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Abstract: The various integration systems of blockchain and information-centric network (ICN) have
been applied to provide a trusted and neutral approach to cope with large-scale content distribution
in IoT, AR/VR, or 5G/6G scenarios. As a result, the scalability problem of blockchain has been an
increasing concern for researchers. The sharding mechanism is recognized as a promising approach
to address this challenge. However, there are still many problems in the existing schemes. Firstly, real-
time processing speed trades off security of validation. Secondly, simply randomly assigning nodes to
the shards may make nodes located very far from each other, which increases the block propagation
time and reduces the efficiency advantage brought by the sharding mechanism. Therefore, we
optimize a reputation-based sharding consensus model by multi-dimension trust and leverage the
affinity propagation (AP) algorithm for gathering consensus nodes into shards. Given the minimal
possibility to be at fault in the security of validation, clients can achieve real-time processing speed
with assurance. The evaluation results show that the normalized mean square error (NMSE) between
the estimated reputation value and the real reputation value of our reputation scheme is less than
0.02. Meanwhile, compared with the classical sharding scheme Omniledger, TPS performance can
achieve 1.4 times promotion in the case of a large-scale blockchain network of 1000 nodes.

Keywords: blockchain; information-centric network (ICN); sharding; reputation; consensus; affin-
ity propagation

1. Introduction

Blockchain technology, characterized by its decentralized tamper resistance, shows
great potential in dealing with security and trust challenges in various application scenarios,
such as medical systems, internet of things and edge computing [1–3]. Various integrated
systems of blockchain and information-centric network (ICN) [4] have also been a concern
of researchers in order to provide a credible and neutral method to deal with the trust
problem of large-scale content distribution [5–9]. However, due to the low throughput and
weak scalability of traditional blockchain technology, the wider application of blockchain
technology is seriously restricted. For example, Bitcoin can only process about 10 trans-
actions per second, with a maximum block size of 1 MB and an average block cycle of
10 min [10], which are incapable of providing support for higher throughput scenarios.

In order to handle a large number of verification transactions, side chain technology
and off-chain technology are proposed, which are called vertical scaling [11]. Transaction
verification is processed outside the main chain. For example, Plasma builds various
applications on Ethereum [12] through side chain technology. From the perspective of
users, they can minimize interaction with the blockchain to reduce latency, but this scheme
cannot improve the throughput of the blockchain [13].

To address this problem, researchers began to propose solutions from the perspective
of horizontal scaling, aiming to improve scalability while maintaining the decentralization

Electronics 2022, 11, 830. https://doi.org/10.3390/electronics11050830 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11050830
https://doi.org/10.3390/electronics11050830
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9694-8821
https://doi.org/10.3390/electronics11050830
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11050830?type=check_update&version=1


Electronics 2022, 11, 830 2 of 20

and security of blockchain. Sharding is considered to be the most promising method to
solve this challenge [14]. The sharding mechanism divides the whole blockchain into
multiple consensus groups and allows participating nodes to process and store a few
shards (i.e., only parts of the blockchain). The transactions in these pre-selected shards are
processed and validated in parallel, which significantly enhances the network scalability
and transaction throughput [15,16]. Various sharding protocols have been introduced such
as Elastico [17], OmniLedger [18], RapidChain [19] and Zilliga [20] in existing blockchain
cryptocurrencies. Researchers employed a random algorithm to maintain the fairness of
the shard distribution [21–25]. However, those schemes assign shards based on simple
randomness without any consideration for the reliability and efficiency in consensus
procedures. Determined by a well-known blockchain trilemma [26] shown as Figure 1,
when the number of nodes decreases in the consensus process, the malicious nodes can
easily launch attacks. Meanwhile, simply randomly assigning nodes to the shards without
considering the network distance between consensus nodes may make nodes located
very far from each other, which increases the block propagation time and, hence, reduces
blockchain throughput.
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Therefore, the motivation of our paper is to improve security issues by combining
the reputation of blockchain nodes. We provide a multi-dimension reputation model in
which the reputation value is computed by the trust parameters including quality of service
(QoS), quality of security performance (QoSP), evaluation reputation, past reputation
and recommendation reputation. A topology-based sharding scheme is also proposed
to optimize the transmission of the blockchain network to reduce latency. The validator
distribution among shards is achieved by the aggregated trustworthiness scores calculated
by the reputation value and the network distance. Meanwhile, we introduce the name
resolution system in the ICN prototype to provide advantages for the registration and
query of shards and help the rapid and effective distribution of transactions.

The main contributions of this paper are as following:

1. We propose a novel multi-factor trust model for the reputation evaluation of consensus
nodes. These evaluation factors measure reputation value from the perspective of
objective trust, subjective trust and historical trust, so as to minimize the probability
of malicious nodes controlling shards and improving the reputation by collusion and
deception.

