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Abstract: In this study, we propose a simple and effective preprocessing method for subword
segmentation based on a data compression algorithm. Compression-based subword segmentation
has recently attracted significant attention as a preprocessing method for training data in neural
machine translation. Among them, BPE/BPE-dropout is one of the fastest and most effective methods
compared to conventional approaches; however, compression-based approaches have a drawback
in that generating multiple segmentations is difficult due to the determinism. To overcome this
difficulty, we focus on a stochastic string algorithm, called locally consistent parsing (LCP), that has
been applied to achieve optimum compression. Employing the stochastic parsing mechanism of LCP,
we propose LCP-dropout for multiple subword segmentation that improves BPE/BPE-dropout, and
we show that it outperforms various baselines in learning from especially small training data.

Keywords: byte-pair encoding; locally consistent parsing; vocabulary; word embedding

1. Introduction
1.1. Motivation

Subword segmentation has been established as a standard preprocessing method
in neural machine translation (NMT) [1,2]. In particular, byte-pair encoding (BPE)/BPE-
dropout [3,4] is the most successful compression-based subword segmentation. We propose
another compression-based algorithm, denoted by LCP-dropout, that generates multiple
subword segmentations for the same input; thus, enabling data augmentation especially
for small training data.

In NMT, a set of training data is given to the learning algorithm, where training
data are pairs of sentences from the source and target languages. The learning algorithm
first transforms each given sentence into a sequence of tokens. In many cases, the tokens
correspond to words in the unigram language model.

The extracted words are projected from a high-dimensional space consisting of all
words to a low-dimensional vector space by word embedding [5], which enables us to easily
handle distances and relationships between words and phrases. The word embedding has
been shown to boost the performance of various tasks [6,7] in natural language processing.
The space of word embedding is defined by a dictionary constructed from the training data,
where each component of the dictionary is called vocabulary. Embedding a word means
representing it by a set of related vocabularies.

Constructing an appropriate dictionary is one of the most important tasks in this study.
Here, consider the simplest strategy that uses the words themselves in the training data as
the vocabularies. If a word does not exist in the current dictionary, it is called an unknown
word, and the algorithm decides whether or not to register it in the dictionary. Using a
sufficiently large dictionary can reduce the number of unknown words as much as desired;
however, as a trade-off, overtraining is likely to occur, so the number of vocabularies is
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usually limited to 16k and 32k. As a result, subword segmentation has been widely used to
construct a small dictionary with high generalization performance [8–12].

1.2. Related Works

Subword segmentation is a recursive decomposition of a word into substrings. For
example, let the word ‘study’ be registered as a current vocabulary. By embedding other
words ’studied’ and ’studying’, we can learn that these three words are similar; however,
each time a new word appears, the number of vocabularies grows monotonically.

On the other hand, when we focus on the common substrings of these words, we can
obtain a decomposition, such as ‘stud_y’, ‘stud_ied’, and ‘stud_ying’ with the explicit blank
symbol ‘_’; therefore, the idea of subword segmentation is not to register the word itself as
a vocabulary but to register its subwords. In this case, ‘study’ and ‘studied’ are regarded as
known words because they can be represented by combining subwords already registered.
These subwords can also be reused as parts of other words (e.g., student and studied),
which can suppress the growth of vocabulary size.

In the last decade, various approaches have been proposed along this line. Sentence-
Piece [13] is a pioneering study based on likelihood estimation over the unigram language
model, which has high performance. Since maximum likelihood estimation requires
quadratic time in the size of training data and the length of the longest subword, a simpler
subword segmentation [3] based on BPE [14,15], which is known as one of fastest data
compression algorithms, and therefore has many applications, especially in information
retrieval [16,17] has been proposed.

BPE-based segmentation starts from a state where a sentence is regarded as a sequence
of vocabularies where the set of vocabularies is initially identical to the set of alphabet
symbols (e.g., ASCII characters). BPE calculates the frequency of any bigram, merges all
occurrences of the most frequent bigram, and registers the bigram as a new vocabulary.
This process is repeated until the number of vocabularies reaches the limit. Thanks to the
simplicity of the frequency-based subword segmentation, BPE runs in linear time in the
size of input string.

