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Abstract: Low Earth Orbit (LEO) satellites can provide high-speed and low-delay services for
terrestrial users; however, the rapid movement of LEO satellites and the insufficient size of the
LEO constellations incurs the instability of the transmission links. The rapid movement of LEO
satellites also leads to frequent handovers. Fortunately, GEO/LEO heterogeneous satellite systems
can remedy this shortcoming. As the handover decision strategy which makes the selection among
the available satellites will directly impact the performance of GEO/LEO heterogeneous satellite
systems, we propose a two-step access and handover decision strategy for heterogeneous satellite
networks in this paper. Firstly, a GEO/LEO network selection is carried out based on utility functions
that reflect user’s QoS requirements. Then, the multi-attribute decision making (MADM) method
is used to select the specific LEO satellite if users select LEO satellite network. We also propose an
Importance-TOPSIS scheme to improve the weight setting for handover attributes. Simulation results
show that the proposed method can reduce the number of handovers and the forced termination
probability of the system, and the overall throughput of the system is also improved.

Keywords: heterogeneous satellite networks; handover; network selection; multi-attribute decision
making; utility function

1. Introduction

Due to the limitation of infrastructure construction, the traditional terrestrial mobile
network cannot cover some areas, such as remote and non-land regions and stricken
areas. The satellite communication system has the advantage of not being limited by
geographical environment, so it is an effective solution to provide global coverage. The
Geostationary Earth Orbit (GEO) satellites are located 35,786 km above the equator line
and move synchronously with the Earth [1]. A GEO satellite covers almost one-third
of the Earth’s surface [2] (excluding polar regions). Low Earth Orbit (LEO) satellites
are generally located at an altitude between 300–1500 km [1]. Due to the altitude, the
inevitable propagation delay of GEO satellite cannot meet the requirements of delay-
sensitive services [3]. The rapid movement of LEO satellites causes frequent handovers.
When users are about to leave the coverage of one LEO satellite, they need to switch to
another satellite to avoid communication termination [4]. Moreover, a single LEO satellite
covers a small area, and some regions cannot be covered by LEO satellites when the size of
the LEO constellation is small.

Subject to issues such as funding and technology, not every country and every institu-
tion can provide a large enough LEO constellation. Using small-scale LEO constellations
combined with GEO satellites is a feasible and more economical solution. The integration
of GEO satellites and LEO satellites can also maximize their respective technological ad-
vantages to meet the demands of different types of services. Users need to consider the
decision making of handover when they use the GEO/LEO heterogeneous network to
communicate. The handover decision is the core stage of the handover process, which
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requires determining the satellite next connected. The newly generated services also need
to select the access satellite at the beginning of communication. In order to guarantee user
requirements and network load balancing, a rational and practical access and handover
decision strategy needs to be proposed to further improve the performance of GEO/LEO
heterogeneous satellite systems.

The key point of access and handover decision under multi-satellite coverage is
selecting the access point for new calls and handover calls. The decision methods of
handover for heterogeneous networks generally include the decision function approach
(including simple decision functions [5] and MADM [6]) and the decisions based on
complex mathematical models. In [5], authors use the instantaneous received signal
strength (RSS) and the average RSS of user equipment to determine the necessity of
handover. The simple decision function strategy is easy to implement but does not take full
advantage of the information available. The MADM method can effectively and flexibly
deal with complex problems [7], so it is often used in heterogeneous networks selection.
The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is one
of the MADM methods with good performance and wide application. Some researchers
also use complex mathematical models to design handover decisions, such as strategies
based on the Markov decision process [8], the potential game [9], the graph theory [10],
etc. Soft sets, rough sets, and fuzzy sets can also be used in decision making [11]; Riaz
et al. introduce the novel concept of the linear Diophantine fuzzy set (LDFS) to help the
multi-attributes decision making [12]. These model-based methods are highly accurate, but
computationally complex, and have high requirements on the computing power or storage
capacity of the device. Considering the limitation of equipment capability, we use TOPSIS
to design an access and handover strategy, which can better solve the goal of users to make
handover decisions independently.