2. The shard distribution scheme is optimized by the affinity propagation algorithm (AP),
which is used to find the optimal sharding group by combining security and timeliness.
We introduce the calculation method of algorithm input by cosine similarity. The
clustering results well consider the reduction in distance within intra-shards. All the
shard clusters are evenly distributed in the network instead of gathering in a domain.

3. We introduce the definition of unequal consensus verification group and give the
security rules in each epoch. It is proved that the epoch time can be extended to a few
days without security problems, which greatly reduces the overhead of the sharding
scheme.

4. The experimental analysis is given by OMNET++. Simulation results show that the
normalized mean square error (NMSE) between the estimated reputation value and
the real reputation value of our reputation scheme is less than 0.02, which proves the
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reliability of our reputation evaluation mechanism. Meanwhile, compared with the
classical sharding scheme Omniledger, the TPS performance can achieve 1.4 times
promotion in the case of a large-scale blockchain network of 1000 nodes.

The structure of this paper is organized as follows. In Section 2, we analyze the limita-
tions and shortcomings of the existing work. Section 3 briefly introduce the preliminaries
and system model of our scheme. Section 4 presents the muti-factor model of reputation
algorithm and the design procedure of our sharding protocol, including its working rules
and the related parameters. Section 5 gives the security analysis of the whole scheme. The
simulation results are presented and analyzed in Section 6 to characterize our sharding
protocol. Finally, Section 7 offers our conclusion.

2. Related Literature

For the several famous and typical sharding mechanisms in the blockchain such
as Monoxide [27], Elastico [17], Omniledger [18], Rapidchain [19], Chainspace [28] and
Ethereum 2.0 [29], most of them are based on randomness, that is, shuffling the consensus
nodes regularly and grouping randomly to ensure the security of the system. Moreover,
in order to build good randomness, the random scheme needs to meet several important
attributes: unbiased, unpredictable and public verifiability. However, these are not easy
to achieve. Generating public randomness is difficult because active opponents may
dishonestly bias public random choices to their advantage. Existing solutions cannot
extend the blockchain to hundreds or thousands of participants as needed. Without good
randomness, the security of the blockchain system is destroyed. For example, through a
complex attack, such as a bribery attack [30] or 1% attack [31], an opponent may have the
ability to control a temporary majority of the overall computing power (e.g., more than
50%), which in turn may damage the entire system.

To address the challenge, trust-based sharding distribution algorithms were introduced
to enable the distribution of nodes among the shards based on the trust score of a node.
The trust score used in sharding and leader election processes can minimize the adversary
influence of malicious attacks. Ref. [32] proposed a trust model that evaluates the quality
of shards by the average difference of the aggregated trust results in each shards. The
trust value is obtained by peer review of each node in the process of consensus. Ref. [33]
introduced a novel reputation scheme with two factors: the accuracy of valid information
and aggregated contributions a consensus node has made. To ensure the security of the
local shards’ sub-chains, refs. [34,35] increased the reputation evaluation dimension based
on its trustworthiness by the peer’s customers, i.e., the customers associated with the peer
in the same shard, not only the evaluation of the consensus process. The new sharding
clustering method is also concerned by researchers. Ref. [36] used the adaptive hedge
algorithm [37] for committee selection. It is a decision-theoretic online learning method to
minimize cumulative loss of the consensus node according to the best strategy. Ref. [38]
designed the trust-based shard distribution (TBSD) model based on genetic algorithm (GA)
to provide a sufficiently good solution in optimization problems of sharding distribution.
The optimal shards are computed based on a modified GA to quickly find a solution by
genetic variation. Ref. [39] proposed a Geographical Proximity Sensing Clustering (GPSC)
method based on the K-Means algorithm to reduce the network latency on consensus and
ensure parallel broadcast between clusters. The method distributes the consensus nodes
into several shards based on the famous K-Means algorithm. These sharding distribution
schemes optimize the security and efficiency of simple randomly assigning methods to
a certain extent, but they still ignore heterogeneity among the nodes. The evaluation
reputation of peers is aggregated without considering the quality of service among the
nodes. Those less-competent consensus nodes may become a bottleneck and hamper the
system throughput. The limitations of the existing literature are briefly summarized in
Table 1.
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Table 1. Limitation overview of existing literature.

Scheme Name Allocation Attack Tolerant Epoch Length

Elastico [17] Randomness
(PoW puzzles)

Weak, attacker behaves
arbitrarily, 1% attack 10 min

OmniLedger [18] Randomness
(RandHound [24])

Medium, DDOS resistance
Poor to resist 1% attack <one day

RapidChain [19] Randomness
(PoW puzzles)

Weak, attacker behaves
arbitrarily, 1% attack >one day

Ethereum 2.0 [29] Randomness
(RANDAO [40] and VDF [41])

Medium, 1% attack resistance,
Uncoordinated majority One week

Halgamuge et al. [32] Aggregated trust value
balance

Medium, 1% attack resistance,
Poor to resist collusion attack N/A

Gang Wang [33] Aggregated trust value
balance

Medium, 1% attack resistance,
Poor to resist bribery attack N/A

YUN et al. [34] Network coordinate balance Medium, DDOS resistance
Poor to resist 1% attack N/A

