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Ławryńczuk

Received: 1 February 2022

Accepted: 1 March 2022

Published: 9 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

MobileNets Can Be Lossily Compressed: Neural Network
Compression for Embedded Accelerators

Se-Min Lim and Sang-Woo Jun *

Computer Science Department, Donald Bren School of Information and Computer Sciences,
University of California, Irvine, CA 92697, USA; seminl1@ics.uci.edu
* Correspondence: swjun@ics.uci.edu

Abstract: Although neural network quantization is an imperative technology for the computation and
memory efficiency of embedded neural network accelerators, simple post-training quantization incurs
unacceptable levels of accuracy degradation on some important models targeting embedded systems,
such as MobileNets. While explicit quantization-aware training or re-training after quantization
can often reclaim lost accuracy, this is not always possible or convenient. We present an alternative
approach to compressing such difficult neural networks, using a novel variant of the ZFP lossy
floating-point compression algorithm to compress both model weights and inter-layer activations
and demonstrate that it can be efficiently implemented on an embedded FPGA platform. Our ZFP
variant, which we call ZFPe, is designed for efficient implementation on embedded accelerators,
such as FPGAs, requiring a fraction of chip resources per bandwidth compared to state-of-the-art
lossy compression accelerators. ZFPe-compressing the MobileNet V2 model with an 8-bit budget per
weight and activation results in significantly higher accuracy compared to 8-bit integer post-training
quantization and shows no loss of accuracy, compared to an uncompressed model when given a
12-bit budget per floating-point value. To demonstrate the benefits of our approach, we implement
an embedded neural network accelerator on a realistic embedded acceleration platform equipped
with the low-power Lattice ECP5-85F FPGA and a 32 MB SDRAM chip. Each ZFPe module consumes
less than 6% of LUTs while compressing or decompressing one value per cycle, requiring a fraction
of the resources compared to state-of-the-art compression accelerators while completely removing
the memory bottleneck of our accelerator.

Keywords: embedded FPGA accelerators; compression; neural networks

1. Introduction

A great amount of research effort has focused on bringing the benefits of deep neural
networks to resource-constrained embedded devices in order to support increasingly popu-
lar applications, such as the internet of things (IoT) or cyber–physical systems (CPS). Efforts
include architectural solutions, including the use of power-efficient, high-performance
accelerators, such as mobile GPUs [1] or FPGAs [2,3], as well as algorithmic solutions, such
as designing compact neural networks with fewer resource requirements [4–6].

An imperative technology for embedded neural networks is deep compression [7],
where a complex neural network can be compressed by pruning less significant edges, as
well as quantizing weights and activations from floating-point values to smaller fixed-point
values. Quantizing is an especially important technique. Smaller fixed-point values can
not only reduce the memory size and bandwidth requirements, but also replace costly
floating-point arithmetic with simpler fixed-point ones. Many important neural network
models demonstrated maintaining high accuracy with aggressive quantization to 8-bit
integers and beyond [8], and many hardware and software environments are optimized for
such quantized models [9–12].

However, not all models can be quantized effectively, and aggressive quantization
sometimes results in an unacceptably sharp accuracy decline. A prominent example is
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the MobileNet series of neural networks, which use depth-wise separable convolutions to
construct compact but powerful networks [4]. The post-training quantization of MobileNets
and other similarly structured neural networks have often resulted in a sharp drop in
accuracy from 90% to almost 1%, an unacceptable decline [4,13]. The accuracy of these
models can be reclaimed to uncompressed levels, using quantization-aware training or by
re-training the quantized model [14]. However, it is not always possible or convenient for
the user to fine-tune or re-train the model after obtaining it. For example, re-training may
be difficult if the training data are unavailable due to legal or privacy issues.

To address these problems, we demonstrate a method of compressing neural network
models as well as inter-layer activations, using a hardware-optimized error-bounded
lossy floating-point compression algorithm. Compressing neural network weights with
lossy algorithms, such as SZ, has shown to retain good accuracy, even with aggressive
compression [15], but applying them to embedded accelerators is difficult due to the high
resource requirements of such complex algorithms, even when implemented on hardware
accelerators [16,17]. We solve this issue by modifying the ZFP error-bounded lossy floating-
point compression algorithm [18] to support efficient hardware implementation without a
significant increase in error. We call our algorithm ZFPe, and its FPGA implementation is
capable of running at 100 MHz, delivering 400 MB/s of throughput while consuming only
2800 (6%) slices on the Lattice ECP5-98F FPGA, a low-power FPGA chip.

We demonstrate our approach using a custom-built, best-effort convolutional neural
network (CNN) accelerator designed to use ZFPe. Our accelerator uses an output stationary
caching method [19] to efficiently handle large layers, as well as implement simplified,
platform-optimized floating-point units to improve resource efficiency. We implement this
accelerator on a realistic embedded processing platform, using the open-source ULX3S
FPGA development board equipped with a low-power Lattice ECP5-85F FPGA and a 32 MB
SDRAM chip. No other lossy floating-point compression accelerator is able to support this
level of performance within the chip budget limitations. On this platform, we demonstrate
that the compression efficiency of ZFPe directly translates to improved performance by
mitigating the memory bottleneck. In fact, on this platform, we are able to completely
remove the memory bottleneck with a bit budget of 5 or less per weight and activation.