In this paper, we propose a new strategy to solve the access and handover problems
of GEO/LEO heterogeneous satellite networks. The strategy we proposed consists of
two steps. Users firstly make the network selection between GEO satellite and LEO
satellites using utility functions which consider the communication delays and load status
of satellites, then choose an LEO satellite using the Importance-TOPSIS if users select to
access the LEO satellite network in step one. In addition, each user does not need to rely on
other users’ information when making decisions. The simulation results demonstrate the
performance of the strategy in system throughput, number of handovers and the forced
termination probability.

The main contributions of this paper are as follows:

1. A GEO/LEO heterogeneous satellite network is established to ensure that users can
access GEO satellite when the size of LEO constellation is too small to cover the
Earth seamlessly. Users can access a GEO satellite or an LEO satellite, and make
decisions independently.

2. The utility functions are designed to reflect the demands of services with different
delay tolerance for each satellite. The communication delays and load status of
each satellite are considered to ascertain the urgency and satisfaction of each service
accessing each satellite, so that the load balancing can be improved. The utility
functions we design can not only better show the user’s demands for a certain attribute,
but also drive a normalized value.

3. The Importance-TOPSIS scheme is proposed. The importance of each attribute to the
target is calculated by using the continuous replacement method proposed in this
paper, which is used as the weight of each attribute to improve the TOPSIS scheme.

The rest of this paper is organized as follows: Section 2 describes the related works
about heterogeneous satellite network and handover strategies. In Section 3, we present
the system model of GEO/LEO heterogeneous satellite networks and the service model.
We present the two-step access and handover strategy based on utility function and the
Importance-TOPSIS algorithm in Section 4. Simulation results and analysis is given in
Section 5. Finally, the conclusions of this paper are drawn in Section 6.



Electronics 2022, 11, 795 3 of 15

2. Literature Review

In order to design the access and handover decision strategy of heterogeneous satellite
networks, we need to pay attention to the heterogeneous satellite network architecture
and handover algorithm. The network architectures of GEO/LEO heterogeneous satellite
systems have received wide attention from researchers. In [13], the LEO satellites work
as the relay satellites to help communicate between GEO satellites and the ground users.
In [14], the LEO satellite networks are set as access layers and the GEO satellites constitute
the backbone network as the data center for data storage, processing, routing, and network
management. In [15], the GEO satellite forwards the control packages sent by the controller
to LEO satellites. However, these architectures do not consider that users have to connect
GEO satellites to communicate normally when LEO constellations do not have continuous
global coverage. GEO satellites can also help balance the load of LEO constellation to
reduce the communication termination of delay-sensitive services that must connect to
LEO satellites.

MADA strategies, which are often used in handover decision, can be classified into
several groups, including the Simple Additive Weighting (SAW), the Analytic Hierarchy
Process (AHP), the Grey Rational Analysis (GRA), the TOPSIS, etc. The SAW method is
used in [16] to make the handover decision, this method is simple to implement but poor
in accuracy [17]. In [18], the AHP method is used to select the network. The AHP method
makes decisions on complex problems by dividing complex problems into a simple and
easy-to-analyze decision factor hierarchy. However, AHP requires pairwise comparisons
between attributes and the scoring of decision makers, so it needs the expertise of human
beings [17]. GRA is also used in the network handover, and the networks can be ranked
by calculating the grey relational coefficient [19]. The best solution selected by using
the TOPSIS method is the one closest to the ideal solution and furthest from the worst
solution [7].

The TOPSIS method needs to set the weight of each attribute. The work of [20] uses
AHP to define the weights of the criteria, which needs the subjective judgment of the
decision maker in the process. In [21], the analytic network process (ANP) is used to set
the weight of attributes. The structure of ANP is more diverse than that of AHP, and it can
better describe the structure of complex systems, but it also requires pairwise comparisons
between attributes and the scoring of decision makers. The entropy weight method can
also be utilized in weight setting [22], which uses the information entropy of attributes. The
smaller the information entropy of an attribute is, the larger the weight will be. However,
the entropy weight method is lacking in reflecting the contribution and importance of a
specific attribute to the target.

Therefore, inspired by the above literature, considering the practical limitations, the
two-step access and handover strategy is proposed in this paper, which is based on the
background of a heterogeneous satellite network of small-scale LEO satellite constellation
combined with GEO satellites, a modified TOPSIS method is used to design a handover
decision strategy.