Hao et al. [39] Aggregated trust value
balance

Medium, 1% attack resistance,
Poor to resist bribery attack N/A

In conclusion, the existing schemes leave the problems of security and efficiency un-
solved. Even if the sharding scheme based on trust model is proposed, the trust scheme
itself has security problems. Meanwhile, most of the clustering schemes need to deter-
mine the central nodes and the parameters are single, which is not conducive to find-
ing the optimal sharding results. In addition, the optimization scheme proposed in the
paper [32–39] does not give the selection of epoch, which is closely related to the overhead
and security of the system. Based on those analyses, our scheme analyzes these directions
in the next section.

3. Preliminaries and System Model

In order to better illustrate our scheme, we briefly introduce the system model of
our proposal and related preliminaries in this section. The system model is shown in
the Figure 2. The key components include three parts: reputation statistics, deriving and
sharing the shard sets to consensus nodes and finding available shards for parallelizing
transaction commitments.
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Furthermore, with the gradual maturity of architecture design, ICN is envisioned as
a promising candidate to support complex interoperability scenarios such as IoT, 5G, or
MEC. Considering the practicability and scalability of the ICN scenarios, we implement
system management by support with in-network edge computing and a Software Defined
Network (SDN), which have been proposed to optimize resource allocation in ICN [42–48].
Meanwhile, the Standalone Name Resolution (SNR) [49–52] can be responsible for finding
available shards in parallelizing transaction commitments by its registration and resolution
functions.

As shown in Figure 2, the reputation data can be gathered, processed and validated by
in-network edge computing, which monitors the behavior of consensus nodes to manage
and calculate the reputation value. The aggregation of edge data can be realized by SDN
technology, so as to derive the optimal shard sets that meet fair and secure shard distribution
rules. The sharding registration, resolution and transaction commitments are shown as
steps 1–3. Shard primary nodes in consensus stages register with their ID-NA in local SNR.
When transaction commitments are submitted to client nodes, they request the network
access (NA) of the primary node from the SNR to find the nearest serviceable shard sets.
In the subsequent section, we discuss the reputation aggregation algorithm and sharding
algorithm in detail. In order to better illustrate the security and rationality our scheme,
some related technologies and definitions are introduced as follow.

• Certificate: our model defaults that there is a complete identity authentication scheme
in the ICN system. That is, users can obtain identity certificates from public key
infrastructure. Every consensus node obtains a legal identity certificate, which cannot
be forged.

• Data security: Considering the security of data transmission and storage, cryptography
(e.g., RSA and ECC) is utilized to encrypt and sign the security of the important
information and messages. The security scheme data is not discussed in this paper.
The transmission and storage of data cannot be tampered with by default.

• Consensus Protocols: consensus protocol used in intra-shard is PBFT (Practical Byzan-
tine Fault Tolerance). Meanwhile, we reference the Believable-First approach proposed
in paper [53]. The protocol divides all validators in an intra-shard into two groups,
a believable league and a normal league. Believable validators complete the consen-
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sus process of transactions quickly in the first phase. Afterwards, normal validators
sample and verify the results in the second phase to provide supervision. The rules
of a node being elected into the believable league are determined by the believability
score, which is the reputation score value in our model.

• Cross-shard transactions: our research in this paper does not focus on the cross-shard
transactions. The proposed sharding scheme can be applied to multiple cross-shard
transactions approach in paper [54–57].

4. Proposed Scheme
4.1. Reputation Model

The sharding mechanism enhances the scalability of blockchain networks but also
increases the influence of malicious attacks. In order to address this problem, researchers
introduce the trust model of consensus nodes to improve the election process security.
However, existing researches calculate the reputation value based on the node’s behavior
in the block transaction, contributions to the community, reviews, etc. These dimensions
are based on the subjective evaluation of other nodes in the blockchain without considering
the network features of consensus nodes in the network layer. The existence of security
risks such as collusion or monopoly makes these schemes unable to provide sufficient trust.

