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Abstract: Planetary gearboxes have been employed in various applications due to their advantages
of maintaining a high speed-reduction ratio, such as in wind power applications which have now
become a prevailing green energy resource. A traditional power transmission machine of the wind
turbine has a fixed gear-ratio mechanical gearbox for speed-increasing transmission. The purpose of
this study is to propose an active continuous variable transmission (ACVT) control system with a
planetary gear to apply to the wind turbine. The planetary gear holds three terminals, i.e., the ring
gear, the planet carrier, and sun gear, and the motions of three terminals can be controlled purposely
by the servomotors to achieve ACVT. The three different transmission types of the proposed ACVT
can be operated. The dynamic characteristic of the planetary gear is expressed in block diagram form,
and a pseudo derivative feedback feed-forward controller of the velocity control loop is designed for
the required performance. The results can be used to verify the effect of the proposed ACVT with the
planetary gear.

Keywords: planetary gear; wind turbine; active continuous variable transmission

1. Introduction

The planetary gear set is a gear structure with small size, light weight, high transmis-
sion efficiency and large load capacity, which can meet the requirements of high efficiency
and miniaturization of gear transmission. Planetary gears are widely used in different me-
chanical structures, such as aircraft transmission systems, automobile engines, and bicycle
transmissions, as well as heavy-duty and high-reduction-ratio machines. The planetary
gear system includes the outer ring gear, the sun gear, the planetary gear, and the planetary
arm shaft. Since the sun gear and the ring gear can decelerate relative to the planet carrier,
if the planet carrier is used as the input port, this acceleration behavior due to the increased
speed can be used to provide the appropriate inertia. Different from the previous single
input and single output system, another feature of the planetary gear system is that it is a
three-terminal device. Therefore, when the planetary gear train is running, the planetary
gear has two motion states of rotation and revolution, so the calculation method of its trans-
mission ratio is different from that of the fixed-axis gear transmission mechanism. In order
to calculate the transmission ratio of the planetary gear mechanism, the single planetary
gear mechanism is first analyzed. For the calculation method of the transmission ratio of
the gear mechanism, because in the single planetary gear mechanism, the planetary gear is
only the role of the intermediate gear, i.e., idler gear, the transmission ratio of the planetary
gear mechanism depends on the sun gear and the ring gear. Therefore, the transmission
ratio of the planetary gear mechanism depends on the sun gear and the ring gear.