3. System Model

As shown in Figure 1, several users (satellite mobile terminals, Internet of Things
gateways, vehicle-mounted mobile stations, shipborne mobile stations, etc.) communicate
through LEO and GEO satellites. Terrestrial users are covered by a GEO satellite and n
LEO satellites, and user’s speed is negligible compared to the speed of LEO satellite. GEO
and LEO satellites use different frequency bands, and all LEO satellites share the same
frequency band. Each user can only collect the information of the covered satellites when
deciding, and cannot know the status and decision results of other users, which means the
users will make decisions independently.

Due to the rapid movement of LEO satellites, the user may have to handover several
times during the communication. When it comes to a new call or a handover call, the user
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must decide which satellite to access, which is the purpose of the solution in this paper. The
channel model of satellite–ground link and the service model is described in this section.

Figure 1. GEO/LEO heterogeneous satellite system.

3.1. Channel Model

Radio waves are affected by various factors during propagation, such as free space
propagation loss, rain, fog, poor angle of inclination, etc. As satellite–ground links operate
at high-frequency bands, atmospheric attenuation will be the major effect for propagation
channels. The Shadowed-Rician fading model is widely adopted in the current litera-
ture [23,24], and the channel fading coefficient is:

h̃p,q = A1 exp
(

jψp,q
)
+ A2 exp

(
jφp,q

)
, (1)

where h̃p,q is the fading coefficients of the channel between satellite q and corresponding
terminal p, including scattered and line-of-vision (LOS) components. ψp,q ∈ [0, 2π) denotes
the stationary random phase, φp,q denotes the deterministic phase of LOS component, and
A1 and A2 represent the amplitudes of the scattering component and LOS component,
which are independent stationary random processes following Rayleigh and Nakagami-m
distributions, respectively.

Let xp,q be the signals transmitted by satellite q and N be the set of satellites. The
received signal yp,q at user p can be formulated as

yp,q =
√

Pp,qGre h̃p,qxp,q+ ∑
q′∈N\q

√
Pp,q′Gre h̃p,q′xp,q′ + NOISEp, (2)

where Pp,q is the transmit power of satellite q. Gre denotes antenna receiving gain. NOISEp
denotes additive Gaussian noise at the receiver p, where σ2

p denotes the corresponding
noise power. The first part of yp,q is the useful signal, and the second part of yp,q is the
interference from other LEO satellites.

According to (2), the Signal to Interference plus Noise Ratio (SINR) of the link between
user p and satellite q can be expressed as [25,26]
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γp,q =
Pp,qGre

∣∣h̃p,q
∣∣2

∑q′∈N\q Pp,q′Gre

∣∣∣h̃p,q′
∣∣∣2 + σ2

p

. (3)

3.2. Service Model

The QoS category of services is defined in ITU-T G.1010 [27]. Referring to the descrip-
tion of service delay tolerance in ITU-T, we divide service into four grades, as shown in
Table 1. Each grade of services will be processed differently according to the maximum
delay tolerance. Services with different delay tolerance have different requirements to
access LEO satellites.

Table 1. Service Classification.

Grade Maximum
Delay Tolerance Example Satellite to Choose

1 �1 s Conversational voice, command LEO Satellite
2 2 s Video messaging, transactions LEO or GEO Satellite
3 10 s Streaming audio, download image LEO or GEO Satellite
4 �10 s Fax, background LEO or GEO Satellite

4. The Proposed Two-Step Access and Handover Strategy

In the overall strategy, users need to select one satellite to connect from a GEO satellite
and several LEO satellites within the coverage. A GEO satellite has higher orbital altitude
than LEO satellites, which will lead to a larger propagation delay, so it is not suitable for
some services that are more sensitive to delay. Due to the rapid movement of LEO satellites,
users may need to switch several times during the communication. Therefore, users need
to decide whether to connect to the LEO satellites according to the services delay tolerance
and the load status of the LEO constellation. If the user chooses to connect to LEO satellites,
the appropriate LEO satellite should be selected according to other factors. So, we propose
a two-step access and handover strategy, which consists of the network selection based on
utility function and the LEO satellite selection based on the Importance-TOPSIS. Figure 2
shows the process of the two-step access and handover strategy.

