Low-Noise Amplifier for Deep-Brain Stimulation (DBS)
Abstract
:1. Introduction
2. Design
- (1)
- Transpose the transistor noise current sources to the Vout node;
- (2)
- Find the transfer functions between a current source Iout applied to the output and Vout;
- (3)
- Find PSD of the noise at Vout;
- (4)
- Find the input referred noise.
3. Implementation and Simulations
3.1. Layout Issues
3.2. Low-Noise Amplifier (LNA) Simulations
4. Experimental
4.1. Instruments and Setup
4.2. Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Deduction of the Transfer Function of the LNA
References
- Holleman, J.; Zhang, F.; Otis, B. Ultra Low-Power Integrated Circuit Design for Wireless Neural Interfaces, 1st ed.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Wolpawa, J.R.; Birbaumerc, N.; McFarlanda, D.J.; Pfurtschellere, G.; Vaughan, T.M. Brain–computer interfaces for communication and control. Clin. Neurophysiol. 2022, 113, 767–791. [Google Scholar] [CrossRef]
- Nagel, H. Biopotential Amplifiers. In The Biomedical Engineering Handbook, 2nd ed.; Bronzino, E.J.D., Ed.; CRC Press LLC.: Boca Raton, FL, USA, 2000. [Google Scholar]
- Simmich, S.; Bahr, A.; Rieger, R. Noise Efficient Integrated Amplifier Designs for Biomedical Applications. Electronics 2021, 10, 1522. [Google Scholar] [CrossRef]
- Castro-García, J.A.; Molina-Cantero, A.J.; Gómez-González, I.M.; Lafuente-Arroyo, S.; Merino-Monge, M. Towards Human Stress and Activity Recognition: A Review and a First Approach Based on Low-Cost Wearables. Electronics 2022, 11, 155. [Google Scholar] [CrossRef]
- Ali, H.; Naing, H.H.; Yaqub, R. An IoT Assisted Real-Time High CMRR Wireless Ambulatory ECG Monitoring System with Arrhythmia Detection. Electronics 2021, 10, 1871. [Google Scholar] [CrossRef]
- Taalla, R.V.; Arefin, S.; Kaynak, A.; Kouzani, A.Z. A review on miniaturizes ultrasonic wireless power transfer to implantable medical devices. IEEE Access 2018, 7, 2092–2106. [Google Scholar] [CrossRef]
- Ballo, A.; Bottaro, M.; Grasso, A.D. A review of power management integarted circuits for ultrasound-based energy harvesting in implantable medical devices. Appl. Sci. 2021, 11, 2487. [Google Scholar] [CrossRef]
- Chen, Q.; Kastratovic, S.; Eid, M.; Ha, S. A Non-Contact Compact Portable ECG Monitoring System. Electronics 2021, 10, 2279. [Google Scholar] [CrossRef]
- Fernandes, M.; Correia, J.; Mendes, P. Electro-optic acquisition system for ECG wearable sensor applications. Sens. Actuators A Phys. 2013, 203, 316–323. [Google Scholar] [CrossRef]
- Chebli, R.; Ali, M.; Sawan, M. High-CMRR Low-Noise Fully Integrated Front-End for EEG Acquisition Systems. Electronics 2019, 8, 1157. [Google Scholar] [CrossRef] [Green Version]
- Dias, N.S.; Carmo, J.P.; Mendes, P.M.; Correia, J.H. Wireless instrumentation system based on dry electrodes for acquiring EEG signals. Med. Eng. Phys. 2012, 43, 972–981. [Google Scholar] [CrossRef] [PubMed]
- Pinho, F.; Cerqueira, J.; Correia, J.H.; Sousa, N.; Dias, N.S. MyBrain: A novel EEG embedded system for epilepsy monitoring. J. Med. Eng. Technol. 2017, 41, 564–585. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Canales, A.; Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2017, 2, 16093. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.J.; Steinmetz, N.A.; Siegle, J.H.; Denman, D.J.; Bauza, M.; Barbarits, B.; Lee, A.K.; Anastassiou, C.A.; Andrei, A.; Aydın, Ç.; et al. Fully Integrated Silicon Probes for High-Density Recording of Neural Activity. Nature 2017, 551, 7679. [Google Scholar] [CrossRef] [Green Version]
