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Abstract: In some high spectrally efficient communication structures, the Gerchberg-Papoulis ex-
trapolation algorithm can be used to reconstruct nonorthogonal signals. However, the extrapolation
efficiency and accuracy degrades when the energy of known signal is small or the iterative filter
bandwidth is large. Focused on these drawbacks, a piecewise iterative extrapolation method is
proposed to extrapolate bandlimited signals with higher extrapolation efficiency and accuracy. In this
paper, the amplitude change of the unknown part over iterations is analyzed and the feasibility of the
proposed extrapolation method is discussed. Numerical simulation shows the accuracy superiority of
proposed method with the frequency offset compared to the GP algorithm with fixed computational
complexity. Besides, the feasibility of the proposed method is verified in fractional Fourier domain
with performance advantages.

Keywords: bandlimited signal extrapolation; iteration filter; fractional Fourier transform; Gerchberg-
Papoulis algorithm; extrapolation efficiency

1. Introduction

The extrapolation for bandlimited signals is one of essential research objects in signal
processing, wireless communication, and positioning scenarios where the transmitted sig-
nals are always bandlimited. For example, cosine signals and orthogonal frequency division
multiplexing (OFDM) signals concentrate its information within a finite bandwidth in the
frequency domain, as with the chirp-based signals in the fractional Fourier domain. Due to
transmission interference or device failure, only partial data can be detected or used for
subsequent processing [1–3]. Besides, the ever-evolving communications scenarios requires
improved throughput to satisfy larger access demand, diversity, and mobility [4–8]. Signals
are designed to be transmitted partially to obtain higher spectral efficiency according to the
high-throughput requirements [8–11]. The reconstruction method in terms of the received
partial signals is necessary to maintain the system workability.

The Gerchberg-Papoulis (GP) algorithm, as a classic iterative extrapolation method
for frequency bandlimited signal, can recover the entire signal from a part of it in the
time domain [12,13]. As proven in [12], the received signal can gradually approximate
the original signal, as the iterations tend to be infinite. Due to its high practicability
and reliability, the GP algorithm has been adopted in many applications such as spectral
estimation, high spectral efficiency communication and signal reconstruction [13–15]. When
extrapolating the discrete signals, the influence of analyticity on the convergence of the
GP algorithm should be considered. The feasibility and convergence of a discrete GP
algorithm is provided and the effective sampling period is analyzed in [16,17]. The core
computation uses either Fourier transform (FT) for analytic signals or discrete Fourier
transform (DFT) for discrete signals, and a congruent relationship is established with
continuous or discrete prolate spheroidal functions. To enlarge the application scope,
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algorithms based on GP algorithm are extended to signals bandlimited into more domains
such as the fractional Fourier domain, wavelet domain, or linear canonical transform
domain [18–20]. Moreover, mathematic means-like regularization methods are further
adopted to lower the extrapolation error led by white noise [21,22]. The acceleration of
the extrapolation method is another research direction. A fast extrapolation method is
proposed to improve the convergence of GP algorithm by sampling [23]. The direction of
error reduction can also be improved by gradient descent or the core FT computation can
be simplified to a Gram–Schmidt procedure in mathematic aspects [24].

The literatures regarding the GP algorithm were mostly focused on the generalized
form or the implement-ability in some scenarios, but few about more efficient extrapolation.
Two extrapolation problems of the GP algorithm have rarely been addressed in wireless
communication scenarios. The one is the influence of Doppler frequency shift which causes
the shift of center frequency and the bandwidth of the original signal. The influence on the
extrapolation accuracy is obvious since the filter bandwidth during GP algorithm is always
set equal to the bandwidth of original signal. To extrapolate a signal with frequency offset,
the iteration filter with larger bandwidth is required to retain the shifted information beyond
the original bandwidth, but the performance of iterative filter with large bandwidth have
not been addressed. The other one is the duration of the received signal. The extrapolation
efficiency when the known part is relatively short has not be discussed. Besides, some
signals reveal better bandlimited characteristic in fractional Fourier domain, such as the
optical code division multiplexing signal (OCDM) [25], which meets similar extrapolation
problems to the frequency bandlimited signals. OCDM signals present similar subcarrier
characteristics in the fractional Fourier domain to OFDM signals in the Fourier domain.
The core computation of OCDM system is fractional Fourier transform (FrFT), which
generalizes the linear differential process of FT [26]. From a physical perspective, time
domain and frequency domain correspond to two orthogonal coordinate axes. FrFT rotates
the orthogonal coordinate axis through a fractional variant, reflecting the time-frequency
aggregation characteristics of signals [27]. Since the considerate aggregation of some non-
frequency bandlimited signals such as the chirp signal in the fractional domain, FrFT is
widely used in signal processing, radar, and wireless communications [27–30]. Research on
the extrapolation of fractional bandlimited signal has already started. The iterative method
in the time domain and the fractional domain is simulated and verified effective [20,29].
Whereas the extrapolating the process is limited by the truncation errors from the filter
bandwidth. When the observed signal is relatively short, the efficiency of the iteration still
degrades.