In corresponding works in the literature, the many studies of the continuous variable
transmission with planetary gear can be found. Ref. [1] proposed a torsional vibration
dynamic model of a compound planetary power-split hybrid electric vehicle to predict
the torsional vibration. Ref. [2] proposed an electromechanical power-splitting full-hybrid
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transmission with two shifting elements, where a four-shaft planetary gear and an elec-
tronic continuously variable transmission were analyzed. Ref. [3] proposed the singular
point transition concept relating a novel type of continuously variable transmission. This
transmission comprises a pair of planetary gear trains and a couple of electric motors, used
to control the overall speed ratio. Ref. [4] proposed a standard modeling process, which
can be used to model the complicated vehicle planetary gearbox and can be used to study
the automatic transmission control and failure diagnostic. Ref. [5] proposed a new robust
speed control to suppress vibration caused by angular transmission error of planetary
gears. A new numerical simulation model of angular transmission error of planetary
gear was expressed. Ref. [6] proposed a magnetorheological-fluid-based planetary gear
transmission, which serves to variably couple the motor power through a sun gear input
to a load affixed to a planet carrier output. Ref. [7] proposed a fuel control system on a
planetary automatic transmission to control gear shifts based on the level of the road slope.
A planetary gear-based transmission system for the power-assisted bike (PAB) was pro-
posed in [8] because of its appealing 2-input/1-output transmission feature. Considering
the practical requirements for power assistance, the electronically controlled continuously
variable transmission and the torque assistance modes were realized for the PAB system.
Ref. [9] presented a design approach to systematically synthesize feasible configurations for
series–parallel and parallel hybrid transmissions subject to design constraints and required
operation modes, using a simple planetary gear train. Ref. [10] presented a comparative
study of hybrid powertrains with different numbers of planetary gear sets. The results
show that triple-planetary gear hybrids do not have significant fuel economy improvement,
compared with double-planetary gear hybrids, but they achieve a dramatic improvement
in acceleration performance; this can be beneficial for sport utility vehicles, light trucks,
and buses. Ref. [11] proposed a novel design of a dual actuator unit composed of two
actuators and a planetary gear train to provide the capability of simultaneously controlling
position and stiffness. An energy-compensated fuzzy swing-up and balance control was
investigated by [12] for the planetary-gear-type inverted pendulum. The proposed control
scheme consists of a fuzzy swing-up controller, a fuzzy sliding balance controller, and a
fuzzy compensation mechanism. Ref. [13] proposed an actuator system for mobile robot
applications. The actuator system consists of dual motors and a planetary gear, which
improves the speed–torque performance by combining two motors with one planetary gear.
Ref. [14] proposed a methodology for model-based fault diagnostics of planetary gears
using transmission error signals. A lumped parametric model of planetary gear dynamics
was built to extract simulated transmission error signals, while accounting for the planet
phasing effect, which is a peculiar characteristic of the planetary gear. An approach for tooth
localized fault detection in the sun gear of a planetary gear, using the measured mechanical
torque and the stator current of a wound rotor induction generator (WRIG), was proposed
in [15]. A theoretical background is developed to demonstrate that the faulty sun gear
produces periodic fault signatures in the mechanical torque and, consequently, fault-related
frequencies in the stator current of the WRIG. Ref. [16] proposed a novel design by integrat-
ing a planetary gear train within a brushless DC motor to be a compact structure assembly.
It provides functional and structural integrations to overcome the inherent disadvantages
of the traditional designs. Ref. [17] proposed a tacholess order tracking method based
on adaptive instantaneous angular speed estimation for wind turbine planetary gearbox
fault diagnosis. Ref. [18] developed a regenerative braking method for transient torsional
oscillation suppression of a planetary-gear electrical powertrain. An angle-varying mesh
stiffness-considered transmission model and a genetic algorithm-based method were pro-
posed for the allocation of electric regenerative braking torque. In [19], nonlinear dynamics
of two-stage planetary gear system with elastic ring gear and sliding friction were studied.
The effect of sliding friction and the ring’s elasticity was given on the nonlinear behavior
through the previous elastic two-stage planetary gear system model. Ref. [20] focused on
compound planetary gears, and the bending–torsion coupling nonlinear dynamic model of
the system based on the Lagrange equation was developed. This model is used to study the
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bending–torsion coupling meshing deformation relationship of each meshing pair along
with the translational and torsional directions. Ref. [21] investigated the driving torque
control strategies of the planetary-gear-based dual motor powertrain. The rigid dynamic
model of the powertrain was given to formulate a general energy management strategy
(EMS) and a proposed robust EMS was used to avoid the drastic change of the motors
speed. In [22], applied to a 1.5 MW wind turbine planetary gear system, a two-parameter
Weibull distribution model to describe the distribution of random wind speed was con-
structed by using the lumped parameter method, and the relative relations among various
components were derived by using the Lagrange method. Ref. [23] described the precise
plant model of the two-link manipulator with the bi-articular muscle. By using this model,
the interference between mono-articular and bi-articular muscles is compensated. In [24], a
theoretical design methodology for hybrid electric vehicle powertrain configurations with
planetary gear set was proposed to find the configurations with excellent performance in
a large pool of configurations. A novel matrix representation method was developed to
express these kinds of connections to reflect the system dynamics and physical structure of
configurations. In [25], a dual-motor solution was proposed, where two smaller motors are
coupled via a planetary gear, in contrast to the standard configuration that uses one larger
motor directly connected to the drive wheels with a fixed ratio reducer. The dual-motor
architecture guarantees that both motors operate in the vicinity of their optimal working
range, resulting in a higher overall energy efficiency.

In general power applications, the planetary gears are regarded as passive compo-
nents, so their applications are relatively limited. Therefore, this paper proposes an active
continuous variable transmission (ACVT) control system with planetary gears. The control
system is mainly through the connection between the servo motors and the gears, using
the three gears (sun gear, planetary carrier, and ring gear) as the control system with two
inputs and one output, through the coordinated control of the gear motion information
(such as torque and angular velocity) and the coordinated control of the motor’s angular
velocity/torque. Based on the proposed ACVT control method, the planetary gear has both
the variable equivalent inertia and the controllable velocity ratio between the gears; the
dynamic speed ratio varying effect can be achieved without multi-stage transmission. Com-
pared with the traditional continuous variable transmission, the transmission efficiency of
the proposed ACVT system with the planetary gear can be greatly improved.