Figure 2. The flowchart of the two-step access and handover strategy.
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As shown in the flowchart (Figure 2), suppose that a mechanical arm working on the
sea surface needs to be remotely controlled. The satellites that can be connected to the
mechanical arm include one GEO satellite and two LEO satellites. According to Table 1,
the control command is in grade 1 service with high delay sensitivity, so the GEO satellite
is not considered in the first step. The second step is LEO satellites selection. If the two
LEO satellites are not saturated, they would be sorted by using Importance-TOPSIS, and
the appropriate LEO satellite is selected for access or handover.

4.1. Utility Function-Based GEO/LEO Satellite Network Selection

The first step of the strategy is the selection between the GEO satellite and LEO
satellites. The utility function is introduced to process the delay and load status in this step.

In decision making, utility refers to the satisfaction of a commodity or service provided
to decision makers [28]. Decision makers with different preferences will have different
utility values for the same service. The utility function is a mapping transformation of
decision attributes according to attribute utility. In the decision-making design of network
selection, the utility function is used to process the decision attributes, which can not
only better show the users demands for a certain attribute, but also drive a normalized
value [29].

4.1.1. Utility Design

Considering the different delay tolerance and different urgency to access the GEO and
LEO satellites of services, the design bases of utility function are as follows [29,30]:

• Normalized processing, setting the utility value in the range of [0,1].
• When the communication delay exceeds the service delay tolerance, the utility value

of delay is 0.
• With the increase in delay, the utility value of delay decreases.
• When there is no subchannel available in the satellite, the utility value of availability

is 0; when all subchannels in the satellite are free, the utility value of availability is 1.
• As this step is to connect to GEO satellite or LEO satellites, LEO satellites are regarded

as a whole.
• Under the same load status, the less the service delay tolerance, the more inclined it is

to access the LEO satellite network.

At every time slot t, di,s(t) is the time delay generated when user i connects satellite
s, ri,s(t) is the current available rate of satellite s, where s = 1 is connect to GEO satellite,
s = 2 is connect to LEO satellite network. Letting di,j

t (t) be the transmission delay between
user i and satellite j at time t, di,j

p (t) be the propagation delay between user i and satellite j,

di,j
ho(t) be the handover delay if user i connect to satellite j, where j = 1 is GEO satellite, U

is the LEO satellites that can be connected at the current moment.
di,s(t) is expressed as

di,s(t) =

 di,1
t (t) + di,1

p (t) + di,1
ho(t), , s = 1

1
|U| ∑j∈U

(
di,j

t (t) + di,j
p (t) + di,j

ho(t)
)

, s = 2
(4)

ri,s(t) is expressed as

ri,s(t) =


NGa
NGt

, s = 1

NLa
NLt

, s = 2
(5)

where NGa is the number of available channels of GEO satellite, NGt is the number of total
channels of GEO satellite, NLa is the number of available channels for all LEO satellites that
can be connected, and NLt is the number of total channels for all LEO satellites that can be
connected. The available channels include free channels and the channel which is already
been occupied by user i.
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Therefore, at every time slot t, the delay utility function Ui,s
d (t) of user i to satellite s

is [29]:

Ui,s
d (t) =

{
1− e(k(di,s(t)−dmax

i )
)

, 0 ≤ di,s(t) ≤ dmax
i

0 , dmax
i < di,s(t)

(6)

where dmax
i is the maximum delay tolerance of the service generated by user i, k is the

growth rate, and the higher the value, the steeper the curve. k is determined according to
the maximum delay tolerance and the desired delay, namely the Target Point:

k =
− ln(1− p)(

dmax
i − Target Point

) , 0 < p < 1 (7)

where p is inversely proportional to the distance between the Target Point and the tolerance,
for most attributes, 0.8 < p < 0.9 produces balanced results.

The availability utility function of user i to satellite s at time slot t is [30]

Ui,s
a (t) =

 1− 1

1+e15(ri,s(t)− Inp )
, 0 < ri,s(t) ≤ 1

0 , ri,s(t) = 0
(8)

where the Inp is the inflection point of the curve, which should set according to the
maximum delay tolerances so that services with different maximum delay tolerances show
different utility values.