In this paper, we consider the problems of GP algorithm at two cases: (1) the observed
signal is relatively short; and (2) frequency shift exists during transmission. A piecewise
extrapolation method is proposed to solve the problems according to the error variation
and error accumulation within the iterations of GP algorithm. The extrapolation process
is divided into several pieces and the minimum energy least squares error extrapolation
result based on GP algorithm is given to reduce the accumulated error. Problem 1 can be
converted to the case that the compressed ratio is small. Problem 2 can be converted to the
case that extrapolating signals with larger filter bandwidth. The piecewise extrapolation
method is extended to FrFT domain to solve the problems of extrapolation for OCDM
signals. The outline of this paper is organized as follows. In Section 2, some notations and
properties of frequency bandlimited signals and fractional-domain bandlimited signals
are addressed. The extrapolation process of GP algorithm is also introduced briefly in this
section. In Section 3, the influence of the observed length of the known segment and the
bandwidth of the filter used in GP algorithm on the extrapolation accuracy are analyzed,
respectively. According to the problem formulation, a new piecewise extrapolation method
is present in Section 4. Simulation results demonstrate the generality and the performance
advantage of the proposed method against GP algorithm.
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2. Problem Formulation
2.1. Bandlimited Signals

A typical σ−frequency bandlimited signals f (t) should satisfy that F(ω) = 0 for
∀ω /∈ [−σ, σ], where σ is real and F(ω) is the Fourier transform result of f (t).

As a generalized form of FT, p-order FrFT of a time domain signal f (t) is defined as

Fp(u) = F p[ f (t)](u) ≡
∫
R

K(p; t, u) f (t)dt, (1)

where the kernel function K(p; t, u) is represented as

K(p; t, u) =


√

1−j cot ϕ
2π ej t2+u2

2 cot ϕ−j tu
sin ϕ , ϕ 6= nπ

δ(t− u), ϕ = 2nπ

δ(t + u), ϕ = (2n + 1)π

(2)

where ϕ = pπ/2 is the rotation angle of the time-frequency plane, variant p ∈ R with the
period of 4, and n ∈ Z. When p = 1 and ϕ = π/2, (1) reduces to FT, and when p = −1 and
ϕ = −π/2, (1) reduces to inverse FT (IFT). If p = 0, F0(u) = f (t).

In terms of a σ-fractional bandlimited signal f (t), the values of its FrFT form should
be zero outside the interval [−σ, σ] as

Fp(u) = F p[ f (t)](u) = 0 for |u| ≥ σ. (3)

According to Parseval principle, the energy should be finite∫
R
| f (t)|2dt =

∫
R

∣∣Fp(u)
∣∣2du < +∞ (4)

where σ > 0 denotes the bandwidth of the original signal.
In the actual scenarios, some signals are not definitely bandlimited, but relatively. Take

the OFDM signal as an example, the transmitted information is expected to be modulated
into a series of orthogonal trigonometric basis functions. Due to the finite duration, energy
dispersion exists in the actual OFDM signals, resulted in non-bandlimited characteristic
(regardless of the lowpass filter processing). In that case, the OFDM signal can still be
regarded as bandlimited since the dispersion is ignorable outside the original bandwidth.
The compressed OFDM communication structure [9] is also proposed based on the relatively
bandlimited characteristic.