Therefore, we derive a multi-factor trust model for the believable validators selection
process which extends trust parameters to quality of service (QoS), quality of performance
(QoSP), evaluation reputation, past reputation and recommendation reputation. These eval-
uation factors measure reputation value from the perspective of objective trust, subjective
trust and historical trust, which is shown in Figure 3. Our model ensures two important
problems, that is, the accumulation of reputation value requires a certain period, and the
high reputation value cannot be obtained by cheating. Any new node cannot significantly
improve reputation value by performing well in a short time. Meanwhile, if a believable
validator is detected as misbehaving, it loses all reputation value in the system and its
identity is included in the blacklist. The cost of malicious behavior is to be powerfully
expensive so that the validators have no incentive to misbehave under any circumstances.
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We describe the trust parameters of our multi-factor trust model as initial reputation
and accumulated reputation. The initial reputation of a newly added node is determined
by QoSP reputation and recommendation reputation. The accumulated reputation is the
aggregation of QoS reputation, evaluation reputation and past reputation. The quantitative
scheme of reputation value is defined as follows. In order to calculate the aggregate value
of multi-factors, we set the reputation value range of all factors to a dimensionless score
from 1 to 10.
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• QoSP (Quality of security performance): this parameter is a measure of the efficiency
of consensus nodes in cryptographic calculations [58–60], such as signature, hash, or
random operation. A node with strong computing power can provide better services
for privacy and secure consensus process. An evaluation methodology for computing a
quantitative QoSP metric is described as follows. Firstly, define the security parameters
vector Ei{ei1, ei2, ei3, . . . , ein} which can be expressed as security level. For instance, in
our research, we are concerned about the asymmetric algorithm, encryption algorithm
and hash algorithm. The vector Ei{ei1, ei2, ei3} represents the basic efficiency of security
policy. ei1, ei2, ei3 can be described as the executions of algorithms per second. When
new nodes access the network, they provide a set of performance parameters Ex{ex1,
ex2, ex3} as vector Ei. The score SxQoSP of new nodes in our example is defined as the
Equation (1)

SxQosec = SiQosec + SiQosec ∗∑n
k=1

(exk − eik)

eik
(1)

We convert this result into a score of 1 (low score) to 10 (high score) for the calculation
of overall reputation value. The score SiQoSP of basic vector is 6. If the final calculated score
exceeds the highest score 10 or is lower than the lowest score 1, the score is the highest
score or the lowest score. The security policy’s audit process is proved by providing reports
of some certified authority, such as Commercial Cryptography Testing Center of State
Cryptography Administration (SCCTC). Nodes that do not provide this partial proof are
assigned a lower initial value 1.

• Recommendation reputation: nodes can also seek recommendation from other peers
with high reputation value, and the effectiveness of recommendation is directly pro-
portional to the recommender reputation value. Similarly, the range of recommended
reputation score value is set to 1–10. The recommended reputation can be either a
good reputation recommendation or a report of a malicious node. If the system records
that the node has found malicious behavior in the past, the node may be disqualified
from joining the consensus group or get a very low initial score. The system can
also provide high reputation recommendation value for nodes with good historical
performance to enter the consensus group. The scheme to detect malicious nodes can
refer to the papers [61–63].

Therefore, when nodes access the blockchain for the first time, the trust management
system of access domain calculates an initial reputation value given in Equation (2).

R0 =


αSQoSP + (1− α) 1

n ∑n
j=1 wjSrecom

a0, when SQoSP, Srecom = 0
(2)

wj =

{
Srecomer
Srecom

, when Srecom > Srecomer

1 , when Srecom < Srecomer
(3)

where R0 is the initial reputation and SQoSP is the QoSP score. Srecom is the recommend
reputation score value of the new node, Srecomer is the recommender reputation score value
and α is a tuning parameter of the weight. wj is the weighting factors of the recommender.
When the recommender gives a recommendation score higher than Srecomer, its credibility is
the ratio of Srecomer to Srecom. When the recommender gives a recommendation score lower
than Srecomer, its reliability is 1. The recommended reliability of system records is 1. The
Equation (3) ensures the fairness of recommendation reputation.

Besides, the accumulated reputation parameters are defined as follow:

• Evaluation reputation: tt refers to the aggregation of reputation value obtained by
nodes after participating in the consensus contribution and getting the evaluation of
other peers. Our evaluation reputation does not only come from the consensus process
of nodes. We also collect the evaluation information of non-consensus interaction
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between nodes in the network. For the consensus reputation score, it can only be
obtained and updated directly from the consensus process. The calculation information
of the score gathers from the node validation logs on the prepare and commit. The
total number of valid and invalid records in the consensus process can be obtained by
gathering the log information of these nodes. Assuming there are n consensus nodes,
each node saves the other n validation results into a 1 × n vector. Based on the node
validation result obtained from the peer-to-peer nodes, the n × n matrix can form an
evaluation table quantitatively, which is shown in Figure 4.
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SCi,j is the jth node consensus reputation score defined by Equation (4), Vi,j and NVi,j
are the total number of valid and invalid responses of the jth node (sending) with respect to
the ith node (receiving) in the prepare and commit phase extracted from the log information.
Then the consensus reputation score SCicon is given by Equation (5), Stotal is the upper limit
of the node reputation value, Stotal = 10, SCi,i = 0.

SCi,j =
Vi,j

Vi,j + NVi,j
× Stotal (4)

1
n− 1

×


SC1,1 SC1,2 · · · SC1,n
SC2,1 SC2,2 SC2,n

...
...

. . .
...

SCn,1 SCn,2 · · · SCn,n




w1
w2
...

wn

 =


SC1
SC2

...
SCn

 (5)

where wi =
Si

Stotal
.