More importantly, we demonstrate superior accuracy retention on our target neural
network MobileNet V2 on the Imagenet dataset [20], compared to a post-training quantized
model. Our approach with a bit budget of 12 bits per value is able to maintain full top-5
accuracy (90%) compared to the uncompressed model. It also achieves a competitive 65%
accuracy with a bit budget of 8 bits, which is still significantly higher than the results with
naive post-training quantization [21].

Our contributions are as follows:

• We present and evaluate ZFPe, a modified ZFP compression algorithm and hardware
implementation optimized for efficient embedded hardware implementation.

• We present an alternative neural network compression approach using ZFPe, and
demonstrate its relative effectiveness, even on models traditionally difficult to quantize
with post-training quantization.

• We evaluate the performance impact of ZFPe in the context of embedded neural
network acceleration.

The rest of this paper is organized as follows: Background and related works are ex-
plored in Section 2. We describe the ZFPe algorithm and its hardware-optimized nature in
Section 3. We present the architecture of our ZFPe-enabled embedded neural network accel-
erator in Section 4. We provide an in-depth evaluation of our approach and implementation
in Section 5, and conclude with future work in Section 6.

2. Background and Related Works
2.1. Embedded Neural Network Acceleration

Due to the computation-intensive nature of neural networks, the use of power-efficient
hardware accelerators is one of the most prominent methods of bringing the benefits
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of deep neural networks to resource-constrained embedded systems. Embedded neural
networks can reduce decision-making latency by removing the requirement for querying a
remote server [22,23], as well as reducing power-hungry wireless network transmission
requirements [24]. Some acceleration approaches include using mobile GPUs [1], custom-
designed application-specific integrated circuits (ASICs) [25–28], as well as FPGAs [2]. The
FPGA acceleration of embedded neural network acceleration is of special interest since it
can bring together the power performance benefits of dedicated circuits and the capability
to deploy microarchitectures optimized for the target neural network model [29–34]. FPGA
neural network accelerators demonstrated orders of magnitude higher power efficiency
compared to general purpose processing units when applied to complex networks, such
as image or video recognition [35,36]. Deploying simple neural networks on general-
purpose microcontrollers is also a widely researched topic, but their goals differ from
accelerators, due to the more stringent resources and performance limitations of embedded
microcontrollers [6,37].

2.2. Neural Network Compression

The deep compression of neural networks is another key component of embedded neu-
ral network acceleration [7]. Typically, deep compression involves pruning, which removes
less significant edges from the network, and quantization, which maps the weights and inter-
layer activations to a smaller number of typically fixed-point bits. Deep compression can re-
duce the size of the model, reducing the memory capacity and bandwidth requirements, as
well as reducing the computation requirements by replacing costly floating-point operations
with simpler fixed-point ones [38–41]. There are many different approaches to efficiently
compress neural network models without too much accuracy degradation [14,15,41,42].
Typically, pruned network accuracy suffers a sharp accuracy degradation unless the pruned
network structure is re-trained with the training data [14,41,43]. Quantization suffers less
from this problem, and there are many different approaches, including simply quantiz-
ing weights after training ( post-training quantization), re-training after quantization, and
more [44–46]. Quantization can either be applied to weight values, inter-layer activation
values, or both. Values can be quantized from the typically 4-byte floating-point values
to 8-bit integers [47], or even more aggressively to ternary [48,49] or binary [50,51] values
with varying accuracy loss trade-offs. Quantization is typically more readily available on
embedded neural networks compared to pruning since pruning can introduce sparsity in
the weights, resulting in complex random access [43,52].

2.3. Quantization Effectiveness on MobileNets

One interesting characteristic of deep compression is that post-training quantization
works poorly on our target class of models designed for embedded applications, including
the popular MobileNet class of models [4,13]. These networks use depth-wise separable
convolutions to construct compact models with accuracy comparable to much larger
networks. However, post-training quantization on these models results in an unacceptably
sharp decline in accuracy [21], dropping from 90% or better to 1% or worse on the ImageNet
dataset. Accuracy can be reclaimed using various methods, including re-training and
quantization-aware training [53,54], but this is not always possible or convenient if the
newly required computation requirement or expertise is high, or if the training data are
unavailable due to legal or privacy issues. We posit that error-bound lossy compression
algorithms may be an alternative, accuracy-preserving method of compressing depth-wise
separable models.

2.4. Floating-Point Compression

In this work, we use error-bounded lossy compression algorithms for floating-point
data instead of traditional quantization approaches, and present a compression algorithm
optimized for embedded FPGAs. Lossy algorithms, such as SZ [55–57] and ZFP [18,58,59],
operate with the knowledge of floating-point data encoding and can achieve orders of
magnitude compression of floating-point data, given an error margin acceptable by the
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target application. These algorithms are widely used to reduce the storage capacity require-
ments of scientific data archiving [60], as well as to reduce intermediate data movement
for iterative scientific computing algorithms. In more detail, SZ uses preceding neighbors
in the multidimensional space to predict the value of each data point and compresses the
data size by an error-controlled quantization and customized Huffman coding. In the case
of ZFP, it divides the whole data into 4d value blocks (d means dimension) and performs
the compression in each block separately. We select ZFP for the compression method
because, to date, there are more studies that exploited ZFP or variants [17,61] derived from
ZFP, compared to those that used SZ. In addition, to the best of our best knowledge, a
lossy compression of neural networks using ZFP has not been studied yet, compared to
DeepSZ [15], which uses SZ for the compression scheme.