2.2. Traditional GP Extrapolation Algorithm

GP extrapolation algorithm is proposed for analytic frequency bandlimited signals. To
extrapolate an σ-bandlimited signal f (t), the observed g(t) is assumed to be

g(t) = f (t)UT(t) (5)

where the operator UT{} remains the part of f (t) within [−T, T] and T is positive.
The extrapolation is realized with iterations. For the first iteration i = 1, the initial

signal is f0(t) = g(t). Defining fi−1(t) as the output result of (i − 1)th iteration, and the ith
iteration in GP algorithm consists of 6 main steps:

Input fi−1(t) as the initial signal of the ith iteration.
First, the signal fi−1(t) is transformed into the frequency domain with FT as Fi−1(ω).
Second, Fi−1(ω) is lowpass filtered within |ω| ≤ σ.
Third, the signal is transformed to the time domain with IFT.
Finally, the part within [−T, T] is replaced by the observed part g(t).
Output fi(t) as the result of the ith iteration.
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2.3. Amplititude Variation during Extrapolation

The performance of the extrapolation method can be evaluated with mean-square
error (MSE). In the case of Ω = σ for GP algorithm, the convergence can be explained with
the relationship of f (t), fi−1(t) and fi(t).

Define an MSE function asM{ f (t), g(t)} =
∫ ∞
−∞| f (t)− g(t)|2dt. Then it follows that

M( f , fi−1) >M( f , gi) >M( f , fi). The first greater-than relationship is attributed to that
both f and gi is bandlimited within [−Ω, Ω], but fi is not. The lowpass filter maintains
the bandlimited characteristics of gi in the 2nd step of GP algorithm in Section 2.2, thus
the difference between f and fi is larger than that of f and gi. The second greater-than
relationship is due to that the known signal within t ∈ [−T, T] replaces the extrapolated
part in the 4th step. The known part is obviously more accurate than the extrapolated one
hence reducing the MSE.

According to GP algorithm referred in Section 2.2, the iteration filter in step 2 is set to
be with the same bandwidth as that of the original signal. However, the actual signal to be
extrapolated is finite in the time domain and it is not strictly bandlimited. Since the signal
bandwidth may shift, and the bandwidth of iteration filter may be chosen larger. In addition,
the maximum iteration is always set considering the computation requirement, which is
not a fixed number. Therefore, the influence of the iteration filter and maximum iteration
(stopping criterions) on MSE and amplitude variation should be discussed, respectively.

As for a basic isometric time domain signal f (t) = cos(2πt), the variation in the
signal waveform shown in Figure 1 can reflect the extrapolation process more intuitively.
The original cosine signal is sampled uniformly by 2048 points within t ∈ (−4, 4), and
the duration of signal to be extrapolated is determined by the truncated rate α. For
example, duration of signal to be extrapolated is within t ∈ (−1, 1) for α = 0.25. Here
the stopping criterions is set to be maximum iterations ITE, and the initial known signal
g(t) = f (t), |t| < 1 . The bandwidth of iteration filter is chosen to be the center frequency
of f 1 in the condition of Ω = σ. Two conditions are considered that are the waveforms
under different maximum iterations (simplified as ITE in the simulation figures) and under
different bandwidth values of iteration filter. The MSE of f and extrapolated f̂ = fITE are
shown in Figure 1, and waveforms of the extrapolated signal under different conditions
are shown in Figure 2. The “r f /s” in the legend denotes the ratio of extrapolation filter
bandwidth and signal bandwidth.