However, frequency-based approaches may generate inconsistent subwords for the
same substring occurrences. For example, ‘impossible’ and its substring ‘possible’ are pos-
sibly decomposed into undesirable subwords, such as ‘po_ss_ib_le’ and ‘i_mp_os_si_bl_e’,
depending on the frequency of bigrams. Such merging disagreements can also be caused by
misspellings of words or grammatical errors. BPE-dropout [4] proposed a robust subword
segmentation for this problem by ignoring each merge with a certain probability. It has
been confirmed that BPE-dropout can be trained with higher accuracy than the original
BPE and SentencePiece on various languages.

1.3. Our Contribution

We propose LCP-dropout: a novel compression-based subword segmentation employ-
ing the stochastic compression algorithm, called locally consistent parsing (LCP) [18,19],
to improve the shortcomings of BPE. Here, we describe an outline of the original LCP.
Suppose we are given an input string and a set of vocabularies, where similarly to BPE, the
set of vocabularies is initially identical to the set of symbols appearing in the string. LCP
randomly assigns the binary label for each vocabulary. Then, we obtain a binary string
corresponding to the input string where the bigram ‘10’ works as a landmark. LCP merges
any bigram in the input string corresponding to a landmark in the binary string, and adds
the bigram to the set of vocabularies. The above process is repeated until the number of
vocabularies reaches the limit.

By this random assignment, it is expected that any sufficiently long substring contains
a landmark. Furthermore, we note that two different landmarks never overlap each
other; therefore, LCP can merge bigrams appropriately, avoiding the undesirable subword
segmentation that occurs in BPE. Using these characteristics, LCP has been theoretically
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shown to achieve almost optimal compression [19]. The mechanism of LCP has also been
mainly applied to information retrieval [18,20,21].

A notable feature of the stochastic algorithm is that LCP assigns a new label to each
vocabulary for each execution. Owing to this randomness, the LCP-based subword segmen-
tation is expected to generate different subword sequences representing a same input; thus,
it is more robust than BPE/BPE-dropout. Moreover, these multiple subword sequences can
be considered as data augmentation for small training data in NMT.

LCP-dropout consists of two strategies: landmark by random labeling for all vocabu-
laries and dropout of merging bigrams depending on the rank in the frequency table. Our
algorithm requires no segmentation training in addition to counting by BPE and labeling
by LCP and uses standard BPE/LCP in test time; therefore, our algorithm is simple. With
various language corpora including small datasets, we show that LCP-dropout outperforms
the baseline algorithms: BPE/BPE-dropout/SentencePiece.

2. Background

We use the following notations throughout this paper. Let A be the set of alphabet
symbols, including the blank symbol. A sequence S formed by symbols is called a string.
S[i] and S[i, j] are i-th symbol and substring from S[i] to S[j] of S, respectively. We assume
the meta symbol ‘−’ not in A to explicitly represent each subwords in S. For a string S
from A∪ {−}, a maximal substring of S including no − is called a subword. For example,
S = a− b− a− a− b/a− b− a− ab contains the subwords in {a, b}/{a, b, ab}, respectively.

In subword segmentation, the algorithm decomposes all the symbols in S by the meta
symbol. When a trigram a− b is merged, the meta symbol is erased and the new subword
ab is added to the vocabulary, i.e., ab is treated as a single vocabulary.

In the following, we describe previously proposed subword segmentation algo-
rithms, called SentencePiece (Kudo [13]), BPE (Sennrich et al. [3]), and BPE-dropout
(Provilkov et al. [4]). We assume that our task in NMT is to predict a target sentence T given
a source sentence S, where these methods including our approach are not task-specific.

2.1. SentencePiece

SentencePiece [13] can generate different segmentations for each execution. Here,
we outline SentencePiece in the unigram language model. Given a set of vocabularies,
V, a sentence T, and the probability p(x) of occurrence of x ∈ V, the probability of the
partition x = (x1, . . . , xn) for T = x1 · · · xn is represented as P(x) = Πn

i=1 p(xi), xi ∈ V,
where Σx∈V p(x) = 1. The optimum partition x∗ for T is obtained by searching for the x
that maximizes P(x) from all candidate partitions x ∈ S(T).

Given a set of sentences, D, as training data for a language, the subword segmentation
for D can be obtained through the maximum likelihood estimation of the following L with
P(x) as a hidden variable by using EM algorithm, where X(s) is the s-th sentence in D.