While it has been shown that error-bounded lossy compression applied to neural
network models can achieve high compression relative to accuracy degradation [15], the
complexity of these algorithms prevents them from being used in the high-performance
datapath for real-time weight and activation compression and decompression, even with
hardware acceleration. This is especially true for resource-constrained embedded acceler-
ators, due to their high resource requirements [16,17]. Furthermore, their application to
activation compression has also yet not been explored.

For example, the best existing effort on lossy compression of neural networks, DeepSZ [15],
employs an FPGA implementation of the SZ compression algorithm, which consumes
almost 20,000 Arria ALMs for a single pipeline implementation [16]. As we emphasize in
Section 5, this is a prohibitively large number for the embedded FPGAs we target.

3. ZFPe: A Novel Lossy Floating-Point Compression for Embedded Accelerators

In this work, we compress neural network model weights as well as dynamically
generated inter-layer activation values, using a novel variant of the ZFP error-bounded
lossy floating-point compression algorithm. The novel algorithm, which we call ZFPe,
modifies the embedded coding step of the ZFP algorithm to enable high performance and
low on-chip resource utilization for a small loss in the compression ratio. We first introduce
the original ZFP algorithm and its performance bottleneck in a hardware implementation
and then describe the ZFPe algorithm in detail.

3.1. Original ZFP Algorithm Analysis

The ZFP algorithm performs the compression and decompression of single- or double-
precision floating-point numbers in units of 4d value blocks, where d is the operating
dimension ranging from 1 to 4. For example, 1D ZFP compresses four values at a time,
and 4D ZFP compresses 256 values at a time. Intuitively, ZFP operates by extracting
common factors, such as exponents, from a block of values. As a result, larger block
configurations typically result in more effective compression. The algorithm also includes
a block transformation step similar to JPEG, which makes such extraction more effective.

The ZFP algorithm can operate in one of two modes, either to limit the amount of
tolerable error during compression or to limit the total number of bits used per floating-
point value.

Block compression consists of four stages:

1. Fixed-point conversion: All values in the block are aligned to the maximum exponent
in the block and converted to the fixed point.

2. Block transformation: A series of simple convolution operations are applied to the
block in order to spatially de-correlate values [18]. The resulting block is statistically
transformed such that most integers turn into small signed values clustered around
zero. This is similar to the discrete cosine transform used by JPEG.

3. Deterministic reordering: Values in a block are shuffled according to a predetermined
sequence, which results in values in a roughly monotonically decreasing order. This
stage is not necessary for 1D compression.
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4. Embedded coding: The group testing algorithm is used to encode each block in a
smaller number of bits. It encodes one bit plane at a time in the order of significance
until either the error tolerance bound is hit or all the provided bit budget is consumed.

Where stages one to three can be parallelized in a straightforward way in hardware,
the final embedded coding step of the original ZFP algorithm is the prominent performance
bottleneck for hardware implementation due to a tight feedback loop in the algorithm.

The embedded coding stage in the original ZFP algorithm encodes blocks one bit
plane at a time, starting from the most significant bit plane. A bit plane is constructed by
collecting bits from the same position of all values in a block, where the N-th bit plane
consists of N-th bits of each element in a block. For a d-dimensional block with 32-bit
values, there are 32 bit planes, each with 4d bits.

The compression efficiency of ZFP comes from this embedded coding scheme.
First of all, bit planes are encoded in the order of significance until the specified error
bound or bit budget limitations are met. As more significant bit planes have more impact
on accuracy, this is an efficient way to encode values. Furthermore, because values in a
block are de-correlated and reordered to roughly decreasing order, many of the most signif-
icant bits in each bit plane are expected to be zeros, especially for earlier, more significant
bit planes. To exploit these characteristics, the embedded coding algorithm of ZFP aims to
compactly encode the small number of nonzero bits in the least significant portion of each
bit plane.

Algorithm 1 presents the original ZFP’s group testing scheme in the embedded coding
stage. For ease of understanding, we note that it omits one algorithmic feature, where it
exploits the ordered nature of the block by emitting some least-significant bits of each bit
plane verbatim without flag bits, depending on the number of non-zero bits in the previous
bit plane.

Algorithm 1: ZFP’s embedded coding stage emits bits one by one from each
bit plane.