In this paper, an active transmission motion control system is proposed that appropri-
ately stably regulates the speed of a generator. At each terminal of the mechanical gear sets,
the revealed tangent–velocity equations are utilized to plot the block diagram. A method to
analyze the kinematic equations and their block diagram for the planetary gear is described.
The feedback and feedforward in control are exported to illustrate the speed-reduction and
-increasing function in kinematics. Observing the accordance between control methods and
kinematics, the paper provides another view for other field engineers to understand the
mechanical design thinking.

2. Material and Method

This paper proposes an active continuous variable transmission (ACVT) control system
with planetary gears, as shown in Figure 1. The motor_r is connected to the ring gear,
where Tr, αr, and ωr are the torque, angular acceleration, and angular velocity of the ring
gear/motor_r, respectively. The motor_s is connected to the sun gear, where Ts, αs, and
ωs are the torque, angular acceleration, and angular velocity of the sun gear/motor_s,
respectively. The motor_p is connected to the planetary arm shaft, where Tc, αc, and ωc
are the torque, angular acceleration, and angular velocity of the planet carrier/motor_c,
respectively. The control system is mainly through the connection between the servo
motors and the gears, using the three gears (sun gear, planetary carrier, and ring gear) as
the control system with two inputs and one output through the coordinated control of the
gear motion information (such as torque and angular velocity) and the coordinated control
of the motor’s angular velocity/torque.
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2.1. Analysis of Continuous Variable Transmission Control System

The transmission equation of the planetary gear is given as (1), then its motion block
diagram can be shown in Figure 2.

ωs +
Nr

Ns
ωr =

(
1 +

Nr

Ns

)
ωc (1)

where Nr is the teeth number of the ring gear, and Ns is the teeth number of the sun gear.
The torque relationship between the gears of the planetary gear is given as (2).

−
(

Nr + Ns

Nr

)
Tr = Tc = −

(
Nr + Ns

Ns

)
Ts (2)
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According to the kinematic characteristic equation of the single planetary gear mecha-
nism, it can be seen that among the three basic elements of the sun gear, the outer ring gear,
and the planet carrier, two of the basic elements can be selected as the input (driving gear)
and the output (driven gear). The other gear can be fixed. The transmission ratio of the
mechanism can be calculated, and the various possible situations are discussed below.
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2.1.1. Reduction Drive

For the case of the fixed ring gear, i.e., ωr = 0, the sun gear is the input port and the
planet carrier is the output port. Then we have

ωs =

(
1 +

Nr

Ns

)
ωc (3)

Due to the number of the ring gear teeth being larger than that of the sun gear, i.e.,
Nr > Ns, ωc

ωs
can be smaller than 1. Therefore, the transmission characteristic of the

planetary gear is given as a reduction drive of the reducing velocity and increasing torque.
For the case of the fixed sun gear, i.e., ωs = 0, the ring gear is the input port, and the planet
carrier is the output port. Then we have

ωc

ωr
=

Nr

Ns + Nr
(4)

It can be found that ωc
ωr

< 1; therefore, the transmission is also a reduction drive with
reducing velocity and increasing torque. For the case of the fixed planet carrier, i.e., ωc = 0,
the sun gear is the input port, and the ring gear is the output port. In this situation, the
planetary gear performs only self-rotation, but struggles with revolution around the sun
gear. Then we can obtain

ωs +
Nr

Ns
ωr = 0 (5)

It can be found that −1 < ωr
ωs

< 0; therefore, the transmission is the reduction drive
with reducing velocity and increasing inverse torque.