L =
|D|

∑
s=1

log P(X(s)) =
|D|

∑
s=1

log

 ∑
x∈S(X(s))

P(x)


SentencePiece was shown to achieve significant improvements over the method based

on subword sequences; however, this method is rather complicated because it requires a
unigram language model to predict the probability of subword occurrence, EM algorithm
to optimize the lexicon, and Viterbi algorithm to create segmentation samples.

2.2. BPE and BPE-Dropout

BPE [14] is one of practical implementations of Re-pair [15], which is known as the
algorithm with the highest compression ratio. Re-pair counts the frequency of occurrence
of all bigrams xy in the input string T. For the most frequent xy, it replaces all occurrences
of xy in T such that T[i, i + 1] = xy, with some unused character z. This process is repeated
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until there are no more frequent bigrams in T. The compressed T can be recursively
decoded by the stored substitution rules z→ xy.

Since the naive implementation of Re-pair requires O(|T|2) time, we use a complex
data structure to achieve linear time; however, it is not practical for large-scale data because
it consumes Ω(|T|) of space. As a result, we usually split T = t1t2 · · · tm into substrings of
a constant length and process each ti by the naive Re-pair without special data structure,
called BPE. Naturally, there is a trade-off between the size of the split and the compression
ratio. BPE-based subword segmentation [3] (called BPE simply) determines the priority of
bigrams according to their frequency and adds the merged bigrams as the vocabularies.

Since BPE is a deterministic algorithm, it splits a given T in one way. Thus, it is not
easy to generate multiple partitions such as the stochastic approach (e.g., [13]). As a result,
BPE-dropout [4], ignoring the merging process with a certain probability, was proposed. In
BPE-dropout, for the current T and the most frequent xy, for each occurrence i satisfying
T[i, i + 1] = xy, merging xy is dropped with a certain small probability p (e.g., p = 0.1).
This mechanism makes BPE-dropout probabilistic and generates a variety of splits. BPE-
dropout has been recorded to outperform SentencePiece in various languages. Additionally,
BPE-based methods are faster and easier to implement than likelihood-based approaches.

2.3. LCP

Frequency-based compression algorithms (e.g., [14,15]) are known to be not optimum
from a theoretical point of view. Optimum compression here means a polynomial-time
algorithm that satisfies |A(T)| = O(|A∗(T)| · log |T|) with the output A(T) of the algorithm
for the input T and an optimum solution A∗(T). Note that computing A∗(T) is NP-
hard [22].

For example, consider a string T = · · · abcdefg · · · bcdefg · · · . Assuming the rank
of these frequencies: f req(ab) > f req(bc) > f req(cd) > · · · , merging for T is possi-
bly T = · · · (ab)(cd)(ef)(g · · · (bc)(de)(fg) · · · ; however, the desirable merging would be
T = · · · a(bc)(de)(fg) · · · (bc)(de)(fg) · · · considering the similarity of these substrings.

Since such pathological merging cannot be prevented by frequency information alone,
frequency-based algorithms cannot obtain asymptotically optimum compression [23]. Vari-
ous linear time and optimal compressions have been proposed to improve this drawback.
LCP is one of the simplest optimum compression algorithms. The original LCP, similar to
Re-pair, is a deterministic algorithm. Recently, the introduction of probability into LCP [19]
has been proposed, and in this study, we focus on the probabilistic variant. The following
is a brief description of the probabilistic LCP.

We are given an input string T = a1a2 · · · an of length n and a set of vocabularies, V.
Here, V is initialized as the set of all characters appearing in T.

1. Randomly assign a label L(a) ∈ {0, 1} to each a ∈ V.
2. According to L(a), compute the sequence L(T) = L(a1)L(a2) · · · L(an) ∈ {0, 1}n.
3. Merge all bigram aiai+1 provided L(T)[i, i + 1] = ‘10’.
4. Set V = V ∪ {aiai+1} and repeat the above process.

The difference between LCP and BPE is that BPE merges bigrams with respect to
frequencies, whereas LCP pays no attention to them. Instead, LCP merges based on the
binary labels assigned randomly. The most important point is that any two occurrences
of ‘10’ never overlap. For example, when T contains a trigram abc, there is no possible
assignment allowing (ab)c and a(bc) simultaneously. By this property, LCP can avoid
the problem that frequently occurs in BPE. Although LCP theoretically guarantees almost
optimum compression, as far as the authors know, this study is the first result of applying
LCP to machine translation.