Data: 4d-bit bit plane
while bitplane! = 0 do

emit 1 ; . Emit “not done” bit
while True do

lsb← bitplane[0];
emit LSB ; . Emit data bits
RightShi f t(bitplane, 1);
if lsb == 1 then

break ; . Repeat group testing
end

end
end
emit 0 ; . Emit “done” bit

As shown in Algorithm 1, the group testing method in ZFP encodes one least significant
bit at a time while checking if the remaining bit plane is zero after emitting each bit. If the
remaining bit plane is zero, it emits a single bit “done” flag, 0 is emitted, and the algorithm
moves on to the next bit plane. If the remaining bit plane is still not zero, it emits a “not
done” flag, 1, and emits data bits one by one in the order of least significance until a data
bit of 1 is encountered and emitted. Once a nonzero data bit is emitted, the group testing
process is repeated with the remaining bits. For example, a 4-bit bit plane with a value of
binary “0011” is encoded as 11 11 0, where the underlined bits are flag bits.

The performance bottleneck of hardware implementations of the ZFP algorithm is
in this embedded coding stage. ZFP encodes data one bit plane at a time, and the number
of bits required to encode each bit plane can only be determined after encoding is done.
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This means the encoding and decoding of multiple bit planes cannot be parallelized, as
the algorithm cannot know where the next encoded bit plane starts before the current one
is processed. This makes efficient hardware implementation different because even in the
best case, only d bits can be encoded or decoded per cycle, where d is the dimensions of
the block.

This is especially limiting for FPGAs, which typically have lower clock speeds, com-
pared to ASICs or CPUs. For example, a 1D ZFP decompressor running at 100 MHz has a
best-case throughput of 50 MB/s, which is not sufficient to support dynamic compression
and decompression at rates required by neural network accelerators. This problem is
exacerbated by the fact that the original ZFP algorithm encodes each bit plane one bit at a
time, opting to improve compression ratios at the cost of performance.

3.2. Novel ZFPe Optimizations

Our proposed compression algorithm, ZFPe, solves the performance issue of ZFP on
hardware accelerators by introducing a new encoding scheme. ZFPe encodes each value in
a block independently instead of re-organizing values in a block into a series of bit planes.

Given a bit budget p per single-precision floating point value, ZFPe simply encodes
the p most significant bits for each block-transformed integer value. Because each encoded
value represents a single value in the block, encoding and decoding can always process
one floating-point value per cycle, instead of waiting until all bit planes of the block are
processed. Since specifying a bit budget is part of the ZFPe algorithm, it only supports the
bit budget operation mode and does not support specifying error bounds.

While this approach is good for performance, it leaves some compression efficiency
on the table because it does not take advantage of the typically many leading zeros in the
most significant bits of the block-transformed values. To remedy this, ZFPe adds a one-bit
flag per value to specify whether the n most significant bits of the values contain a nonzero
bit. If a nonzero bit exists, ZFPe encodes p bits starting from the MSB. If a nonzero bit does
not exist, ZFPe encodes p bits starting from the n-th bit from the MSB, which has the effect
of encoding n more LSB bits within the same bit budget. Figure 1 shows this scheme being
applied to two numbers, using n = 4 and p = 5. As described earlier, the value of p is
chosen according to the bit budget requirements. The value of n is chosen by observing the
nonzero bit distribution of the target dataset. We chose a value of n = 4 after observing the
data distribution of many neural networks and scientific data distributions and discovered
a sharp drop-off in the number of values with more than 4 most significant zero bits.

0 1 0 1 0 0 1 1 0  …  0

0 0 0 0 1 1 0 1 1  …  0

n
p

1 11011

0 01010

“not shifted”

“shifted”

Figure 1. ZFPe encoding using n = 4 and p = 5.

Figure 2 compares the ZFPe scheme against the original ZFP approach, emphasizing
the difference between ZFP’s bit plane order and ZFPe’s value order encoding. Both
algorithms encode four 3-bit values in a 1D block, 110, 100, 011, and 010, shown in the
left side of the figure. The bits highlighted in yellow are header bits, and it is readily visible
that ZFPe uses much fewer headers.



Electronics 2022, 11, 858 7 of 18

1 1 0
1 0 0
0 1 1
0 1 0

10101 01

“0011”

11 111 0100

0110010000110010

“1101” “0100”

4 values
to encode

“not done” “done”

“not shifted”

1st bit plane of block

1st value of block

ZFP

ZFPe

Figure 2. ZFP and ZFPe encoding three-bit planes of four values.

Considering that each header represents a dependency for encoding and decoding,
we can expect the performance advantage of ZFPe. We note that the bit from the first value
becomes the LSB of each bit plane, and that is why the first bit plane is listed as 0011 instead
of 1100.

For completeness, Figure 2 also shows the full effects of ZFP, including the verbatim bit
emission mentioned in Section 3.1. For each bit plane, ZFP may emit some least significant
bits verbatim before applying group testing. The number of bits that are emitted verbatim in
the current bit plane is the number of non-zero bits in the previous bit plane. This is why ZFP
encodes the third bit plane, as well as the first two bits of the second bit plane, without headers.

Figure 2 also shows the headers in the encoded bit stream, but all headers are zeros
because p < n in this simple example.