2.1.2. Increasing Drive

For the case of the fixed sun gear, i.e., ωs = 0, the planet carrier is the input port, and
the ring gear is the output port. Then we can have

Nr

Ns
ωr =

(
1 +

Nr

Ns

)
ωc⇒

ωr

ωc
=

1 + Nr
Ns

Nr
Ns

=
Ns + Nr

Nr
(6)

Due to Nr > Ns, the velocity of the ring gear is larger than that of the planet carrier,
i.e., ωr

ωc
> 1; therefore, the transmission increases the drive with the increasing velocity and

reducing torque. For the case of the fixed ring gear, i.e., ωr = 0, the planet carrier is the
input port, and the sun gear is the output port. Then we have

ωs =

(
1 +

Nr

Ns

)
ωc⇒

ωs

ωc
= 1 +

Nr

Ns
(7)

It can be found that ωs
ωc

> 1; therefore, the transmission is increasing velocity and
reducing torque. For the case of the fixed planet carrier, i.e., ωc = 0, the ring gear is the
input port, and the sun gear is the output port. We have then

ωs +
Nr

Ns
ωr = 0⇒ ωs

ωr
= −Nr

Ns
(8)

The transmission of the case is increasing velocity and reducing inverse torque.
In this paper, the control block diagram of the planetary gear is constructed to analyze

the dynamic characteristics of the transmission of the planetary gear.
From the above motion analysis of the cases, to consider the practical application, the

planet carrier is the input port, the sun gear is the output port, and the ring gear can be
represented as the control port, i.e., ωr being controllable. Then we have ωr = Kωc, where
K is a designed feedforward gain. Its motion control block control diagram can be given as
shown in Figure 3.
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From Figure 3, we can obtain ωs =
(

1 + Nr
Ns

)
ωc − Nr

Ns
Kωc

= Ns+Nr(1−K)
Ns

ωc

= Kcωc

(9)

Taking the wind turbine as an example, as K = 0, the ring gear is fixed (ωr = 0) and
the wind turbine is accelerating; while K < 0, the sun gear is accelerating, which can be
used to reduce the sudden wind power in the turbine. As K > 0, the sun gear can be
decelerated, which can be used to increase the velocity of the wind turbine with weak
wind power.

In practical application, the proposed technology can generate varying velocities of the
gears so as to analyze the equivalent inertia of the planetary gear with differential inputs
and outputs (for example, from the sun gear to the planet carrier or the ring gear to the
sun gear, etc.), through the speed coordination of the motor control, and then achieve the
purpose of controllable equivalent inertia. Considering the velocity-increasing function of
the wind turbine, its input can be given by the planet carrier, and the velocity and rotation
direction of the ring are controlled by the motor. The sun gear shaft is connected to the
load, such as the flywheel, and the velocity of the sun gear shaft can be variable to produce
a function of controllable inertia. The proposed control system is expected to be applied to
different industries, such as precision machinery stabilizers and shock absorbers.

From the operating characteristics of the ACVT control system, the ring gear connected
to the motor is controlled to turn in the same direction as the planet carrier, and the input
power of the planet carrier can be rebounded. The planet carrier is very difficult to be
rotated, which may eventually cause the planet carrier to stop or reverse. For the rotation
direction of the ring gear being opposite to that of the planet carrier, the planet carrier can
be easy rotated, so the power input from the outside can be easily absorbed, and finally the
sun gear may stop and reverse.

In power transmission applications, the continuous variable transmission system
can provide continuous variable velocity to generate smooth power transmission. The
continuously variable transmission system used in vehicles is classified by belt type, disc
type, cone type, crank type, cam type, planetary gear type, and friction wheel type. As
shown in Figure 4a, this is a typical belt-type continuously variable transmission system.
The main components are composed of a driving wheel disc, driven wheel disc and
transmission belt. The driving wheel disc is composed of a fixed driving disc, a sliding
driving disc, a swash plate, a sliding sheet, a centrifugal roller, and a sliding sleeve. In
Figure 4a, Ie, ωe, and Tin are the equivalent inertia, rotation velocity, and torque of the input
port, respectively, while Il , ωl , and Tout are equivalent inertia, rotation velocity, and torque
of the output port, respectively. Tl is the loading torque. Then, the motion equation of the
belt-type continuously variable transmission is given as (10).[

Ie
.

ωe = Tin
Il

.
ωl = Tout − Tl = iTin − Tl

(10)
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where i = ωl
ωe

is the reduction ratio. Then, (10) can be rewritten as (11), and its block
diagram is shown in Figure 4b. Note that s is the operator of the Laplace transformation.

Il
.

ωl = iIe
.

ωe − Tl (11)
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Figure 4. (a) Belt-type continuously variable transmission system and (b) its block diagram.