3. Our Approach: LCP-Dropout

BPE-dropout allows diverse subword segmentation for BPE by ignoring bigram merg-
ing with a certain probability; however, since BPE is a deterministic algorithm, it is not
trivial to generate various candidates of bigram. In this study, we propose an algorithm
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that enables multiple subword segmentation for the same input by combining the theory
of LCP with the original strategy of BPE.

3.1. Algorithm Description

We define the notations used in our LCP-dropout (Algorithm 1) and its subroutine
(Algorithm 2). Let A be an alphabet and ‘_’ be the explicit blank symbol not in A. A string
w formed from A is called word, denoted by x ∈ A∗, and a string s ∈ (A∪ {_})∗ is called
a sentence.

We also assume the meta symbol ‘−’ not in A∪ {_}. By this, a sentence x is extended
to have all possible merges: Let x̃ be the string of all symbols in x separated by −, e.g.,
x̃ = a− b− a− b− b for x = ababb. For strings x and y, if y is obtained by removing some
occurrences of − in x, then we express the relation y � x and y is said to be a subword
segmentation of x.

After merging a− b (i.e., a− b is replaced by ab), the substring ab is treated as a single
symbol. Thus, we extend the notion of bigram to vocabularies of length more than two. For
a string of the form s = α1 − α2 − · · · − αn such that each αi contains no −, each αi − αi+1
is defined to be a bigram consisting of the vocabularies αi and αi+1.

Algorithm 1 LCP-dropout.

Input: X̃ = {x̃1, x̃2, · · · , x̃n} for a set of sentences, X = {x1, x2, . . . , xn}, and hyperparam-
eters (v, `, k) {v > 0: #total vocabularies, 0 < ` ≤ v: #partial vocabularies, k ∈ (0, 1]:
threshold of frequencies}

Output: Set of subword sequences, Y = {Y1, Y2, . . . , Ym}, where Yi = (y(i)1 , y(i)2 , . . . , y(i)n )

satisfies y(i)j � xj, |V| = |
⋃

1≤i≤m V(Yi)| ≤ v and |Vi| = |V(Yi)| ≤ `

1: m← 1 and Ym ← X̃
2: while (TRUE) do
3: initialize Vm, FREQ(k)
4: while (|Vm| < `) do
5: LCP(Ym, Vm, FREQ(k))
6: end while
7: if (|V| ≥ v) then
8: return Y = {Y1, . . . , Ym}
9: end if

10: m← m + 1, Ym ← X̃
11: end while

Algorithm 2 LCP(Y, V, FREQ(k)) %subroutine of LCP-dropout.

1: assign L : V → {0, 1} randomly
2: FREQ(k)← the set of top-k frequent bigrams in Y of the form α− β with L(αβ) = ‘10’
3: merge all occurrences of α− β in Y for each α− β ∈ FREQ(k)
4: add all the vocabularies αβ to V

3.2. Example Run

Table 1 presents an example of subword segmentation using LCP-dropout. Here,
the input X consists of a single sentence ababcaacabcb. The hyperparameters are (v, `, k) =
(6, 5, 0.5). First, the set of vocabularies is initialized to V = {a, b, c}; for each α ∈ V, a label
L(w) ∈ {0, 1} is randomly assigned (depth 0). Next, find all occurrences of 10 in L, and the
corresponding bigrams are merged depending on their frequencies. Here, L(ab) = L(ac) =
10 but only a− b is top-k bigram assigned 10, and then a− b is merged to ab. The resulting
string is shown in the depth 1 over the new vocabularies V1 = {a, b, c, ab}. This process is
repeated while |Vm| < ` for the next m. The condition |V2| = 5 terminates the inner-loop of
LCP-dropout, and then the subword Y1 = ab− abc− a− a− c− abc− b is generated. Since
|V(Y1)| < v, the algorithm generates the next subword segmentations Y2 for the same input.
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Finally, we obtain the multiple subword segmentation Y1 = ab− abc− a− a− c− abc− b
and Y2 = ab− ab− ca− a− ca− b− c− b for the same input string.

Table 1. Example of multiple subword segmentation using LCP-dropout for the single sentence
‘x = ababcaacabcb’ with the hyperparameters (v, `, k) = (6, 5, 0.5), where the meta symbol − is
omitted, and L is the label of each vocabulary assigned by LCP. The resulting subword segmentation
is Y = {Y1, Y2}.