- Marblestone, A.H.; Zamft, B.M.; Maguire, Y.G.; Shapiro, M.G.; Cybulski, T.R.; Glaser, J.I.; Eamodei, D.; Estranges, P.B.; Ekalhor, R.; Dalrymple, D.A.; et al. Physical principles for scalable neural recording. Front. Comput. Neurosci. 2013, 7, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyden, E.S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 2005, 8, 1263–1268. [Google Scholar] [CrossRef]
- Deisseroth, K. Optogenetics. Nat. Methods 2011, 8, 26–29. [Google Scholar] [CrossRef]
- Deisseroth, K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat. Neurosci. 2015, 18, 1213–1225. [Google Scholar] [CrossRef] [Green Version]
- Park, S.I.; Brenner, D.S.; Shin, G.; Morgan, C.D.; Copits, B.A.; Chung, H.U.; Pullen, M.Y.; Noh, K.N.; Davidson, S.; Oh, S.J.; et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 2015, 33, 1280–1288. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Castro, D.C.; Han, Y.; Wu, Y.; Guo, H.; Weng, Z.; Xue, Y.; Ausra, J.; Wang, X.; Li, R.; et al. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc. Natl. Acad. Sci. USA 2019, 116, 21427–21437. [Google Scholar] [CrossRef]
- Engelene, M.; Obien, J.; Deligkaris, K.; Bullmann, T.; Bakkum, D.J.; Frey, U. Revealing neuronal function through microelectrode array recordings. Front. Neurosci. 2015, 8, 1–30. [Google Scholar]
- Sui, Y.; Tian, Y.; Ko, W.K.D.; Wang, Z.; Jia, F.; Horn, A.; de Ridder, D.; Choi, K.S.; Bari, A.A.; Wang, S.; et al. Deep brain stimulation initiative: Toward innovative technology, new disease indications, and approaches to current and future clinical challenges in neuromodulation therapy. Front. Neurol. 2021, 11, 59745. [Google Scholar] [CrossRef]
- Hickey, P.; Stacy, M. Deep Brain Stimulation: A Paradigm Shifting Approach to Treat Parkinson’s Disease. Front. Neurosci. 2016, 10, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appleby, B.S.; Duggan, P.S.; Regenberg, A.; Rabins, P.V. Psychiatric and neuropsychiatric adverse events associated with deep brain stimulation: A meta-analysis of ten years’ experience. Mov. Disord. 2007, 22, 1722–1728. [Google Scholar] [CrossRef] [PubMed]
- Sterman, J.; Cunqueiro, A.; Dym, R.J.; Spektor, M.; Lipton, M.L.; Revzin, M.V.; Scheinfeld, M.H. Implantable Electronic Stimulation Devices from Head to Sacrum: Imaging Features and Functions. RadioGraphics 2019, 39, 1056–1074. [Google Scholar] [CrossRef]
- Medtronic DBS Therapy for Parkinson’s Disease, Medtronic Inc., Catalog UC201607188bEE. 2020. Available online: https://asiapac.medtronic.com/content/dam/medtronic-com/uk-en/patients/documents/parkinsons-disease/pd-brochure-uc201607188ee.pdf?bypassIM=truelead (accessed on 5 March 2022).
- VerciseTM DVBS Leads: Directions for Use, Boston Scientific Corporation, Catalog 91172963-02 REV A 2017-02. 2017. Available online: https://www.bostonscientific.com/content/dam/Manuals/eu/current-rev-da/91172963-02_Vercise%E2%84%A2_DBS_Leads_DFU_multi-OUS_s.pdf (accessed on 1 December 2021).