For the non-consensus evaluation reputation, the score value is obtained by the evalu-
ation information of non-consensus interaction between nodes in the network. For instance,
nodes can be publishers to participate in the resource contribution and get the evaluation
of other subscribers. The minimum and maximum values of the SNC reputation value are
between 1 and 10, respectively. The non-consensus score value is described as follow:

SNCincon =
n

n + 1
∗ T(i) ∗ SNCinconh +

1
n + 1

∗ SNCinew (6)

where SNCincon is the latest non-consensus evaluation reputation value. SNCinconh is the
historical non-consensus reputation value. n is the total number of historical interactions.
SNCinew is the latest non-consensus evaluation reputation score from peers. T(i) is a time
factor defined to measure the freshness of the reputation value. It is calculated according to
Equation (7).

T(i) = e−δ(ti−th) (7)

where δ is a parameter to adjust the influence of time attenuation factor T(i). The formation
time of the previous reputation value SNCinconh is th and the current time slot is ti. The
delay between them is used to measure the effectiveness of historical reputation, which
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gradually weakens with the passage of time. The closer it is to the current time slot, the
higher the weight of reputation value.

Therefore, evaluation reputation value is given by Equation (8); β is the weight
coefficient:

Rupeval = β ∗ SCicon + (1− β) ∗ SNCincon (8)

• Past reputation: this parameter measures the accumulated value of rewards or penal-
ties received by nodes due to their contributions or malicious behaviors to the blockchain
network in the past time, which is marked as Spr.

For the contribution accumulation of a new node, several factors need to be considered.
First, at the beginning of network access, the acquisition of positive reputation value
contributes slowly to the growth of reputation value. This is to prevent some malicious
nodes from improving reputation value through a small number of successful interactions.
After a certain period, the change speed is accelerated. In the stable stage, the change
speed tends to be steady. The design principle of the correction parameter f (x) is given by
Equation (9):

f (x) =
K

1 + ηe−µn , µ > 0, η > 0 (9)

where K is the max value of past reputation score. µ and η measure the speed of curve
change. Then, the Spr is given by Equation (10):

Spr =
10 ∗∑n

i=1( f (n) ∗ b)
n ∗ Sprt

(10)

where b is the reward value obtained each time, Sprt is the upper limit value of reputation
rewards obtained in the past and n is the number of rewards obtained.

• QoS: it is a parameter used to measure the service level of a consensus node based
on the network features of nodes in the network layer. Researchers in paper [64–66]
have laid a foundation for the QoS measuring methods in ICN. The performance
characteristics are represented by a set of general parameters which can be latency,
jitter, packet loss rate, effective caching, bandwidth, etc. QoS parameters are quantified
by the aggregate value of each specific metric. Considering the compatibility of our
model with multiple measuring methods, we uniformly convert the evaluation results
of different methods into a “QoS score” ranging from 1 (Low Priority) to 10 (High
Priority). It should be noted that we do not discuss the specific aggregation methods
of QoS value in this paper. In the subsequent analysis, we use the score value SQoS as
a parameter to measure the QoS reputation of all nodes. SQoS is set by Equation (11) as
follow:

SQoS =
10

QoSul

(
1
n ∑n

i=1 QoStk

)
(11)

where tk is the time interval of QoS measurement, QoS is the measured value at time
slot is tk and n is the total number of QoS measurement. QoSul is the upper limit of
the QoS value. We normalized the value of QoS into the SQoS of our scoring criteria.
The Qos reputation can also be applied to the node inactivation detection as the basic
failure detection strategy.

The node trust Si is computed by multiplying the multi-factor trust parameters and
the trust weight, which is represented as follow:

Si = ρ× R0 + (1− ρ)× (wrep × Rupeval + wpr × Spr + wQoS × SQoS) (12)

where ρ = T(j) = e−τ(tj−t0). wrep, wpr, and wQos is the weight coefficient of Rupeval, Spr and
SQoS. T(j) is a time factor, defined to measure the access duration of consensus nodes. τ is a
time attenuation factor T(j). The access time of the consensus node is t0 and the current time
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slot is tj. The delay between them is used to measure the effectiveness of initial reputation,
which gradually weakens with the passage of time.

In addition, due to the high reliability of our reputation evaluation mechanism, in the
view change in the consensus stage, we can directly select the node with high reputation
value in the intra-shards to replace the primary node, so as to avoid the broadcast overhead
caused by the view change in primary node inactivation. In the next section, we describe
the sharding scheme of our model.