Figure 1. The MSE between f and gITE at different iteration filter bandwidth.
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In Figure 1, all MSEs decrease with more iterations, reflecting a more accurate extrapo-
lation. With the same r f /s, the MSE is smaller when the truncated rate is larger. However,
the MSE bottleneck appears during each extrapolation, especially when r f /s = 1. For all
truncated rate with r f /s = 1, the bottleneck appears within 400 iterations and appears
earlier with larger truncated rate. According to the theory of GP algorithm, it is attributed
to the very small eigenvalue extrapolated with large iterations cannot improve the accuracy
obviously though the whole extrapolation is convergent [18]. With the same truncated rate
α, the best extrapolation presents with r f /s = 1, and MSE performance deteriorates with
larger ratio. Especially with small α (α = 0.25), the MSEs at r f /s = 1.1 and r f /s = 1.3 turn
larger by 120% compared with r f /s = 1. Besides, the MSE improvement from r f /s = 1.3 to
r f /s = 1.1 is slight, reflecting the extrapolation accuracy is difficult to improve by adjusting
the extrapolation filter unless it is optimal (r f /s = 1). Considering the influence of finite
duration on the signal bandwidth, it can be inferred that the optimal ratio is not 1 for
some other signals. In that case, an extrapolation convergence bottleneck should be solved
and the extrapolation at large iteration filter bandwidth needs to be improved. For a fair
comparison, the MSE reflects the difference at the extrapolated location and is normalized,
defined as

MSE{ f (t), f̂ (t)} =

∫ ∞
−∞

∣∣∣(1−UT(t))
(

f (t)− f̂ (t)
)∣∣∣2dt∫ ∞

−∞|(1−UT(t))( f (t) |2dt
(6)

In terms of the amplitude variation shown in Figure 2, the difference between the
original signal and extrapolated signal reduces with more iterations. While in Figure 2a,
the variation between ITE = 200 and 500 differs more than that between ITE = 500 and 1000,
reflecting a gradually slower extrapolation convergence. Besides, the amplitude of the
extrapolated part farther from the known part turns smaller and smaller. As for Figure 2b,
the extrapolated waveform is closer the original one with less r f /s (where r f /s ≥ 1). The
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bandwidth of the extrapolation filter causes obvious influences on the amplitude, leading
huge reduction of the amplitude of extrapolated signal when r f /s > 1 compared to that
when r f /s = 1. Moreover, when the location of extrapolated waveform is closer to the
known part, the amplitude is closer to the original waveform.

From the above analysis and simulation results, it can be seen that the GP algorithm
obtains a convergent error through infinite iterations but the iterations are restrained in the
actual extrapolation process. Therefore, two main problems should be focused. One is the
slow convergence (MSE bottleneck) when the ratio of proportion of the known part is small
or the iterations reach some threshold. Another is the inaccurate extrapolation (low MSE)
when the iteration filter bandwidth is bigger than the original bandwidth. Considering the
gradually decreasing amplitude of extrapolated signal, a piecewise iterative extrapolation
method could start from the part closer to the known part and then extend the extrapolated
range. The description, simulation results, and analysis of this method would be discussed
in the following sections.

3. Methods
3.1. Explanation of Piecewise Extrapolation Method

To explain the extrapolation process more clearly, we notate the known part and the
part to be extrapolated, respectively. As for a frequency-domain bandlimited signal, it can
be divided into two parts:

f (t) = UT{ f (t)}+RT{ f (t)} (7)

The operator RT{} remains the rest part. In addition, BΩ{} is an Ω-bandwidth
lowpass filter operator denoted by

BΩ{ f (t)} =
∫ Ω

−Ω
F(ω)ejωtdω (8)

(8) can also be expressed with convolution form as BΩ{ f (t)} = f (t) ∗ sin(Ωt)
πt .

Assume the known part g(t) = UT{ f (t)}, the fundamental extrapolation from g(t) to
get f (t) can be expressed by {

fi(t) = RT{gi(t)}+ g(t)
gi(t) = BΩ{ fi−1(t)}

(9)

where i ∈ Z+, f0 = g(t) = UT{ f (t)}. The output signal is f̂ (t) = fi(t) when meeting
certain stopping criterion. Operating BΩ{} once will bring with one-time FT, one lowpass
filtering, and another IFT. With the maximum iterations ITE and (2N + 1) sample points
in the extrapolation, the complexity from complex multiplication computation is with the
order O(2·ITE·(2N + 1) log(2N + 1)).

To M-piecewise extrapolate f (t) from g(t) = UT{ f (t)}, the part to be extrapolated
is firstly divided into M pieces. If it is uniformly divided into the M pieces, the whole
extrapolation process is decomposed into M sub-processes as shown in Figure 3.