1-st Trial

input x: depth 0 a b a b c a a c a b c b
L 1 0 1 0 0 1 1 0 1 0 0 0

depth 1 ab ab c a a c ab c b
L 1 1 0 1 1 0 1 0 1

Y1: depth 2 ab abc a a c abc b

2-nd Trial

same x: depth 0 a b a b c a a c a b c b
L 0 1 0 1 1 0 0 1 0 1 1 1

depth 1 a b a b ca a ca b c b
L 1 0 1 0 0 1 0 0 0 0

Y2: depth 2 ab ab ca a ca b c b

3.3. Framework of Neural Machine Translation

Figure 1 shows the framework of our transformer-based machine translation model
with LCP-dropout. Transformer is the most successful NMT model [24]. The model mainly
consists of an encoder and decoder. The encoder converts the input sentence in the source
language into a word embedding (Embi in Figure 1), taking into account the positional
information of the characters. Here, the notion of word is extended to that of subword
in this study. The subwords are obtained by our proposed method, LCP-dropout. Next,
the correspondences in the input sentence are acquired as attention (Multi-Head Attention).
Then, the normalization is performed through a forward propagation network formed
by linear transformation, activation by ReLU function, and linear transformation. These
processes are performed in N = 6 layers for the decoder.

Input sentence

Multi-Head Attention

Feed Forward

…

Output (shifted right)

Masked Multi-Head Attention

Multi-Head Attention

…

Feed Forward

Decoder: N-layer

Encoder: N-layer

LCP-dropout

Emb1 Emb2 Embn

LCP-dropout

Emb1 Emb2 Embm

Output probabilities

Linear

Softmax

Figure 1. Framework of our neural machine translation model with LCP-dropout.
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For the decoder, it receives the candidate sentence generated by the encoder and
the input sentence for the decoder. Then, it acquires the correspondence between those
sentences as attention (Multi-Head Attention). This process is also performed in N = 6
layers. Finally, the predicted probability of each label is calculated by linear transformation
and softmax function.

4. Experimental Setup
4.1. Baseline Algorithms

Baseline algorithms are SentencePiece [13] with the unigram language model and
BPE/BPE-dropout [3,4]. SentencePiece takes the hyperparameters l and α, where l specifies
how many best segmentations for each word are produced before sampling and α controls
the smoothness of the sampling distribution. In our experiment, we used (l = 64, α = 0.1),
which performed best on different data in the previous studies.

BPE-dropout takes the hyperparameter p, where during segmentation, at each step,
some merges are randomly dropped with the probability p. If p = 0, the segmentation is
equal to the original BPE and p = 1, the algorithm outputs the input string itself. Then,
the value of p can be used to control the granularity of segmentation. In our experiment, we
used p = 0 for the original BPE and p = 0.1 for the BPE-dropout with the best performance.

4.2. Data Sets, Preprocessing, and Vocabulary Size

We verified the performance of the proposed algorithm for a wide range of datasets
with different sizes and languages. Table 2 summarizes the details of the datasets and hyper-
parameters. These data are used to compare the performance of LCP-dropout and baselines
(SentencePiece/BPE/BPE-dropout) with appropriate hyperparameters and vocabulary
sizes shown in [4].

Table 2. Overview of the datasets and hyperparameters. The hyperparameter v (vocabulary size) is
common to all algorithms (baselines and ours) and others (` and k) are specific to LCP-dropout only.

Corpus Language #Sentences Batch Hyperparameters
(L1− L2) (train/dev/test) Size (v, `, k)

News En − De 380k/2808/2906 3072 16k, 16k/8k,
0.01/0.05/0.1

Commentary En − Fr 357k/3020/3133 3072 16k, 8k, 0.01
v16 En − Zh 305k/2968/2936 3072 16k, 8k, 0.01

KFTT En − Ja 440k/1166/1160 3072 16k, 8k, 0.01

WMT14 En − De 4.5M/2737/3004 3072 32k, 32k/16k,
0.01

Before subword segmentation, we preprocess all datasets with the standard Moses
toolkit (https://github.com/moses-smt/mosesdecoder, accessed on 5 January 2022) where
for Japanese and Chinese, subword segmentations are trained almost from raw sentences
because these languages have no explicit word boundaries; thus, Moses tokenizer does not
work correctly.