4.2. Sharding Scheme

The proposed reputation-based sharding scheme’s objective in assigning nodes to
shards is to find an optimal shard distribution set according to the reputation value of
nodes and network distance. Let N be the total number of consensus nodes satisfying N =
∑K

i=1 Nk, where Nk represents the number of nodes in the kth shard. Ski is the reputation
score of the node i in the kth shard. ATk represents the aggregated trust of the kth shard
set, ATk = ∑Nk

i=1 Ski. rk is the total number of believable validators in the kth shard whose
reputation score exceeds threshold Sth. Di,j is the network distance of node i and node j.
The problem statement of our model is described as follow:

(1) The aggregate trust difference for each shard should be less than threshold θ:

K

∑
i=1

K

∑
j=1,j 6=i

∣∣ATi − ATj
∣∣

C2
K

=
K

∑
i=1

K

∑
j=1,j 6=i

2 ∗
∣∣ATi − ATj

∣∣
K(K− 1)

≤ θ (13)

(2) The aggregated reputation value of believable validators and normal validators for
each shard should be more than threshold Φ1 and Φ2:

rk

∑
i=1

Ski ≥ Φ1,
Nk−rk

∑
j=1

Skj ≥ Φ2 (14)

(3) All the shard clusters are evenly distributed in the network instead of gathering in a
domain;

(4) Nodes with the same consensus process in each shard should be separated into
different shards in the next epoch, which is to ensure the randomness of shards and
avoid collusion attack.

(5) To optimize a shard algorithm, aim to minimize network diameter within the shard.
The smaller the network diameter, the shorter the average broadcast time between
any two nodes, thus effectively reducing the broadcast latency.

These properties are applied to the proposed sharding modified scheme. We imple-
ment the sharding method to organize the nodes across the network into several clusters
based on the well-known AP (Affinity Propagation) algorithm [67]. For most existing algo-
rithms for data clustering, the number of clusters must be predetermined before running
the clustering procedure. However, predetermining shard groups limits the acquisition of
the optimal solution in sharding detection. Therefore, the AP algorithm realizes a method
to determine the optimal number of intra-shards based on reputation value and network
distance. Meanwhile, researchers have shown that the square-error of the clustering result
and efficiency of algorithm are superior to the traditional K-Means algorithm, C-means
algorithm, etc.

Affinity propagation takes as input a collection of similarities between data points,
where the similarity s(i, k) indicates how well the data point with index k is suited to be the
exemplar for data point i [67]. We optimize the calculation method of similarity by cosine
similarity. The cosine similarity Simi,k of two data vectors of node i and k is expressed as
Equation (15):

Simi,k =

→
x i•
→
x k∣∣∣⇀x i

∣∣∣× ∣∣∣⇀x k

∣∣∣ (15)
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where
→
x i = (Si, Di,k),

→
x k = (Sk, Dk,i), and Di,k the network distance from node i to node k,

which is equal to the network latency. It should be noted that the two network latencies Di,k
and Dk,i are not necessarily equal. The description of the algorithm is exhibited as follows
(Algorithm 1):

Algorithm 1. AP (Affinity Propagation) algorithm

Input:
X = {x1, x2, ···, xn}: The cosine similarity.
p: The optimal preference.
λ: Damping factor.
Output:
[C1, C2 ···, Cm]: The sharding clustering labels.
[Cluster(x1), ···, Cluster(xn)]: Cluster(xi) represents which cluster(group) xi belongs to.
1: Calculate the similarity s (i, k) between data point xi and xk (i, k = 1, 2, ···, n). All the similarities
form the similarity matrix S = [s (i, k)]n×n
2: p← preference according to a priori convention.
3: Initial the availability matrix A = [a (i, k)]n×n as a zero matrix: a (i, k) = 0.

4: repeat 5,6,7,8,9 until R and A converge and
K
∑

i=1

K
∑

j=1,j 6=i

2∗|ATi−ATj|
K(K−1) ≤ θ

5: Update the matrix R = [r (i, k)]n×n using the rule follow:
r(i, k) = s(xi, xk)−max

j:j 6=k
[s(xi, xj) + a(xi, xj)]

6: Update the matrix A = [a (i, k)]n×n using the rule follow:

a(i, k) =
{

∑i′ :i′ 6=k max(0,r(xi′ ,xk)), f or k=i
min[0,r(xk ,xk )∑i′ :i′ 6=k max(0,r(xi′ ,xk ))], f or k 6=i

7: Ri ← (1 − λ) × Ri + λ × Ri−1
8: Ai ← (1 − λ) × Ai + λ × Ai−1

9: Calculate the aggregate trust using rule: ATk = ∑Nk
i=1 Ski

10: Calculate the exemplar labels C = [C1, C2, ···, Cn] using rule: Ci = argmax
xk

[a(i, k) + r(i, k)]

11: Calculate the cluster labels using rule: Cluster(xi) = Cluster(Ci)

After the affinity propagation, the exemplar labels Ci represent the sharding labels
of consensus nodes. The believable league is selected by v1 validators whose reputation
value is over trth and the aggregate trust of each believable league meets the Equation (14).
The normal league consists of v2 nodes which are randomly selected from the remaining
validators in the shard. Meanwhile, the aggregate trust of each normal league should be
more than threshold Φ2 shown as Equation (14). Then, the possible combinations of leagues
are shown as Equations (16) and (17):

l1 = Cv1
r , Sv1 ≥ trth, ∑v1

i=1 Ski ≥ Φ1 (16)

l2 = Cv2
Nk−r

, ∑Nk−r
j=1 Skj ≥ Φ2 (17)

L = l1 × l2 (18)

where l1 and l2 are the total numbers of believable league and normal league. L is the
total number of combinations which can complete transaction verification. We select an
alternative randomly within an election period, and the alternative can be replaced in the
next election period of one epoch. At the same time, in order to increase randomness and
fairness, the nodes that complete the consensus in each round reduce a random number
from the existing reputation value. This does not mean that the reputation value of the node
is really reduced, but rather the transformation in the calculation of clustering parameters,
which is similar to the Servi mechanism of PoB [53].