Figure 5 is the belt-type continuously variable transmission device with the planetary
gear. The ring gear is the input port, and the planetary arm shaft is the output port. The sun
gear is connected to the flywheel. I f and ω f are the equivalent inertia and rotation velocity
of the flywheel. Note that ω f = ωs, ωe = ωr, and ωl = ωc can be found. The motion
equation of the control system in Figure 5a can be given as (12), and its block diagram is
shown in Figure 5b.  I f

.
ω f = I f

.
ωs = Ts

Ie
.

ωe = Ie
.

ωr = Tin − Tr
Il

.
ωl = Il

.
ωc = Tout − Tl − Tc = iTin − Tl − Tc

(12)
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For the continuously variable transmission of Figure 5 applied to vehicles, the motion
characteristics of (12) are discussed. Assume that the ring gear is connected to the engine.
As the rotation velocity ωe(= ωr) of the engine is increased, the angular velocity ω f (= ωs)
of the flywheel can be reduced, which is similar to reducing the equivalent inertia of the
engine. As the rotation velocity ωe(= ωr) of the engine is reduced, the rotation velocity of
the flywheel can be increased, i.e., the corresponding power being absorbed by the flywheel,
which is similar to increasing the equivalent inertia of the engine.

Figure 6a is another type of the belt-type continuously variable transmission device
with the planetary gear. The input port of the belt-type continuously variable transmission
device is connected to the sun gear, while the output port of the belt-type continuously
variable transmission device is connected to the ring gear. Therefore, the motion equation
of Figure 6a can be given as (13), and its block diagram is shown in Figure 6b. Ie

.
ωe = Tin − Ts

Il
.

ωl = Tc
Ir

.
ωr = iTin − Tr

(13)
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For the operation of the low velocity and high torque, most of the energy is provided
by the input end (the sun gear) of the belt-type continuously variable transmission, and
the output is through the planetary arm. For operation at high velocity and low torque,
the energy can be provided by the output end (the ring gear), and through the control
of the reduction ratio of the belt-type continuously variable transmission, high-efficiency
continuously variable speed operation can be achieved.

2.2. Dynamic Analysis of the Planetary Gear

This paper studies the dynamic characteristics of the ACVT of the planetary gear and
aims at the influence of the variable of the motor torque and velocity on the external input
(the planet carrier). By analyzing the influence, the relationship between the torque and
the angular velocity between the sun gear and the planet carrier can be established. In
this study, the ACVT system is used to actively adjust the reduction ratio of the planetary
gear control system so that the transmission system can be maintained at the optimal
operating point to improve transmission efficiency and control performance. According to
Newton’s law of motion, the concept of free body diagram and dynamic balance is applied
to the rigid body plane motion to discuss the mathematical model of the planetary gear
and further deduce the dynamic characteristic equation. In order to achieve the purpose
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of acceleration and deceleration, the analysis of the transmission mode of the planetary
gear train is carried out, and the ACVT system is achieved through the velocity control of
the servo motor. Figure 7 shows the dynamic characteristics of the planetary gear, where
K1 and D1 are the equivalent stiffness and damping coefficients between the ring gear
and planetary gear, respectively, while K2 and D2 represent those of the sun gear and the
planetary gear, respectively.
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Based on Figure 8, the kinetic characteristics of the gears are analyzed, and their
dynamic equations can be exported. For the ring gear, the dynamic characteristic equation
can be given as (14). The Laplace transformation of (14) is obtained as (15).

Ir
..
θr + K1

(
nprθp + ncrθc − θr

)
+ D1

(
npr

.
θp + ncr

.
θc −

.
θr

)
= Tr (14)(

Irs2 − K1 − D1s
)

Θr +
(
K1npr + D1snpr

)
Θp + (K1ncr + D1sncr)Θc = Tr (15)

where s is the Laplace operator; Θs, Θr, Θp, and Θc are the Laplace transformations of θs,
θr, θp, and θc, respectively.
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For the planet carrier, its dynamic equation can be given as (20). The Laplace transfor-
mation of (20) is given as (21). Tc =
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)
Θp

+(−ncrK1 − ncrD1s)Θr + (−ncsK2 + ncsD2s)Θs = Tc
(21)
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where npr = rp/rr, ncr = rc/rr, nps = rp/rs, ncs = rc/rs, and nrs = rr/rs are given. Ip, Ipp,
and mp are defined as the self-inertia, integrated inertia, and mass of the planetary gear.
rc and Ic are the radius and the equivalent inertia of the planet carrier. Z is the number of
planetary gears. Note that Z = 3 is given in this case. Based on (15), (17), (19), and (21), the
block diagram of the planetary gear control system can be given as Figure 8.