- Hoang, K.B.; Cassar, I.R.; Grill, W.M.; Turner, D.A. Biomarkers and Stimulation Algorithms for Adaptive Brain Stimulation. Front. Neurosci. 2017, 11, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Fins, J.J. Chapter 9: Deep Brain Stimulation: Ethical Issues in Clinical Practice and Neurosurgical Research. In Neuromodulation; Academic Press: Cambridge, MA, USA, 2009; pp. 81–91. [Google Scholar]
- Kringelbach, M.L.; Jenkinson, N.; Owen, S.L.F.; Aziz, T.Z. Translational principles of deep brain stimulation. Nat. Rev. Neurosci. 2007, 8, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Owen, S.L.; Green, A.L.; Stein, J.; Aziz, T.Z. Deep brain stimulation for the alleviation of post-stroke neuropathic pain. Pain 2006, 120, 202–206. [Google Scholar] [CrossRef]
- Marchand, S.; Kupers, R.; Bushnell, C.M.; Duncan, G.H. Analgesic and placebo effects of thalamic stimulation. Pain 2003, 105, 481–488. [Google Scholar] [CrossRef]
- Bittar, R.G.; Burn, S.C.; Bain, P.G.; Owen, S.L.; Joint, C.; Shlugman, D.; Aziz, T.Z. Deep brain stimulation for movement disorders and pain. J. Clin. Neurosci. 2005, 12, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Cury, R.; Galhardoni, R.; Fonoff, E.T.; Lloret, S.P.; Ghilardi, M.D.S.; Barbosa, E.R.; Teixeira, M.; De Andrade, D.C. Sensory abnormalities and pain in Parkinson disease and its modulation by treatment of motor symptoms. Eur. J. Pain 2015, 20, 151–165. [Google Scholar] [CrossRef] [Green Version]
- Rehncrona, S.; Johnels, B.; Widner, H.; Törnqvist, A.-L.; Hariz, M.; Sydow, O. Long-term efficacy of thalamic deep brain stimulation for tremor: Double-blind assessments. Mov. Disord. 2003, 18, 163–170. [Google Scholar] [CrossRef]
- Ghilardi, M.G.D.S.; Ibarra, M.; Alho, E.J.; Reis, P.R.; Contreras, W.O.L.; Hamani, C.; Fonoff, E.T. Double-target DBS for essential tremor: 8-contact lead for cZI and Vim aligned in the same trajectory. Neurology 2018, 90, 476–478. [Google Scholar] [CrossRef]
- Fonoff, E.T.; Ghilardi, M.G.d.S.; Cury, R.G. Neurocirurgia funcional para o Clínico: Estimulação Cerebral Profunda em Doença de Parkinson, Distonia e Outros Distúrbios do movimento. In Condutas em Neurologia, 11th ed.; Nitrini, R., Ed.; Manole Editora: Barueri, Brazil, 2016; pp. 53–67. (In Portuguese) [Google Scholar]
- Vidailhet, M.; Vercueil, L.; Houeto, J.-L.; Krystkowiak, P.; Benabid, A.-L.; Cornu, P.; Lagrange, C.; Montcel, S.T.d.; Dormont, D.; Grand, S.; et al. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N. Engl. J. Med. 2005, 352, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Franco, R.; Fonoff, E.T.; Alvarenga, P.; Lopes, A.C.; Miguel, E.C.; Teixeira, M.J.; Damiani, D.; Hamani, C. DBS for Obesity. Brain Sci. 2016, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Almeida, L.; Martinez-Ramirez, D.; Rossi, P.J.; Peng, Z.; Gunduz, A.; Okun, M.S. Chasing ticks in the human brain: Development of open, scheduled and closed loop responsive approaches to deep brain stimulation for tourette syndrome. J. Clin. Neurol. 2015, 11, 122–131. [Google Scholar] [CrossRef] [Green Version]