Compared with a fixed number of validators, our approach is more flexible and
random in the selection of validation groups. It provides a possible solution that the epoch
of shards can be prolonged without increasing the security risk, even in days. In the next
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section, we prove the randomness of the scheme is bias resistant and give the security
analysis of the whole scheme.

5. Security Analysis

In this section, we first give the most concerned bias-resistant proof in the sharding
scheme, and then give a security analysis of the reputation evaluation algorithm on which
the sharding algorithm depends.

5.1. Bias-Resistant Proof

For proving the bias resistance of our model, we introduce the proof that the corre-
sponding shard distribution problem is NP-hard. Therefore, there is no exact algorithm
that is guaranteed to find the optimal solution within polynomial time. The proof process
is as follows:

Proof. The shard distribution problem (denoted as D) is to find k disjoint and non-empty
shard set Gi, which satisfys the condition as Equations (13) and (14). G = G1∪G2∪· · ·∪Gk.
The value of θ is infinitely close to zero. In this case, the core problem of D is reduced to a
partition problem finding, that is, a group of numerical values are divided into k mutually
disjoint groups according to the constraint Equations (13) and (14), so as to minimize the
difference between subsets. The result of grouping ensures that the aggregate reputation
trust difference of each partition is as small as possible. According to the definition of the
K-partition problem, it can be seen that this is a NP complete problem [68]. On the other
hand, the D problem is an optimization problem to find the optimal set G. For a given
arbitrary solution set G*, there is no polynomial time algorithm to verify that the given G*
can obtain the best set G satisfying Equations (13) and (14). Therefore, the D problem is not
the NP problem. Since the problem D/∈NP, it is NP-hard not in NP-complete (NPC). �

5.2. Security Analysis of the Reputation Algorithm

The multi-factor reputation model extends the evaluation dimension of reputation
value. The QoS and QoSP parameters are the reputation obtained by the network measure-
ment information and trusted third party certification. Any consensus node cannot cheat
on these two parts of reputation by hiring larger ghostwriters. Meanwhile, we design the
time attenuation factor T(i) and correction function f (x) to prevent some malicious nodes
from improving reputation value through a small number of successful interactions. The
accumulation of high reputation value requires a certain period and cannot be obtained by
cheating. Any new node cannot significantly improve reputation value by performing well
in a short time. We also prove this in the experiment in the next section. Meanwhile, the
cost of malicious behavior is powerfully expensive so that the validator has no incentive to
misbehave under any circumstances. Therefore, when the reputation value of a consensus
node reaches the trust threshold Sth, it is almost impossible to conduct malicious behavior.

6. Performance Evaluation

We built our experiments based on the OMNET++ simulation platform for evaluating
the performance of our model. The experimental environment of simulation is configured
as following: Intel i7-4790 CPU @ 3.60ghz (8 CPU cores), memory 4096 MB, system model
Dell OptiPlex 9020. In this paper, the simulation of network topology is built by importing
different scenarios and topology types from INET supported by OMNET. Communication
link delay is set as 100 ms and network bandwidth is 20 Mbps, which is consistent with
the measurement values of bitcoin and Ethereum [69]. The total number N of nodes in the
blockchain network is 1000. The experiment result is tested 5 times and each test included
100 rounds of consensus.

The minimum and maximum values of the node’s real reputation value is set to 1 and
10, respectively. The variation range of initial reputation value is set between 3 and 5. It is
measured by whether a node provides recommendation reputation. The initial reputation
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of a node that does not provide recommendation reputation is 3. Qos reputation is counted
by the the packet loss rate, latency and jitter, which is recorded in the log information of the
consensus node. The simulation parameters used in the proposed scheme are presented in
Table 2.

Table 2. Simulation setup.