3. Results Analysis

In the experiment as shown in Figure 9, three 1400 watt servomotors are given to be
connected to the planetary gear, where the angular velocity is calculated by the encoder,
and the torque is measured by the torque meter. In this control system, two input ports
and one output port are given. Therefore, the motions of the two gears can be controlled
to the required motion output of another gear to achieve the ACVT system. Three motion
types of the planetary gear system are given to verify the effect of the proposed method.
The specifications of the planetary gear are given in Table 1, as shown. The corresponding
parameters of the plenary gear are determined by the software CATIA.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 23 
 

 

Is  20.0053 kgm  

Ir  20.0082 kgm  

1K  83.52 10 Nm rad  

2K  82.74 10 Nm rad  

1D  73.2Nms rad  

2D  56.3Nms rad  

 
Figure 9. Experimental setup of the proposed ACVT system. 

In this paper, the velocity control loop of the servomotor is designed for regulating 
the required angular velocities of the gears, where m

  is the motor reference input of 
the angular velocity, m  is the angular velocity output of the gear motor, and  d t  is 
the disturbance from the mechanical coupling of the planetary gear set. The motor’s pa-
rameters of 4 211.18 10 kgmmI

  , 0.00055Nms radmB  , and 0.87 Nm AmtK   are ob-
tained. A pseudo derivative feedback feed-forward controller (see Figure 10) is proposed 
for the required performance, where the control parameters of 1K , 2K , and 3K  can be 
designed. Let the bandwidth of the velocity loop be set to 40 Hz, which is just for the 
general requirement of the motion control performance. 
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In this paper, the velocity control loop of the servomotor is designed for regulating
the required angular velocities of the gears, where ωm

∗ is the motor reference input of
the angular velocity, ωm is the angular velocity output of the gear motor, and τd(t) is the
disturbance from the mechanical coupling of the planetary gear set. The motor’s parameters
of Im = 11.18× 10−4 kgm2, Bm = 0.00055Nms/rad, and Kmt = 0.87Nm/A are obtained.
A pseudo derivative feedback feed-forward controller (see Figure 10) is proposed for the
required performance, where the control parameters of K1, K2, and K3 can be designed. Let
the bandwidth of the velocity loop be set to 40 Hz, which is just for the general requirement
of the motion control performance.
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Table 1. Specifications of the planetary gear.

Parameters Value

Nr 240
Ns 80
Np 80
rr 120 mm
rs 40 mm
rp 40 mm
rc 50 mm
Ip 0.0053 kgm2

Ipp 0.00195 kgm2

mp 0.473 kg
Ic 0.009 kgm2

Is 0.0053 kgm2

Ir 0.0082 kgm2

K1 3.52× 108Nm/rad
K2 2.74× 108Nm/rad
D1 73.2Nms/rad
D2 56.3Nms/rad
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For the control system of Figure 10, the transfer function of the velocity control loop
with K3 = 0 can be given as

ωm

ωm∗
=

KmtK1K2

Ims2 + (Bm + KmtK1)s + KmtK1K2
=

ω2
n

s2 + 2ξωns + ω2
n

(22)

where ωn =
√

KmtK1K2
Im

and 2ξωn = Bm+KmtK1
Im

can be determined for the form of a standard
second order control system. In this case, the loop bandwidth ωn = 40 Hz and the damping
ratio ξ = 0.707 are pre-determined. Therefore, the control parameters of K1 = 0.45 and
K2 = 118 can be calculated. The feedforward control gain K3 = 0.5 is determined in
this case to improve control performance. As shown in Figure 11, three kinds of motion
planning are used to analyze the dynamic characteristics of the proposed planetary gear,
where the three servomotors of the motor_s, the motor_p, and the motor_r are connected
to the sun gear, the planet carrier, and the ring gear, respectively. For each type, two
motors connected to the gears can be used to be the inputs and another one motor is
given as the load for the gear. A modeling verified experiment is given, where the S-curve
velocity command with maximum velocity 600 rpm and maximum acceleration 20 rev/s2

