCEHRIC

1 Asphalt 90.00 89.64 94.72 95.72 99.92 99.96
2 Meadows 89.99 89.79 93.00 95.00 99.12 99.67
3 Gravel 89.70 91.63 99.94 99.94 100.00 100.00
4 Trees 88.90 87.10 89.15 94.17 96.88 99.84
5 Painted metal sheets 86.00 89.91 92.26 96.68 99.72 100.00
6 Bare Soil 88.15 89.90 95.00 96.27 100.00 100.00
7 Bitumen 90.45 92.00 94.15 96.15 99.15 99.82
8 Self-Blocking Bricks 89.83 91.86 93.25 95.01 99.66 100.00
9 Shadows 87.50 93.87 90.90 97.74 97.94 99.15

OA (%) 85.67 88.75 92.63 95.64 98.95 99.21
AA (%) 88.95 90.63 93.60 96.30 99.15 99.83

STD 1.467 1.939 3.022 1.722 1.075 0.279

It can be seen from Table 3 that the IPCEHRIC method obtains the classification
accuracies of OA and AA are 99.21 and 99.83%, which are best classification results among
the CNN, LBP-CNN, CNN-ELM, LBP-CNN-ELM, LBP-PCA-CNN-ELM, and IPCEHRIC
methods. The STD of the IPCEHRIC is 0.279, which is also the least STD among these
methods. Among other comparison methods, the LBP-PCA-CNN-ELM method obtains the
classification accuracies of OA and AA as 98.95 and 99.15%. While the CNN-ELM method
obtains the classification accuracies for OA and AA of 92.63 and 93.60%. Compared with
the CNN-ELM, the classification accuracies of OA and AA of the IPCEHRIC are improved
by 6.58 and 6.23% than those of the CNN-ELM. This shows that the feature extraction
ability of the optimized CNN is better than that of the CNN, which explains the global
optimization ability of the CWLPSO algorithm. Therefore, the classification performance
of the IPCEHRIC method is significantly better than those of the CNN, LBP-CNN, CNN-
ELM, LBP-CNN-ELM, and LBP-PCA-CNN-ELM. The experiment results show that the
IPCEHRIC method has higher classification accuracy than other comparison methods. The
IPCEHRIC is an effective classification method for HRSIs.

6.3. Actual HRSI after Jiuzhaigou M7.0 Earthquake
6.3.1. Description of HRSI after Jiuzhaigou 7.0 Earthquake

Jiuzhaigou is located in Zhangzha Town, Jiuzhaigou County, Sichuan Province. It is
located in the transition zone. It is more than 400 km away from Chengdu. It is a mountain
valley with a depth of more than 50 km, with a total area of 64,297 hm2 and a forest coverage
rate of more than 80%. The hyperspectral remote sensing image after Jiuzhaigou M7.0
earthquake on 8 August 2017 is shown in Figure 6.

The HRSI after Jiuzhaigou M7.0 earthquake is saved as *. mat file, which determined
the coordinates of different areas by manual frame drawing. Then a matrix consistent
with the size of the picture is constructed. The corresponding positions of the matrix with
different numbers is marked according to the coordinates of different areas, so as to mark
different labels on different areas of the picture, save and generate *.mat file with labels. A
data set containing four types of samples is made, which include villages, water, grassland,
and trees in the HRSIs after Jiuzhaigou M7.0 earthquake. The number of samples and four
types are shown in Table 4.
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Figure 6. The HRSI after Jiuzhaigou M7.0 earthquake.

Table 4. The number of samples and four types.

Types Class Samples

1 Villages 12,575
2 Water 14,953
3 Grassland 38,790
4 Trees 39,159

Total 105,477

According to the gray value of pixels, the color function is used to set the threshold.
The different areas of HRSIs after Jiuzhaigou M7.0 earthquake are marked by different
colors. A matrix consistent with the image size is constructed, and the different areas are
marked with color. A data set with six types of samples is made, which include the villages,
bareland, grassland, trees, water, and rocks in the HRSIs after Jiuzhaigou M7.0 earthquake.
The number of samples and six types are shown in Table 5.

Table 5. The number of samples and six types.