- Herron, J.A.; Thompson, M.C.; Brown, T.; Chizeck, H.J.; Ojemann, J.G.; Ko, A.L. Chronic electrocorticography for sensing movement intention and closed-loop deep brain stimulation with wearable sensors in an essential tremor patient. J. Neurosurg. 2017, 127, 580–587. [Google Scholar] [CrossRef] [Green Version]
- Parastarfeizabadi, M.; Kouzani, A.Z. Advances in closed-loop deep brain stimulation devices. J. Neuroeng. Rehabil. 2017, 14, 79. [Google Scholar] [CrossRef] [Green Version]
- Ballo, A.; Pennisi, S.; Scotti, G. 0.5 V CMOS Inverter-Based Transconductance Amplifier with Quiescent Current Control. J. Low Power Electron. Appl. 2021, 11, 37. [Google Scholar] [CrossRef]
- Ballo, A.; Grasso, A.D.; Pennis, S. Active load with cross-coupled bulk fo high-gain high-CMRR nanometer CMOS differential stages. Int. J. Circuit Theory Appl. 2019, 47, 1700–1704. [Google Scholar] [CrossRef]
- Harrison, R.R.; Charles, C. A low-power low-noise cmos for amplifier neural recording applications. IEEE J. Solid-State Circuits 2003, 38, 958–965. [Google Scholar] [CrossRef]
- Wattanapanitch, W.; Fee, M.; Sarpeshkar, R. An Energy-Efficient Micropower Neural Recording Amplifier. IEEE Trans. Biomed. Circuits Syst. 2007, 1, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Biederman, W.; Yeager, D.J.; Narevsky, N.; Koralek, A.C.; Carmena, J.M.; Alon, E.; Rabaey, J.M. A Fully-Integrated, Miniaturized (0.125 mm2) 10.5 μW Wireless Neural Sensor. IEEE J. Solid-State Circuits 2013, 48, 960–970. [Google Scholar] [CrossRef]
- Gosselin, B.; Ayoub, A.E.; Roy, J.-F.; Sawan, M.; Lepore, F.; Chaudhuri, A.; Guitton, D. A Mixed-Signal Multichip Neural Recording Interface with Bandwidth Reduction. IEEE Trans. Biomed. Circuits Syst. 2009, 3, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Holleman, J.; Otis, B.P. Design of Ultra-Low Power Biopotential Amplifier for Biossignal Acquisition Application. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 244–355. [Google Scholar]
- Kwak, J.Y.; Park, S.-Y. Compact Continuous Time Common-Mode Feedback Circuit for Low-Power, Area-Constrained Neural Recording Amplifiers. Electronics 2021, 10, 145. [Google Scholar] [CrossRef]
- Tasneem, N.T.; Mahbub, I. A 2.53 NEF 8-bit 10 kS/s 0.5 μm CMOS Neural Recording Read-Out Circuit with High Linearity for Neuromodulation Implants. Electronics 2021, 10, 590. [Google Scholar] [CrossRef]
- Kim, H.-J.; Park, Y.; Eom, K.; Park, S.-Y. An Area- and Energy-Efficient 16-Channel, AC-Coupled Neural Recording Analog Frontend for High-Density Multichannel Neural Recordings. Electronics 2021, 10, 1972. [Google Scholar] [CrossRef]
- Ker, M.-D. ESD implantations for on-chip ESD protection with layout consideration in 0.18-µm salicided CMOS technology. IEEE Trans. Semicond. Manuf. 2005, 18, 328–337. [Google Scholar] [CrossRef]