Based on a recent research on the effect of vocabulary size on translation quality, the
vocabulary size is modified according to the dataset size in our experiments (Table 2).

To verify the performance of the proposed algorithm for small training data, we use
News Commentary v16 (https://data.statmt.org/news-commentary/v16, accessed on 5
January 2022), a subset of WMT14 (https://www.statmt.org/wmt14/translation-task.html,
accessed on 1 February 2022), as well as KFTT (http://www.phontron.com/kftt, accessed
on 5 January 2022). In addition, we use a large training data in WMT14. The training step
is set to 200,000 for all data. In training, pairs of sentences of source and target languages
were batched together by approximate length. As shown in Table 2, the batch size was
standardized to approximately 3k for all datasets.

https://github.com/moses-smt/mosesdecoder
https://data.statmt.org/news-commentary/v16
https://www.statmt.org/wmt14/translation-task.html
http://www.phontron.com/kftt
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4.3. Model, Optimizer, and Evaluation

NMT was realized by the seq2seq model, which takes a sentence in the source language
as input and outputs a corresponding sentence in the target language [25]. A transformer
is an improvement of seq2seq model, that is the most successful NMT [24].

In our experiments, we used OpenNMT-tf [26], a transformer-based NMT, to compare
LCP-dropout and other baselines algorithms. The parameters of OpenNMT-tf were set as
in the experiment of BPE-dropout [4]. The batch size was set to 3072 for training and 32
for testing. We also used the regularization and optimization procedure as described in
BPE-dropout [4].

The quality of machine translation is quantitatively evaluated by BLEU score, i.e.,
the similarity between the result and the reference of translation. It is calculated using
the following formula based on the number of matches in their n-grams. Let ti and ri
(1 ≤ i ≤ m) be the i-th translation and reference sentences, respectively.

BLEU = BPBLEU · exp

(
N

∑
n=1

wn log pn

)
, pn =

∑m
i=1 #n-gram that match in ti and ri

∑m
i=1 #n-gram in ti

,

where N is a small constant (e.g., N = 4), and BPBLEU is the brevity penalty when |ti| < |ri|,
where BPBLEU = 1 otherwise. In this study, we use SacreBLEU [27]. For Chinese, we add
option–tok zh to SacreBLEU. Meanwhile, we use character-based BLEU for Japanese.

5. Experiments and Analysis

All experiments were conducted using the following: OS: Ubuntu 20.04.2 LTS, CPU: In-
tel(R) Xeon(R) W-2135 CPU @ 3.70 GHz, GPU: GeForce RTX 2080 Ti Rev. A, Memory: 64 GB
RAM, Storage: 2TB SSD, Python-3.8.6, SentencePiece-0.1.96 (https://pypi.org/project/
sentencepiece/, accessed on 5 January 2022) (Python wrapper for SentencePiece including
BPE/BPE-dropout runtime). The numerical results are averages of three independent trials.

5.1. Estimation of Hyperparameters for LCP-Dropout

First, we estimate suitable hyperparameters for LCP-dropout. Table 3 summarizes
the effect of hyperparameters (v, `, k) on the proposed LCP-dropout. This table shows the
details of multiple subword segmentation using LCP-dropout and BLEU scores for the
language pair of English (En) and German (De) from News Commentary v16 (Table 2). For
each threshold k ∈ {0.01, 0.05, 0.1}, En and De indicate the number of multiple subword
sequences generated for the corresponding language, respectively. The last two values are
the BLEU scores for De→ En with ` = v and ` = v/2 for v = 16k, respectively.

Table 3. Experimental results of LCP-dropout for News Commentary v16 (Table 2) with respect to
the specified hyperparameters, where the translation task is De→ En. Bold indicates the best score.

Top-k Threshold #Subword BLEU
(k ∈ (0, 1]) En De (` = v) (` = v/2)

0.01 21.3 7.7 39.0 39.7
0.05 4.7 3.7 39.0 39.4
0.1 3.3 2.0 38.8 39.4

The threshold k controls the dropout rate, and ` contributes to the multiplicity of the
subword segmentation. The results show that k and ` affect the learning accuracy (BLEU).
The best result is obtained when (k, `) = (0.01, ` = v/2). This can be explained by the
results in Table 4, which show the depth of the executed inner loop of the LCP-dropout
for randomly assigning {0, 1} to vocabularies, where, when ` = v/2, means the average
before the outer-loop terminates. As a result, the larger this value is, the more likely it is
that longer subwords will be generated; however, unlike BPE-dropout, the value of k alone

https://pypi.org/project/sentencepiece/
https://pypi.org/project/sentencepiece/
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is not enough to generate multiple subwords. The proposed LCP-dropout guarantees the
diversity by initializing the subword segmentation by ` (` < v). Using this result, we fix
(k, `) = (0.01, v/2) as the hyperparameter of LCP-dropout.