One characteristic of both ZFP and ZFPe that we have so far omitted is that for each
block, the common exponent bit for all values must also be encoded. This is used to convert
floating-point representation to fixed-point representation and vice versa. For ZFP and
ZFPe, 9 bits are used to encode the exponent, as described in the original ZFP paper [18].
Since each encoded block invariably requires 9 bits to store the exponent before any data
are encoded, the usable bit budget per float value (p) is actually smaller than the parameter
value given by the user. For example, if the goal is to use 8 bits per float while using a 1D
algorithm, the actual p value is ((8× 4)− 9)/4 = 5.75. Since we cannot store bit fractions,
our accelerator actually assigns 6 bits for the first three values and 5 bits for the last value
to satisfy the bit budget.

4. Neural Network Accelerator Architecture

Figure 3 shows the overall architecture of the embedded neural network inference
accelerator we constructed to evaluate our compression approach. As our target neural
network models are too large to fit in the on-chip BRAM of low-power FPGAs, such as the
Lattice ECP5, the neural network model, output activations from the previous layer, and
the output of the current layer are all stored in off-chip memory, such as DRAM. All three
data types are stored in a compressed form using ZFPe. Data input to the accelerator is
decompressed on the fly using a pair of decompressors, and the output is compressed on
the fly using a compressor. In order to make the best use of memory bandwidth, we also
implement a burst memory arbiter between the compression cores and memory.

4.1. ZFPe Accelerator Architecture

To minimize on-chip resource utilization, our ZFPe design is a variant of the 1D
ZFP, operating in units of four single-precision floating-point values. Higher-dimensional
algorithms require more complex block transformation algorithms, which are not well
suited for embedded accelerators. Figure 4 shows the internal pipelined architecture of
our decompressor configured with a bit budget of 8 bits per float. The compression core is
designed in the exact same fashion but in reverse order.
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Off-Chip Memory

Decompressor

Neural Network
Accelerator

Decompressor Compressor

Previous Layer
Output

Model Weights
Current Layer

Output

FPGA

Figure 3. A diagram of overall architecture.

Decoder
Block 

Transform

9-bit exponent + 
4× 6-bit payloads 

(≈32 bits) 32-bit integer 32-bit float

Float
Converter

e e

Figure 4. A ZFPe decompressor can always emit one float value every cycle.

The decoder takes up to one fixed-size compressed block as input per cycle, and if
the compressed data rate is sufficient, it invariably emits one decompressed floating-point
value per cycle. Since it takes four cycles to emit four decompressed float values, on
average, the decompressor can ingest one compressed block per four cycles. As described
in Section 3.2, in order to achieve an effective 8 bits per float while also encoding 9 bits of
exponent per block, the first three values in the block are given a 6-bit budget, and the last
one is given 5 bits, adding up to 32 bits per four floats.

Because ZFPe encoding has no dependencies between the four values in a block, the
decoder can immediately serialize the encoded values to decode and emit one 32-bit value
per cycle. This approach requires much fewer on-chip resources, compared to working on
each bit-plane of all four values at once. The block transform layer must again collect all
four values in a parallel group because the block transform stage involves a pipeline of
convolution operations between pairs of values in the block, as illustrated in Figure 4, as a
network resembling sorting networks. After the block transform stage, results can again be
serialized for independent floating-point conversion.

4.2. Burst Memory Arbiter

Despite its name, the dynamic random access memory (DRAM) performance can
degrade significantly with fine-grained random access because of the multi-cycle overhead
of accessing a new row [62,63]. DRAM rows are multiple kilobytes in size, and the best
performance can only be achieved if most of the bits for every newly opened rows are
read and used. As a result, sequential access typically demonstrates higher performance
compared to random. This is an especially important feature for embedded systems, where
the memory may be under-provisioned and the efficient use of memory bandwidth is
crucial for performance.

To achieve high memory performance, we implement a burst memory arbiter between
the memory and the rest of the accelerator in order to take advantage of the sequential
access patterns of each input and output stream. Each memory read or write request
happens in 256-byte bursts, and burst reads are only issued whenever the on-chip read
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buffer has enough space to accommodate all 256 bytes. While the design of our arbiter is
not new, it is necessary to achieve optimal memory performance.

4.3. Neural Network Inference Accelerator

Our neural network inference accelerator is implemented over a configurable number
of processing elements (PEs), each with floating-point multiply–accumulator (MAC) units.
Each PE caches multiple working partial sums until each is completely calculated. Figure 5
shows the internal architecture of the accelerator, as well as the data movement to and from
data in off-chip memory. The accelerator effectively implements a matrix–matrix multiply
unit with intelligent caching, along with a selection of activation functions, such as ReLU.

psum

…

Model Weights
Previous Layer

Output

Current Layer
Output

psum psum psum

round-robinReplicated across PEs

Figure 5. Output stationary accelerator architecture for large models.

Each PE uses a local buffer of multiple ongoing partial sums (psum) implemented using
on-chip block RAM (BRAM), and each output is emitted, collected, and written to memory
once all of the multiply–accumulate operations are completed for each output. Activations
from the previous layer output are broadcast to all PEs over a chain of pipeline registers,
and model weights are distributed to each PE in a round-robin fashion. In order to hide the
high latency of floating-point MAC operations, each PE tries to have many operations in
flight by working on multiple partial sums at once. We achieve this by working on batches
of input, as well as multiple weight columns. To simplify memory access, input batches
store their values in an interleaved fashion such that the simple sequential read from
memory results in correct read ordering. The weight matrix is stored in a column-major
order for similar simplicity of memory access, with the bias value stored at the end of each
column. Figure 6 conceptually shows how our accelerator issues multiple MAC operations
in parallel, with example input and weight column batch sizes of two.