- Baker, R.J. CMOS, Circuit Design, Layout, and Simulation, 3rd ed.; Wiley-IEEE Press: Hoboken, NJ, USA, 2010. [Google Scholar]
- Sharma, A.K.; Madhusudan, M.; Burns, S.M.; Mukherjee, P.; Yaldiz, S.; Harjani, R.; Sapatnekar, S.S. Common-Centroid Layouts for Analog Circuits: Advantages and Limitations. In Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 1–5 February 2021; pp. 124–1229. [Google Scholar]
- Steyaert, M.S.; Sansen, W.M. A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J. Solid-State Circuits 1987, 22, 1163–1168. [Google Scholar] [CrossRef]
MOSFET | Total (W/L) | Multiplier (Parallel MOSFETs) | Fingers/Multiplier |
---|---|---|---|
M1a, M1b | 13.4 μm/20 μm | 2 | 1 |
M2a, M2b | 20.6 μm/0.28 μm | 2 | 1 |
M3a, M3b | 15.4 μm/0.28 μm | 2 | 1 |
M4a, M4b, M4c, M4d | 10 μm/20 μm | 2 | 1 |
M5a, M5b | 463 μm/0.51 μm | 2 | 50 |
M6, M7 | 2.3 μm/5.1 μm | 1 | 1 |
Pseudo-resistors Mp1 to Mp6 | 1 μm/1 μm | 1 | 1 |
Ref. | CMOS Process | Mid-Band Gain [dB] | Bandwidth [kHz] | Voltage [V] | Power [μW] | Area [mm2] | IRN [μVRMS] | FOM (e.g., the NEF) |
---|---|---|---|---|---|---|---|---|
This work | 0.18 μm | 38.6 | 2.3 | 1.8 | 2.8 | 0.035 | 6.2 | 6.19 |
[1] | 0.13μm | 40.5 | 8.1 | 1 | 12.5 | 0.047 | 3.1 | 4.4 |
[44] | 28 nm | 51.3 | 3 | 0.5 | 0.9 | N/A | 6.85 | 3.40 |
[45] | 65 nm | 47.48 | 3 | 0.75 | 6 | N/A | 1.40 | 2.78 |
[46] | 1.5 μm | 39.5 | 7.2 | ±2.5 | 80 | 0.16 | 2.2 | 3.80 |
[47] | 0.5 μm | 40.85 | 5.32 | 2.8 | 7.5 | 0.16 | 1.66 | 3.21 |
[48] | 65 nm | 15 | 10 | 0.5 | 1.1 | 0.004 | 6.5 | 3.71 |
[49] | 0.18 μm | 50 | 9.2 | 1.2 | 8.6 | 0.05 | 5.6 | 4.90 |
[50] | 0.13 μm | 40 | 10.5 | 1 | 12.1 | 0.072 | 3.2 | 2.90 |
[51] | 0.18 μm | 40 | 7.5 | 1.2 | 4.8 | 0.022 | 3.87 | 3.44 |
[52] | 0.5 μm | 49.26 | 12.9 | 3.3 | 26 | 0.014 | 3.16 | 2.53 |
[53] | 0.18 μm | 40 | 7.4 | 1 | 3.44 | 0.012 | 4.27 | 3.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nordi, T.M.; Gounella, R.H.; Luppe, M.; Junior, J.N.S.; Fonoff, E.T.; Colombari, E.; Romero, M.A.; Carmo, J.P.P.d. Low-Noise Amplifier for Deep-Brain Stimulation (DBS). Electronics 2022, 11, 939. https://doi.org/10.3390/electronics11060939
Nordi TM, Gounella RH, Luppe M, Junior JNS, Fonoff ET, Colombari E, Romero MA, Carmo JPPd. Low-Noise Amplifier for Deep-Brain Stimulation (DBS). Electronics. 2022; 11(6):939. https://doi.org/10.3390/electronics11060939
Chicago/Turabian StyleNordi, Tiago Matheus, Rodrigo Henrique Gounella, Maximiliam Luppe, João Navarro Soares Junior, Erich Talamoni Fonoff, Eduardo Colombari, Murilo Araujo Romero, and João Paulo Pereira do Carmo. 2022. "Low-Noise Amplifier for Deep-Brain Stimulation (DBS)" Electronics 11, no. 6: 939. https://doi.org/10.3390/electronics11060939
APA StyleNordi, T. M., Gounella, R. H., Luppe, M., Junior, J. N. S., Fonoff, E. T., Colombari, E., Romero, M. A., & Carmo, J. P. P. d. (2022). Low-Noise Amplifier for Deep-Brain Stimulation (DBS). Electronics, 11(6), 939. https://doi.org/10.3390/electronics11060939