Types Class Samples

1 Villages 1608
2 Bareland 25
3 Grassland 376,651
4 Trees 110,409
5 Water 5558
6 Rocks 2469

Total 495,087

6.3.2. Experimental Results and Analysis

To prove the ability of the IPCEHRIC to solve practical engineering problems, the
hyperspectral remote sensing images after Jiuzhaigou M7.0 earthquake is used for the
experimental comparison and analysis. Similarly, the CNN, LBP-CNN, CNN-ELM, LBP-
CNN-ELM, and LBP-PCA-CNN-ELM are selected to compare in here. Each algorithm is
executed ten times independently. The classification results of HRSI after Jiuzhaigou 7.0
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earthquake for four types are shown in Tables 6 and 7. The classification results of HRSI
after Jiuzhaigou M7.0 earthquake for six types are shown in Tables 8 and 9.

Table 6. The classification results of HRSIs for 10 times for four types (%).

Times CNN LBP-CNN CNN-ELM LBP-CNN-ELM LBP-PCA-CNN-ELM IPCEHRIC

1 41.47 36.68 69.80 64.38 65.67 89.76
2 41.80 36.68 75.84 64.25 65.16 88.96
3 41.75 36.68 75.98 64.16 65.33 89.99
4 41.73 36.68 75.38 64.40 65.14 89.26
5 41.85 37.02 61.45 64.47 65.47 89.76
6 41.70 37.02 75.80 64.12 65.56 90.58
7 41.86 37.02 74.04 63.83 65.40 91.64
8 41.77 37.02 60.02 64.44 65.19 92.12
9 41.78 36.68 74.80 64.38 65.49 90.99
10 41.76 37.02 75.46 64.10 65.81 89.94

AA (%) 41.75 36.85 71.86 64.25 65.42 90.30
STD 0.109 0.179 6.145 0.201 0.223 1.019

Table 7. The classification results of HRSIs for four types (%).

Types Class CNN LBP-CNN CNN-ELM LBP-CNN-ELM LBP-PCA-CNN-ELM IPCEHRIC

1 Villages 50.47 46.76 79.16 74.64 75.70 92.46
2 Water 41.80 35.43 78.37 70.47 73.28 90.73
3 Grassland 39.26 33.58 73.78 63.19 72.45 89.15
4 Trees 40.73 36.29 76.12 69.24 75.42 91.48

OA (%) 41.75 36.85 71.86 64.25 65.42 90.30
AA (%) 43.07 38.02 76.86 69.39 74.21 90.96

STD 5.046 5.939 2.422 4.733 1.597 1.396

Table 8. The classification results of HRSIs for 10 times for six types (%).

Times CNN LBP-CNN CNN-ELM LBP-CNN-ELM LBP-PCA-CNN-ELM IPCEHRIC

1 79.77 79.83 99.21 85.12 85.12 99.99
2 79.78 79.85 99.78 84.80 84.14 100.0
3 79.84 79.84 99.99 84.14 84.01 99.98
4 79.78 79.86 99.26 84.80 84.22 99.78
5 79.86 79.84 99.99 85.12 85.46 100.0
6 79.87 79.81 99.21 84.76 86.13 99.77
7 79.88 79.59 99.98 85.46 84.57 100.0
8 79.87 79.59 99.27 86.08 85.12 99.98
9 79.86 79.80 99.98 85.46 86.02 100.0
10 79.86 79.84 99.77 86.43 84.80 99.99

AA (%) 79.84 79.79 99.64 85.22 84.96 99.95
STD 0.043 0.104 0.360 0.672 0.753 0.092

Table 9. The classification results of HRSIs for six types (%).