…

Input batch of 2 PE 0 working on
two columns at once

Four partial sums
processed in parallel

Figure 6. Output stationary accelerator architecture for large models.

4.4. Simplified Floating-Point Cores

Another part of our best effort to implement a performance-effective neural network
accelerator platform is the use of resource-efficient, simplified floating-point MAC units.
In the interest of saving resources, our MAC unit omits some of the special corner cases
supported by the IEEE-754 standard, such as NaN, Infinity, or subnormal number support,
instead of handling all of them as zeros. We also optimize the MAC unit to our target
platform of Lattice ECP5 FPGAs, which includes an 18 × 18 multiplier DSP block, by
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only supporting 18-bit fractions. During multiplication or addition, each 18-bit fraction
is expanded to 36 bits, computed, then truncated back to 18 bits. Our benchmarks show
that due to the loss in fractional precision already introduced by compression, these
simplifications do not have much impact on accuracy.

5. Evaluation

In this section, we present the evaluation of our ZFPe approach to neural network
acceleration first by comparing the raw compression efficiency against unmodified ZFP
and then evaluating the MobileNet inference accuracy compared to ZFP and post-training
quantization. We also present an accuracy and performance efficiency evaluation compared
to the state-of-the-art neural network compression accelerator DeepSZ [15] in Section 5.6.

5.1. Implementation Detail

We implement our ZFPe-augmented neural network accelerator on the ULX3S off-
the-shelf embedded acceleration prototyping board [64]. The ULX3S board is a realistic
prototyping environment for embedded acceleration, equipped with a low-power Lattice
ECP5-85F FPGA [37], as well as a 32 MB on-board SDRAM chip. We use the open-source
toolchain Yosys [65] to program the FPGA chip and collect resource utilization statistics.
Our neural network accelerator is able to fit eight PEs on the ECP5-85F chip along with two
decompressors, one compressor, and the Shell, which provides platform logic, including
the memory arbiter and host-side UART. All designs, including the DRAM controller, are
clocked at 100 MHz. Table 1 shows the detailed breakdown of on-chip resource utilization
collected by Yosys.

Table 1. On-chip resource utilization breakdown.

Module Slice (%) DP16KD MULT18X18D
BRAM (%) Multiplier (%)

1× PE 2.7 K (6%) 11 (5%) 1 (0.5%)
1× Decompressor 2.8 K (6%) 0 (0%) 0 (0%)
1× Compressor 3 K (7%) 0 (0%) 0 (0%)

Shell 2 K (5%) 3 (1%) 0 (0%)

Total 32 K (76%) 91 (43%) 8 (5%)

Our accelerator implementation has comparable levels of efficiency compared to state-
of-the-art FPGA implementations. The MAC pipeline consumes around 700 slices of each
PE, which is very similar to the well-optimized published implementations [66,67].

The single SDRAM chip is capable of reading 16 bits every five cycles in the best-case
scenario, which translates to 40 MB/s of best-case bandwidth. The performance can be
halved if the access pattern does not make efficient use of the row buffers.

5.2. ZFPe Compression Efficiency Evaluation

We first evaluate the error characteristics of ZFPe, compared to the original ZFP
algorithm [18,59]. At this point, we are not yet applying ZFPe to the neural network
inference, simply evaluating its efficiency on floating-point data. For this purpose, we
use five floating-point datasets, including three neural network weight matrices and two
scientific datasets from SDRBench (Scientific Data Reduction Benchmarks) [60,68]. For the
neural network weights, we extract weight matrices from Keras [69] pre-trained model for
ImageNet [20]. Details of each dataset are listed below:

• Fully connected layer no. 2 of VGG19 [70];
• Fully connected layer of Inception V3 [71];
• Fully connected layer of MobileNet V2 [13];
• Climate simulation dataset (CESM-ATM);
• Molecular dynamics simulation dataset (EXAALT).
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We obtain the average error values by three steps: compressing each dataset at first,
decompressing, and taking the mean of the error magnitude for all data points. Figure 7
shows the average error values, in terms of absolute value, of ZFPe and the original ZFP on
each bit budget usage per single-precision floating point value. Although the original ZFP
has a slightly lower error rate than ZFPe for lower bit budgets, the saturation points are
almost the same. In the VGG19 average error result, there is nearly no difference between
ZFPe and ZFP, and ZFPe even shows less loss at one bit budget per one float value in the
case of the EXAALR dataset.

Figure 7. ZFPe shows comparable error rates compared to original ZFP across scientific and neural
network datasets.