Table 4. Depth of label assignment in LCP-dropout.

Top-k
Threshold ` = v ` = v/2

(k ∈ (0, 1]) En De En De

0.01 83.7 48.0 54.9 35.4
0.05 18.7 12.3 13.0 9.0
0.1 10.3 7.7 7.3 6.0

5.2. Comparison with Baselines

Table 5 summarizes the main results. We show BLEU scores for News Commentary
v16 and KFTT: En and De are the same in Table 3. In addition to these languages, we set
French (Fr), Japanese (Ja), and Chinese (Zh). For each language, we show the average of the
number of multiple subword sequences generated by LCP-dropout. For almost datasets,
LCP-dropout outperforms the baselines algorithms. Meanwhile, we use the best ones
reported in the previous study for the hyperparameters of BPE-dropout and SentencePiece.

Table 5. Experimental results of LCP-dropout (denoted by LCP), BPE-dropout (denoted by BPE),
and SentencePiece (denoted by SP) on various languages in Table 2 (small corpus: News Commentary
v16 and KFTT, and large corpus: WMT14), where ‘multiplicity’ denotes the average number of
sequences generated per input string. Bold indicates the best score.

Corpus Language Translation LCP BPE SP(Multiplicity) Direction (k = 0.01) (p = 1, 0.1)

News En–De De→ En 39.7 35.7 39.1 38.9
Commentary (21.3–7.7) En→ De 28.4 27.4 27.4 27.5

v16 En–Fr Fr→ En 35.1 34.9 34.9 34.2
(small) (23.0–19.3) En→ Fr 29.5 15.2 28.2 28.3

En–Zh Zh→ En 24.2 24.2 24.6 24.2
(26.0–8.7) En→ Zh 6.5 2.0 2.1 1.8

KFTT En–Ja Ja→ En 20.0 19.6 19.6 19.2
(small) (17.7–10.0) En→ Ja 8.5 3.0 3.6 3.5

WMT14 En–De De→ En 28.7 28.9 32.2 32.2
(large) (9.3–5.3)

Table 5 extracts the effect of alphabet size on subword segmentation. In general,
Japanese (Ja) and Chinese (Zh) alphabets are very large, containing at least 2k alphabet
symbols even if we limit them in common use; therefore, the average length of words is
small and subword semantics is difficult. For these cases, we confirmed that LCP-dropout
has higher BLEU scores than other methods for these languages.

Table 5 also presents the BLEU scores for a large corpus (WMT14) for the translation
De→ En. This experiment shows that LCP-dropout cannot outperform baselines with the
hyperparameter we set. This is because the ratio of the vocabulary size (v, `) to dropout
rate k is not appropriate. As data to support this conjecture, it can be confirmed that the
multiplicity in the large datasets is much smaller than that of small corpus (Table 5). This is
caused by the reduced repetitions of label assignments, as shown in Table 6 compared to
Table 4. The results show that the depth of the inner loop is significantly reduced, which is
why enough subword sequences cannot be generated.
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Table 6. Depth of label assignment for large corpus.

Top-k
Threshold ` = v ` = v/2

(k ∈ (0, 1]) En De En De

0.01 24.0 18.0 17.1 14.2

Table 7 presents several translation results. The ‘Reference’ represents the correct
translation for each case, and the BLEU score is obtained from the pair of the reference
and each translation result. We also show the average length for each reference sentence
indicated by the ‘ave./word’. These results show the characteristics of successful and
unsuccessful translations by the two algorithms related to the length of words.

Table 7. Examples of translated sentences by LCP-dropout (k = 0.01) and BPE-dropout (p = 0.1) with
the reference translation for News Commentary v16. We show the average word length (ave./word)
for each reference sentence as well as the average subword length (ave./subword) generated by the
respective algorithms for the entire corpus. We also show the BLEU scores between the references
and translated sentences as well as their standard deviations (SD).