Simulation Parameters Value

Simulation tool OMNeT++

Number of consensus nodes 1000

Communication link delay 100 ms

Network bandwidth 20 Mbps

wrep, wpr, and wQos 1/3

τ, δ 1

damping factor λ 0.5

α, β 0.5

θ 0.01

In the consensus commitment and preparation stage of PBFT, the packet loss rate is
set to a random value from 0.05 to 0.1. We set the false response probability (FRP) as an
indicator to simulate the robustness of response message. The parameter represents the
probability that the commitment or preparation message of a consensus node is corrupted.
The FRP is set by Equation (19), which includes two conditions:

1. An error message from consensus nodes should be rejected by the model.
2. A false positive message indicates that normal feedback is incorrectly detected as

malicious feedback by the model

FRP =
1

1 + Si
(19)

The non-consensus evaluation reputation value is obtained by adding the real rep-
utation value and a Gaussian noise with zero mean value. The variance of the noise is a
dynamic variable kσ in the experiment, where k is the scale factor of the noise variance and
σ is the variance unit of noise. In the experiment, the value of K is 1, 2 or 3, which can test
the influence of different feedback noise on the reputation model. Since reputation score
feedback is a subjective uncertainty value, unit noise variance σ is set to 1, which indicates
a relatively large noise [70].

SNCnew = Rreal +
1√

2πkσ
exp

(
− x2

2kσ

)
(20)

The correction parameter of past reputation is set as fitting curves f 1(x), which is
shown as Equation (9). The fitting curve is calculated by the following conditions and the
image of the curve is shown in Figure 5

1. The curve tends to be stable at the 10 times interaction;
2. The coefficient of initial accumulation value is 0.1;
3. The coefficient of the fifth interaction is 0.5.
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At the beginning of the experiment, we regard all nodes as new nodes and set the
reputation value of nodes to 4 for clustering. In total, 1000 nodes are randomly generated
in the range of 104 × 104 (m2). In order to facilitate the visualization of clustering results,
in our simulation settings, the network coordinate distance is directly proportional to the
network latency. However, in real-world scenarios, the network latency of nodes close to
each other is not necessarily lower. Therefore, in the similarity calculation, we measure
the network latency as a distance parameter rather than the real geographical distance.
The damping factor λ is 0.5. The clustering results in Figure 6 show that the number of
clustering groups is 28, and the number of nodes in each group is between 30–40. Then,
we build a PBFT consensus simulation through the OMNeT++ platform to simulate the
consensus process in each shard and analyze the evaluation reputation through additional
packets between nodes. The change in reputation value is recorded every two rounds.
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Figure 7 validates the average convergence time of our reputation evaluation mech-
anism. We select three groups of nodes with real reputation values of 5, 7 and 9 as
representatives for comparison. As shown in Figure 7, the higher reputation value requires
longer convergence time, which also proves our view in Section 3 that high reputation
value can not be obtained by cheating in a short time. Figure 8 shows the comparison
of the convergence time of reputation value from 1 to 10. We can see that for malicious
nodes with reputation value less than 4, the reputation algorithm can be found within
6 rounds, while for trusted nodes with reputation value greater than 6, at least 15 rounds
of reputation accumulation are required. Meanwhile, we also compared the reputation
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value statistical algorithm proposed in [32,38]. The comparison parameter is through the
normalized mean square error (NMSE), which is defined by Equation (21). Figure 9 shows
the evaluation results of the three trust algorithms. It can be seen that our reputation
algorithm is obviously closer to the actual reputation value and the evaluation effect is
better than [32,38].

NMSE =
1

xreal

√
∑m

i=1(xi − xreal)
2

m
(21)
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The number of transactions packaged in a block is set as 2000 [69]. Ts indicates the
time point of the block arriving at the intra-shard, and Te represents the time point at
which the PBFT consensus completion. Then, the TPS may be measured as the transaction
throughput as Equation (22)

TPS =
1

Te − Ts
× 2000 (22)

We compare the proposed model with a classical sharding scheme Omniledger [18].
The experimental results are shown in Figure 10. It can be seen from the experimental
results that due to the addition of network latency parameters, the broadcast latency in intra-
shard is significantly reduced, which significantly improves the transaction throughput and
proves the advantages of our model. The clustering results after 100 rounds of consensus
are shown in Figure 11.
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7. Conclusions

In this paper, we proposed a reputation-based sharding blockchain consensus model
in ICN. Our model focused on the key challenges in the existing sharding mechanism,
which are reliability and efficiency. Most the researchers devote their attention to the
optimization of cross-shard transactions or fairness shard, while lacking consideration
of the potential sharp increases of malicious attacks in intra-shards and the influence of
underlying network parameters on consensus efficiency. To address these challenges,
we optimized a multi-dimension reputation model and leveraged the AP algorithm for
gathering consensus nodes into shards. We prove the robustness of the multi-dimension
reputation model since the high reputation value cannot be obtained by cheating or bribery
attack. Given the minimal possibility to be at fault in the security of validation, the model
achieves real-time processing speed with assurance. The experimental results demonstrate
that in comparison with existing classical sharding schemes, our model exhibits better
security and efficiency.

As future work, we intend to more deeply research the integration of ICN and
blockchain. Using the characteristics of the ICN, the blockchain can sink various tech-
nologies into the network. The performance of the blockchain in communication and
storage can be optimized by the ICN approach. Therefore, the efficiency and availability of
the sharding blockchain will be further improved to better serve the IoT, AR/VR, or 5G/6G
scenarios.
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