5.3. Neural Network Accuracy—Single Dense Layer

We first evaluate the accuracy impact of our ZFPe approach by evaluating its ac-
curacy impact on the dense layers of two realistic neural networks: VGG19 [70] and
MobileNetV2 [13]. We use the verification set from the popular ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVRC) 2017. Due to the capacity limitations of the on-board
SDRAM chip, we first only focus on the dense layers of the two models. We extract the
dense layers from the two models from the Keras 2.4.3 [69] pre-trained neural network
library. We also extract the input activations to these layers by running the two models
on the Imagenet dataset and extracting the inter-layer activation matrices. For ZFPe, we
evaluate the accuracy impact by loading the accelerator with all of the weight matrices and
streaming in the extracted input data in phases. For ZFP, we augment Keras to compress
and decompress the neural network models and the inter-layer activations, using a Python
binding for the 1D ZFP.

Figure 8 shows the top-5 and top-1 accuracy of ZFP and ZFPe-augmented neural
networks, with varying bit budgets per float. We see that ZFPe demonstrates similar
accuracy compared to the original ZFP. For top-5 accuracy, both algorithms demonstrate
less than 10% point loss of accuracy at 5 bits per float and no accuracy loss at 8 bits per
float and beyond. Top-1 accuracy suffers a slightly steeper degradation but still shows a
similar trend.

We note that the state-of-the-art lossy neural network compression accelerator DeepSZ [15]
achieves almost lossless accuracy at a much smaller bit budget but at a much higher chip
resource utilization. We present a more detailed comparison in Section 5.6.
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Figure 8. Top-5 and top-1 accuracy of the original and compressed VGG19 and MobileNetV2.

5.4. Neural Network Accuracy—Complete MobileNet V2

In order to determine whether our ZFPe approach can solve the accuracy problem
of post-training quantization of MobileNets, we evaluate our approach on the end-to-end
MobileNet V2 neural network. Weights for all layers are compressed using ZFPe, and
output activations from each depthwise separable convolution layer are compressed and
then decompressed using ZFPe before being read by the next layer. Due to the memory
capacity limitations of our hardware platform, we perform the end-to-end evaluations on a
software simulator and measure the impact on accuracy.

Figure 9 shows the accuracy impact of the conventional 8-bit post-training quantization
(INT8) and our ZFPe approach with 8-, 10-, and 12-bit budgets per float, compared to the
uncompressed model (Float). We present both the top-1 and top-5 accuracy results, as
they are the most commonly used accuracy metrics. We can see that ZFPe-8 achieves
significantly better accuracy compared to INT8, despite the same bit–width constraint for
both weights and activations. In fact, our approach shows no loss in accuracy at a bit budget
of 12 bits per float in both cases, demonstrating that our approach is a viable alternative for
the post-training quantization of MobileNets. We note that retraining can reclaim almost
full accuracy, even for MobileNets [46]. Our approach is targeted for the scenario where
retraining is not feasible due to security or other issues.
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Figure 9. Top-5 and top-1 accuracy on MobileNet V2.

The state-of-the-art DeepSZ [15] accelerator does not list a MobileNet evaluation, but
we present a projected performance efficiency comparison in Section 5.6.

5.5. Accelerator Performance Evaluation

Even if our approach can achieve high accuracy, it would not be very useful if the ZFPe
hardware implementation is not fast enough to keep the on-chip processing elements busy.
This is why even though the original ZFP algorithm and DeepSZ [15] demonstrates better
error bound characteristics, compared to ZFPe, the low performance per chip resource
characteristics prevent it from being useful in our target scenario.

Table 2 compares the performance of ZFPe against the two most prominent lossy
floating-point compression accelerators, ZFP [17] and GhostSZ [16]. Thanks to the low
resource utilization of ZFPe, it can achieve much better performance efficiency compared
to existing works. As Altera ALM and Lattice Slice are both structured around two 4-LUTs,
we believe the comparison of the direct numbers can provide a tolerable estimate.

This is a very important goal of ZFPe design, as resource-intensive algorithms simply
cannot be deployed on resource-constrained embedded FPGAs like the ones we target. The
difference in design is actually more pronounced than presented; ZFPe runs on the slower
100 MHz clock provided by our target embedded FPGA. The performance efficiency will
improve further on server-grade FPGAs used by the comparison systems.

When provided with a steady stream of compressed data, our ZFPe decompressor
is able to invariably emit one single-precision floating-point value per cycle. Similarly,
the compressor is able to invariably ingest one floating-point value per cycle. Since our
accelerator is clocked at 100 MHz, this translates to 400 MB/s of uncompressed throughput,
which is impressive, considering the mere ~3000 slice utilization per module.

Table 2. Performance efficiency comparison of compression accelerators.

Design Clock Speed Throughput Slice/ALM Efficiency
(MHz) (MB/s) (MB/s/KSlice)

ZFP [17] 200 4000 150 K 26.6
GhostSZ [16] 200 800 19 K 42.1
ZFPe (Ours) 100 400 3 K 133.3

We measure the performance impact of ZFPe during a single fully connected layer
evaluation using the second fully connected layer from VGG19, which has a 4096 × 4096
weight matrix and 4096 bias values. The accelerator is configured with a batch size of
64, and each PE is configured to process 16 weight columns in parallel, meaning each PE
concurrently works on the partial sums of 1024 output values. The batched operation
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results in high enough data reuse such that, coupled with compression, the bandwidth
requirement is kept at manageable levels.