Reference: ‘Even if his victory remains unlikely, Bayrou
must BLEU

(ave./word = 5.00) now be taken seriously.’

LCP-dropout: ‘While his victory remains unlikely, Bayrou must 84.5
now be taken seriously.’

BPE-dropout: ‘Although his victory remains unlikely, he needs
to 30.8

take Bayrou seriously now.’

Reference: ‘In addition, companies will be forced to
restructure BLEU

(ave./word = 5.38) in order to cut costs and increase
competitiveness.’

LCP-dropout: ‘In addition, restructuring will force
rms to save costs 12.4

and boost competitiveness.’

BPE-dropout: ‘In addition, businesses will be forced to
restructure 66.8

in order to save costs and increase
competitiveness.’

ave./subword 4.01 (LCP-dropout): 4.31 (BPE-dropout)

SD of BLEU 21.98 (LCP-dropout): 21.59 (BPE-dropout)

Considering subword segmentation as a parsing tree, LCP produces a balanced pars-
ing tree, whereas the tree produced by BPE tends to be longer for a certain path. For
example, for a substring abcd, LCP tends to generate subwords such as ((ab)(cd)), while
BPE generates them such as (((ab)c)d). In this example, the average length of the former
is shorter than that of the latter. This trend is supported by the experimental results in
Table 7 showing the average length of all subwords generated by LCP/BPE-dropout for real
datasets. Due to this property, when the vocabulary size is fixed, LCP tends not to generate
subwords of approximate length because it decomposes a longer word into excessively
short subwords.

Figure 2 shows the distributions of sentence length of English. The sentence length
denotes the number of tokens in a sentence. BPE-dropout is a well-known fine-grained
segmentation approach. The figure shows that LCP-dropout produces more fine-grained
segmentation than the other three segmentation approaches; therefore, LCP-dropout is
considered to be superior in subword segmentation for languages consisting of short
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words. Table 5 including the translation results for Japanese and Chinese also supports
these characteristics.
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Figure 2. Distribution of sentence length. The number of tokens in each sentence by LCP-dropout
tends to be larger than the others: BPE, BPE-dropout, and SentencePiece.

6. Conclusions, Limitations, and Future Research
6.1. Conclusions and Limitations

In this study, we proposed the LCP-dropout as an extension of BPE-dropout [4] for
multiple subword segmentation by applying a near-optimum compression algorithm. The
proposed LCP-dropout can properly decompose strings without background knowledge
of the source/target language by randomly assigning binary labels to vocabularies. This
mechanism allows generating consistent multiple segmentations for the same string. As
shown in the experimental results, LCP-dropout enables data augmentation for small
datasets, where sufficient training data are unavailable on minor languages or limited fields.

Multiple segmentation can also be achieved by likelihood-based methods. After Sen-
tencePiece [13], various extensions have been proposed [28,29]. In contrast to these studies,
our approach focuses on a simple linear-time compression algorithm. Our algorithm does
not require any background knowledge of the language compared to word replacement-
based data augmentation, [30,31] where some words in the source/target sentence are
swapped with other words preserving grammatical/semantic correctness.

6.2. Future Research

The effectiveness of LCP-dropout was confirmed for almost small corpora. Unfortu-
nately, the optimal hyperparameter obtained in this study did not work well for a large
corpus. Further, the learning accuracy was found to be affected by the alphabet size of the
language. Future research directions include an adaptive mechanism for determining the
hyperparameters depending on training data and alphabet size.

In the experiments in this paper, we considered word-by-word subword decomposi-
tion. On the other hand, multi-words are known to violate the compositeness of language;
therefore, by considering multi-words as longer words and performing subword decom-
position, LCP-dropout can be applied to language processing related to multi-words. In
this study, subword segmentation was applied to machine translation. To improve the
BLEU score, there are other approaches such as data augmentation [32]. Incorporating the
LCP-dropout with them is one interesting approach. In this paper, we handled several
benchmark datasets with major languages. Recently, machine translation of low-resource
languages is an important task [33]. Applying the LCP-dropout to this task is also important
future work.

Although the proposed LCP-dropout is currently applied only to machine translation,
we plan to apply our method to other linguistic tasks including sentiment analysis, parsing,
and question answering in future studies.
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