Figure 3a,b is the delay utility function and the availability utility function of different
grades of services. As the services of grade 1 is time-sensitive and can only connect to LEO
satellite, only the services of grade 2, 3, and 4 is calculated.
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Figure 3. Utility Function: (a) delay utility function and (b) availability utility function.
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4.1.2. Problem Formulation

After obtaining the delay utility function and the availability utility function, the
network selection utility function of user i to satellite s is expressed as:

Ui,s(t) = Ui,s
d (t)Ui,s

u (t) (9)

Letting xi,s(t) be the decision variable, I be the set of users, and function g(U) be set
as:

g(U) =

{
1 , U > 0
0 , U = 0

(10)

the network selection problem is formulated as follows:

max
xi,s(t)

I

∑
i=1

2

∑
s=1

xi,s(t)Ui,s(t)

s.t. C1 :xi,s(t) ∈ {0, 1} ∀i

C2 :∑2
s=1 xi,s(t) ≤ 1 ∀i

C3 :xi,s(t) ≤ g
(
Ui,s(t)

)
∀i, s

(11)

C1 is the constraint of xi,s(t). If xi,s(t) = 1, user i connect to satellite s, while xi,s(t) = 0
means user i does not connect to satellite s. C2 restricts each user to connect at most one
satellite at the same time. The C3 constraints that user i will not connect to satellite s when
delay exceeds the tolerance or the satellite s has no available channel.

4.2. Importance-TOPSIS

The second step of the decision-making method is when the users choose to connect
to LEO satellites, we use a modified TOPSIS scheme to sort the available LEO satellites and
select the best satellite to access.

4.2.1. The Step of Original TOPSIS Scheme

The steps for TOPSIS are as follows [22,29].
Step 1. Constructing decision matrix. The decision matrix is expressed as

D =

C1 C2 · · · Cm


Sat1 d11 d12 · · · d1m
Sat2 d21 d22 · · · d2m

...
...

...
...

...
Satn dn1 dn2 · · · dnm

(12)

where Sat1, Sat2, · · · , Satn are the possible alternatives and C1, C2, · · · , Cm are the criteria.
Each element dij of the decision matrix D is the value of the alternative Sati with respect to
the criterion Cj.

Step 2. Obtain the normalized decision matrix. The normalized value of rij is com-
puted as

rij = dij/

(
n

∑
i=1

d2
ij

)0.5

; i = 1, 2, · · · , n; j = 1, 2, · · · , m (13)

Step 3. Obtain the weighted normalized decision matrix vij. The weight vector satisfies
the following formula:

ω = (ω1, ω2, · · · , ωm),
m

∑
j=1

ωj = 1 (14)
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After the weights are obtained, each column of the standardized decision matrix is
multiplied by its associated weight.

vij = ωjrij; i = 1, 2, · · · , n; j = 1, 2, · · · , m (15)

Step 4. Determine positive and negative ideal solutions.

Z+ =
(
v+1 , v+2 , · · · , v+m

)
, where v+j =

{
max

(
vij | i = 1, 2, · · · , m

)
, j ∈ Ib

min
(
vij | i = 1, 2, · · · , m

)
, j ∈ Ic

(16)

Z− =
(
v−1 , v−2 , · · · , v−m

)
, where v−j =

{
min

(
vij | i = 1, 2, · · · , m

)
, j ∈ Ib

max
(
vij | i = 1, 2, · · · , m

)
, j ∈ Ic

(17)

where Ib denotes the set with the benefit criteria, and Ic denotes the set with the cost criteria.
Step 5. Calculate the distance of each alternative from the positive (negative) ideal

solution.
The distance between the solution and the positive ideal solution is

S+
i =

√√√√ m

∑
j=1

(
vij − v+j

)2
; i = 1, 2, · · · , n (18)

Similarly, the distance between the solution and the negative ideal solution is

S−i =

√√√√ m

∑
j=1

(
vij − v−j

)2
; i = 1, 2, · · · , n (19)

Step 6. Calculate the relative proximity of each alternative solution to the ideal solution.

Ti =
S−i

S+
i + S−i

; i = 1, 2, · · · , n (20)

the optimal satellite is the satellite with the highest Ti.

4.2.2. Weight Setting

As we state in the literature review, in order to overcome the subjectivity and the
problem of the existing weight setting methods, this paper intends to propose a new method
to define the weight. We use the continuous replacement method to calculate the impact of
individual changes of each attribute value on the target value, and give higher weight to
attributes that have more impact on the target.