Figure 10 compares the performance of a baseline accelerator and one augmented
with ZFPe configured with varying bit budgets per float. Performance is presented in
terms of PE utilization, measuring the percentage of cycles in which new MAC operations
are inserted into the MAC pipeline. Utilization of 100% means we are achieving the peak
performance attainable by the hardware. We see that performance increases proportionally
with smaller bit budgets, as we mitigate the memory bandwidth bottleneck using ZFPe. In
fact, we are able to completely saturate all of the MAC modules in all PEs with a bit budget
of 5 or less.
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Figure 10. Performance impact of ZFPe acceleration, with smaller bit budgets to the left.

We note that this evaluation uses an input batch size of 64, and while performance will
decrease if the input batch size needs to become smaller due to application requirements,
the relative performance benefits of ZFPe will stay the same. This is because memory reuse
decreases with smaller input batches, moving the performance bottleneck back to the slow
memory bandwidth. On the other hand, we can achieve higher performance with smaller
batch sizes by using faster off-chip memory, and ZFPe will still be able to support the
higher bandwidth. As we noted in Section 5.2, each decompressor is capable of supporting
400 MB/s of decompressed bandwidth, or 100 MB/s of raw memory bandwidth—adding
up to 100 MB/s of memory bandwidth between two decompressors—leaving room to take
advantage of potentially faster memory bandwidth. Memory writes are not likely to be a
performance bottleneck since the output rate of output-stationary memory re-use is very
low compared to the reads. If the memory bandwidth becomes too high for a single ZFPe
accelerator, we can also instantiate more compressors and decompressors for groups of PEs
to parallelize the ZFPe algorithm between multiple datapaths.

5.6. Comparison against State of the Art

We compare our evaluations against DeepSZ [15], the best existing accelerator with
lossy floating-point compression to neural network inference. To the best of our knowledge,
no other existing neural network inference accelerator exists which uses FPGA implemen-
tations of lossy floating-point compression algorithms for model or activation compression.
DeepSZ does not present accuracy evaluations on MobileNet, so we compare the two
systems assuming similar accuracy compared to the presented models. The DeepSZ paper
also does not present an accelerator design or throughput evaluations, so we assume the
performance efficiency of GhostSZ [16], the best-published FPGA implementation of SZ.

In terms of compression efficiency, DeepSZ demonstrates superior ratios compared
to ZFPe. DeepSZ regularly achieves 50× compression without significant accuracy loss,
while ZFPe only achieves lossless accuracy with less than 4× compression.
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However, ZFPe is a more promising approach to removing the memory bottleneck
from embedded accelerators, due to the significantly fewer resource requirements. For
example, the low-power Lattice ECP5 chip has only 85,000 slices, which is already relatively
larger compared to even lower power FPGAs, such as the Lattice iCE 40 or the Microsemi
IGLOO2. Installing three GhostSZ modules, each consuming almost 20,000 slices, would
leave a very small amount of resources for the actual inference accelerator. Furthermore,
even though the compression efficiency of ZFPe is lower than DeepSZ, it is still sufficient
to remove the bandwidth bottleneck of our edge accelerator hardware platform. While
installing a faster memory on the platform may change the comparison, it is not likely to
cause a significant difference, as the memory bandwidth on embedded devices is also often
limited by power budgets.

5.7. Power-Performance Evaluation

We measure the projected power consumption of our accelerator using the Lattice Dia-
mond power estimator [72], which gives an estimated 330 mW of power consumption. With
8 PEs running at 100 MHz, our accelerator achieves a peak performance of 800 MFLOPS,
resulting in a power performance of 2.4 GFLOPS/Watt. This power efficiency is compara-
ble to prior work on optimizing neural network accelerators for floating-point operations
on FPGAs [73], which gives us confidence that we have evaluated our approaches on
reasonable hardware and accelerator implementations.

6. Conclusions

In this work, we present an alternative approach to post-training quantization of
neural networks, using a variant of the ZFP error-bounded lossy floating-point algorithm
optimized for embedded accelerators. We demonstrate that our compression algorithm,
ZFPe, is able to achieve superior performance per chip resource usage compared to existing
work without causing significant accuracy degradation of inference, making it possible
to deploy accurate inference acceleration on resource-constrained embedded FPGAs. Not
only can our ZFPe-augmented FPGA accelerator achieve competitive power performance
compared to existing work, but it can also achieve almost no accuracy loss on the MobileNet
V2 image recognition network, while removing the bandwidth bottleneck of off-chip
memory. This is a significant achievement considering that MobileNets famously suffer
unacceptably sharp accuracy degradation with post-training quantization, requiring re-
training or other methods to reclaim accuracy.

While our approach needs to bear the relatively high resource overhead of floating-
point operations compared to fixed-point ones, we think many systems may still benefit
from the memory performance benefits and high accuracy.

We plan to explore the efficacy of this approach to other neural network classes that
have reported accuracy degradation with post-training quantization, including recurrent
neural networks such as LSTMs. We are also exploring methods of computing MAC
operations on compressed data directly, which can potentially remove the floating-point
operation requirements.
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