is designed. Based on the control system in Figure 10, the angular velocity responses of
the planet carrier motor and ring gear motor are measured as shown in Figures 12 and 13,
respectively, where the maximum velocity error about ±50 rpm ∼ ±100 rpm can be found.
For observing the torque output performance of the planet carrier under varying velocity
of the ring gear motor, an S-curve velocity command of the planet carrier is given as the
maximum velocity of 600 rpm and maximum acceleration of 20 rev/s2 and an S-curve
velocity command of the ring gear motor is given as the maximum velocity of 1500 rpm
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and maximum acceleration of 50 rev/s2. Figure 14 shows the torque response of the planet
carrier motor with varying angular velocity of the ring gear motor. It can be found that the
torque outputs of the planet carrier are ±17.5 Nm and 12.5 Nm~−10 Nm with 1500 rpm
and 0 rpm of the ring gear, respectively.
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In the experimental setup for this ACVT control system, two input ports and one
output port are given. The motions of the two gears can be controlled to the required motion
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output of another gear to achieve the ACVT system. The simulated and experimental results
for the responses of the velocity and torques are shown in Figures 15–26. For case 1, the sun
gear and the ring gear are given as the input ports, and the planet carrier is the output port.
The results are shown in Figures 15–18. From the results, the characteristics of the high
angular velocity and high angular acceleration can be found. Varying the angular velocity
alone of the ring gear can be used to generate the output of the larger angular acceleration
or deceleration of the planet carrier, while that of the planet carrier is smaller with only
varying the angular velocity of the sun gear. The outputs of the angular velocity and torque
of the planet carrier are larger than those of the traditional gear reducer.
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the ring and the sun gears.
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Figure 20. Experimental results for velocity output of the ring gear with the velocity inputs of the
planet carrier and the sun gear.
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Figure 22. Experimental results for velocity output of the ring gear with the velocity inputs of the
planet carrier and the sun gear.

For case 2, the sun gear and the planet carrier are the input ports, and the ring gear
is the output port. The results are shown in Figures 19–22. Observing the results, the
characteristics of the high angular velocity and low angular acceleration (low angular
velocity and high angular acceleration) can be found. Only varying the angular velocity of
the planet carrier can be used to generate the output of the larger angular acceleration or
deceleration of the ring gear, while that of the ring gear is smaller with only varying the
angular velocity of the sun gear. The outputs of the angular velocity and torque of the ring
gear are larger than those of the traditional gear reducer.
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Figure 24. Experimental results for velocity output of the sun gear with the velocity inputs of the
planet carrier and the ring gear.

For case 3, the ring gear and the planet carrier are the input ports, and the sun gear is
the output port. The results are shown in Figures 23–26. Observing the results, with the
rotation directions of the ring gear and the planet carrier being the same, the characteristics
of the high angular velocity and high torque can be found. Otherwise, with the rotation
directions of the ring gear and the planet carrier being different, the high angular velocity
and low torque can be found. Only varying the angular velocity of the ring gear can be
used to generate the larger angular acceleration or deceleration of the sun gear, while that
of the ring gear is smaller with only varying the angular of the planet carrier. The outputs
of the angular velocity and torque are larger than those of the traditional gear reducer.
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Figure 26. Experimental results for torque output of the ring gear with the velocity inputs of the
planet carrier and the sun gear.

4. Conclusions

The paper proposed an active continuous variable transmission (ACVT) control system
with planetary gear. The planetary gear holds three terminals, i.e., the ring gear, the planet
carrier, and sun gear, and the motions of the three terminals can be controlled deliberately
by the servomotors to achieve ACVT. The three different transmission types of the proposed
ACVT can be operated. The dynamic characteristic of the planetary gear is expressed in
block diagram form and a pseudo derivative feedback feed-forward controller of the
velocity control loop is designed for the required performance. From the results, through
the proposed the planetary gear control system, the characteristics of the high angular
velocity and high angular acceleration can be achieved. Varying synchronously the angular
velocities of the ring gear and the sun gear, the output of the angular acceleration or
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deceleration of the planet carrier is larger, while that of the planet carrier is smaller with
only varying the angular velocity of the sun gear or only varying the ring gear. Therefore,
under three terminal ports, where one is the input port and the second is the output, the
third can be used to be a controllable port to achieve the required motion performance. The
results can be used to verify the effect of the proposed ACVT with the planetary gear.
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