The steps of the continuous replacement method are as follows:
Step 1. Let (α, β) → Q, (α′, β′) → Q′, so the difference is ∆ = Q′ − Q. Suppose the

order of substitution is to change α first, then change β.
Step 2. Replace α alone and we find (α′, β)→ Q1, Q1 appears due to the change of α

on the basis of Q. Calculate the influence of α:

Qα = Q1 −Q (21)

Step 3. Replace β alone and we find (α′, β′)→ Q2, Q2 appears due to the change of β
on the basis of Q1. Calculate the influence of β:

Qβ = Q2 −Q1 (22)

We can see that ∆ = Q′ −Q = Qα + Qβ
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Step4. Calculate the weight

ωi =
Qi

Q′ −Q
; i = α, β (23)

This method can objectively reflect the importance of each attribute on the target.

5. Simulation Results and Analysis

In this section, we evaluate the performance of our proposed access and handover
strategy. In the second step, four attributes are used to evaluate the candidate satellites,
including SINR, the number of available channels of the satellite, remaining time of satellite
coverage, and delay that will exist when connecting the satellite. For comparison, we used
the following scheme:

• SINR-max: The decision-making scheme based on SINR. The satellite with the largest
SINR will be choosen.

• TOPSIS: TOPSIS scheme without weight setting, which means the weights of all
attributes are equal.

• Entropy-TOPSIS: The TOPSIS scheme using the entropy weight method.
• Importance-TOPSIS: The scheme proposed in this paper.

This paper assumes that new calls are generated by independent Poisson arrival
distribution, and the duration follows a negative exponential distribution with an average
call duration of 600 s. The user makes a decision every 10 s after the call is generated. The
simulation time is 4 h.

5.1. Simulation Results

Firstly, we establish the GEO/LEO heterogeneous satellite network constellation
model. In order to be more realistic, we use some data from real satellites in the model. The
position and coverage of GEO satellites refer to ChinaSat12, and the altitude of LEO satel-
lites is close to that in Iridium satellite system. Parameters of the GEO/LEO heterogeneous
network model are shown in Table 2.

Table 2. Satellite System Simulation Parameters.

Parameters Value

GEO satellite orbital height 35,786 km
Number of GEO satellites 1

Bandwidth of GEO satellite 100 MHz
Number of subchannels in GEO satellite 200

LEO satellite orbital height 765 km
LEO constellation type Walker

Number of low Earth orbital planes 6
Number of LEO satellites in orbit 6

Bandwidth of LEO satellite 50 MHz
Number of subchannels in LEO satellite 50

Antenna gain 43.3 dBi
G/T parameter 15 dB/K

There are various communication scenarios in reality, such as marine environment
monitoring, remote control in emergency rescue, Internet services in remote areas, etc.
In different communication scenarios, the distribution of various types of services must
be different. For example, the proportion of commands in emergency rescue must be
larger. To increase the credibility of the results, we generated two distributions of services.
The first distribution is that the proportion of delay-sensitive services is small, and the
ratio of the quantity of the four services is 1:3:3:3 (grade1:grade2:grade3:grade4). In the
second distribution, delay-sensitive services account for a larger proportion, and the ratio
of the quantity of the four services is 3:3:2:2 (grade1:grade2:grade3:grade4). Figures 4–6
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respectively show the simulation results of the average throughput, the average number of
handovers, and forced termination probability of the system under these two scenarios, (a)
the first service distribution of 1:3:3:3 (grade1:grade2:grade3:grade4) and (b) the second
service distribution of 3:3:2:2 (grade1:grade2:grade3:grade4).
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Figure 4. Average throughput of the satellite system under different schemes. (a) Service distribution
1, (b) Service distribution 2.
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Figure 5. The number of handovers under different schemes. (a) Service distribution 1, (b) Service
distribution 2.

We compare the average throughput of the four schemes under different user arrival
rates. As shown in Figure 4, the system tends to be saturated when the user arrival rate
reaches 7000 per hour. The Importance-TOPSIS scheme proposed in this paper has the
best performance in average throughput, followed by the ordinary TOPSIS scheme with
equal weights of all attributes. There is a slight difference between the Entropy-TOPSIS
scheme and the SINR-max scheme in throughput, and the entropy weight TOPSIS method
is slightly better.