Types Class CNN LBP-CNN CNN-ELM LBP-CNN-ELM LBP-PCA-CNN-ELM IPCEHRIC

1 Villages 82.34 85.46 99.46 87.45 90.35 99.98
2 Bareland 86.05 86.04 99.64 89.62 93.46 100.0
3 Grassland 79.98 85.32 99.06 87.17 90.67 100.0
4 Trees 78.46 84.14 99.31 86.43 89.86 99.81
5 Water 83.49 87.25 99.78 87.69 90.34 100.0
6 Rocks 82.16 85.68 99.34 88.03 92.05 99.85

OA (%) 79.84 79.79 99.64 85.22 84.96 99.95
AA (%) 82.08 85.65 99.43 87.73 91.12 99.94

STD 2.658 1.013 0.256 1.072 1.367 0.086

As can be seen from Tables 6–9 that the IPCEHRIC obtains the classification accuracies
of AA are 90.30% for four types and 99.95% for six types, respectively, which are best
classification results among the CNN, LBP-CNN, CNN-ELM, LBP-CNN-ELM, LBP-PCA-
CNN-ELM, and IPCEHRIC methods. The STD of the IPCEHRIC is 1.396 for four types
and 0.086 for six types, which are also the least STD among these methods. Among other
comparison methods, for four types of the samples, the overall classification effect of these
methods is not ideal. Especially, the classification accuracies of the CNN and LBP-CNN are
very unsatisfactory. For six types of the samples, the overall classification effect of these
methods is better. Especially, the classification accuracies of the CNN-ELM are ideal among
CNN, LBP-CNN, CNN-ELM, LBP-CNN-ELM, and LBP-PCA-CNN-ELM. Compared with
the CNN-ELM, the classification accuracy of AA of the IPCEHRIC method are improved by
18.44 and 0.31%, which indicate that the optimized CNN has better feature extraction ability
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and classification performance, and the CWLPSO has better global optimization ability.
Therefore, the experiment results show that the classification accuracy of the IPCEHRIC is
better than that of other comparison methods. The CWLPSO can optimize and determine
the parameters of the CNN in order to construct an optimized CNN model, which can
effectively extract the deep features of HRSIs after Jiuzhaigou 7.0 earthquake, so as to
obtain a better classification result. It can effectively classify the HRSIs after Jiuzhaigou
7.0 earthquake to obtain the villages, bareland, grassland, trees, water, and rocks in HRSIs
after Jiuzhaigou 7.0 earthquake.

The HRSIs after Jiuzhaigou 7.0 earthquake are divided into four types and six types.
The classification effects of HRSIs are shown in Figure 7.

Figure 7. The classification effects of HRSIs after Jiuzhaigou M7.0 earthquake. (a) Four types. (b) Six types.

As can be seen from Figure 7, the classification effects of six types by using the
IPCEHRIC for the HRSIs after Jiuzhaigou M7.0 earthquake is ideal. For actual HRSIs, the
IPCEHRIC method has higher classification accuracy, and it is an effective classification
method for actual HRSIs.

7. Conclusions

In this paper, an innovative hyperspectral remote sensing image classification method
based on combining CWLPSO, CNN, and ELM, namely IPCEHRIC is proposed to obtain
the accurate classification results. The CWLPSO with fusing multi-strategy is proposed
to optimize the parameters of the CNN. Then the deep features are extracted from HRSIs,
which are input into the ELM to realize the accurate classification of HRSIs. Pavia University
data and actual HRSIs after Jiuzhaigou 7.0 earthquake are selected to verify the effectiveness
of the IPCEHRIC. The experiment results show that the IPCEHRIC obtains the classification
accuracies of 99.21% for Pavia University data, 90.30 and 99.95% for actual HRSIs after
Jiuzhaigou 7.0 earthquake. The classification results of the IPCEHRIC are better than those
of the CNN, LBP-CNN, CNN-ELM, LBP-CNN-ELM, and LBP-PCA-CNN-ELM methods.
Compared with the CNN-ELM, the classification accuracies of the IPCEHRIC are improved
by 6.58, 21.44, and 0.31%, respectively. This shows that the CWLPSO algorithm can
effectively optimize the parameters and obtain reasonable parameter values for CNN to
improve the feature extraction ability. Therefore, the IPCEHRIC has certain advantages on
classification effect of the HRSIs. Especially, the IPCEHRIC can obtain accurate classification
accuracy for actual HRSIs after Jiuzhaigou M7.0 earthquake. It can effectively classify the
villages, bareland, grassland, trees, water, and rocks in the HRSIs after Jiuzhaigou M7.0
earthquake and achieve good classification result.
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