Figure 5 shows the number of handovers per minute at different user arrival rates.
It can be seen that the Importance-TOPSIS scheme proposed in this paper has the least
average handover times, followed by the ordinary TOPSIS scheme, and the Entropy-TOPSIS
has the most average handover times. The SINR-max scheme is more likely to select the
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same satellite in several consecutive selections, and the handover time is less than that of
the Entropy-TOPSIS scheme. The Entropy-TOPSIS scheme considers the entropy of each
attribute value of candidate satellites when setting the weight. It can be seen that this
weight setting method is not helpful in reducing the handover times.
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Figure 6. The number of handovers under different schemes. (a) Service distribution 1, (b) Service
distribution 2.

Figure 6 shows the forced termination probability, which is the probability of a call
being dropped during the communication of different services grades when the user arrival
rate is 5000 per hour. The Importance-TOPSIS scheme has the best performance in the
forced termination probability, the other three schemes have similar forced termination
probability, and the SINR-max scheme is slightly worse. Combined with Figure 4, part
of the reason SINR-max scheme performs worse in system throughput is that the forced
termination caused by the load balancing of LEO constellation is not considered. As the
services of grade 2, 3, and 4 can connect to the GEO satellite, the probability of forced
termination is smaller than that of grade 1.

Comparing the simulation results in different communication scenarios, we find
that when the proportion of delay-sensitive services is larger, the system throughput
will decrease, and the forced termination probability will increase. This is because delay-
sensitive services cannot be connected to GEO satellites, a large number of services make the
LEO satellite full load, resulting in more access or handover failures, and lower throughput.

5.2. Sensitivity Analysis

In Equation (7), there are two controllable parameters, p and Target Point, which are
used to change the shape of the delay utility function by adjusting the value of k. In order
to investigate the sensitivity of these two variables, we simulate the average throughput
and the average number of handovers with the changes of p and Target Point.

As shown in Figure 7, the system average throughput and the handover times change
with the variation of p. In general, the value of p in our method has good results in the
range of 0.75–0.85, which is similar to the description in Equation (7). Compared with the
results obtained by different strategies in Figures 4 and 5, if p is not in the optimal range,
its results may be worse than those of other strategies.



Electronics 2022, 11, 795 13 of 15

1 2 3 4 5 6 7 8

User arrival rate(k/hour)

550

600

650

700

750

800

850

900

A
v

er
ag

e 
th

ro
u

g
h

p
u

t(
M

b
p

s)

p=0.75

p=0.8

p=0.85

p=0.9

p=0.95

3.5 4 4.5

800

810

820

830

840

(a)

1 2 3 4 5 6 7 8

User arrival rate(k/hour)

5

10

15

20

25

30

35

40

T
h

e 
av

er
ag

e 
n

u
m

b
er

 o
f 

h
an

d
o

v
er

s 
p

er
 m

in
u

te

p=0.75

p=0.8

p=0.85

p=0.9

p=0.95

3.5 4 4.5
26

28

30

32

(b)

Figure 7. The sensitivity analysis of p. (a) The average throughput, (b) The average number of
handovers.

We can know that the value of Target Point cannot exceed maximum delay tolerance
from (7). Let the Target Point equals t times maximum delay tolerance, and the simulation
results are shown as Figure 8. We can see that the value of Target Point also affects the
outcome of the strategy.
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Figure 8. The sensitivity analysis of Target Point. (a) The average throughput, (b) The average
number of handovers.

6. Conclusions

The heterogeneous satellite system is the development trend of satellite communica-
tion. In order to effectively utilize GEO/LEO heterogeneous satellite network resources,
the access and handover decision strategy of the network is particularly important. In
this paper, a two-step access and handover strategy for GEO/LEO heterogeneous satellite
networks is designed, considering signal quality, handover cost, and load balancing. Firstly,
the GEO/LEO satellite network selection function is designed based on the utility function,
and then we propose an Importance-TOPSIS scheme to choose an LEO satellite if the users
select to access LEO satellites in the first step. Compared with the SINR-max, the original
TOPSIS, and the Entropy-TOPSIS handover strategy, the strategy proposed in this paper
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performs better in average throughput, the average number of handovers, and the forced
termination probability. The strategy has robustness in a certain degree, and the values of
related parameters need to be tested further. We will consider using the fuzzy set and gray
method to reduce the robustness of the system for future work.
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