Figure 3. The relationship of pieces of piecewise extrapolation method.
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In Figure 3, m−1 f is the initial signal of the mth-piece extrapolation, and m f is supposed
to be obtained at the end of the iteration at current piece. It can be found the iterations
happen within the current piece, so is the error. The length of each piece is ∆T at both sides.
The initial known part of each piece m−1 f turns longer; if m−1 f is extrapolated well enough,
the accuracy of the mth-piece extrapolation would be improved. It is resulted from that
less error accumulates within the shorter extrapolated part and the proportion of known
signal increases. In practice, the signal to be extrapolated is a sampled received signal. The
detailed piecewise extrapolation processes are explained as Table 1.

Table 1. M-piecewise extrapolation.

Iterative Steps of M-Piecewise Extrapolation

Initialization: (−T, T)-the duration of g(t), (−T0, T0)-the duration of f (t), M—the number of
uniformly divided pieces of the extrapolated part, ts—sampling period. On the positive side, the
duration of each extrapolated piece is ∆T = (T0 − T)/M with sampled points ∆N = ∆T/ts. The

original received signal is sampled to g = {g(n)} where |n| ≤ N and N = T/ts.

Step 1: For the mth piece, the m−1 f is zero-tapped on the extrapolated location to obtain the initial
signal {m f0(n)} where |n| ≤ Nm and Nm = N + m∆N points.

When m = 1, 0 f0(n) = g(n) |n| ≤ N.
Step 2: For the ith iteration, the initial signal fi−1 is processed with DFT operator, lowpass filter

and an IDFT operator to obtain gi.
When i = 1 f0(n) =m f0(n), |n| ≤ Nm.

Step 3: Replace the initial signal of gi(n) with m f (n) to obtain fi(n) as

fi = RNm−1{gi}+m f0 (10)

Step 4: (Judgement 1) If the iteration reaches the stopping criterion, continue to step 5; if not,
update i = i + 1 and return to step 2.

Step 5: (Judgement 2) If m = M, output the extrapolation result as the extrapolation result
f̂ (n) = fi(n); if not, update m f (n) = fi(n), m = m + 1 and return to step 1.

In (10), the operator RN{} remains the rest points beyond (−N, N). The piecewise
extrapolation degenerates into the discrete GP algorithm for M = 1.

The object of the above extrapolation method is the frequency domain bandlimited
signal. Admittedly, the frequency bandlimited characteristic can be widely found in
communication signals, but some signals show better energy accumulation characteristic in
other domains. For instance, OCDM signals [25], with the orthogonal basis of chirp signals,
is bandlimited in fractional Fourier domain.

As for a p-order FrFT bandlimited signal f (t), a finite signal g(t) = UT{ f (t)} is ob-
served. The piecewise extrapolation iteration could also be concluded with 4 steps, where
the initial signal should transform to FrFT domain, then lowpass filtering, inversely trans-
forming to time domain (IFrFT), and replacing by g(t) within [−T, T]. A new formulation
to describe the ith iteration of mth piece is shown as{

fi(t) = RT

{
Bp

Ω{ fi−1(t)}
}
+ g(t)

f0(t) = g(t)
(11)

where i ∈ Z+. The operator Bp
σ{} denotes a σ- bandwidth lowpass filtering plus an inverse

transform to the time domain, expressed as

Bp
Ω{ f (t)} =

∫ Ω

−Ω
K(−p; t, u)Fp(u)du (12)

where Fp(u) is the p-order FrFT result of f (t) as calculated in (1), and the kernel function
K(p; t, u) is presented in (2).
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When g(t) is sampled, the piecewise extrapolation follows the discrete procedure
of (11)–(12). Similar to Table 1, the transform in step 2 should be DFrFT and IDFrFT
accordingly. The implementation of the discrete transform can be found in [31].

3.2. The Minimum Energy Least Squares Error Solution of the Extrapolation

After sampled with the period ts, the original signal f is a vector of N0 × 1 where
N0 = T0/ts and g is a vector of N × 1 where N = T/ts. Define a truncator operator U with
the size of N× N0, the (n, un) elements is 1 where n = 1, 2, . . . , N and the rest are zero. The
known finite vector g can be expressed as g = U f . If f is well frequency bandlimited, it
follows that

f = B f , g = UB f (13)

where B represent a lowpass filter operator as BΩ{}. The minimum energy least squares er-

ror extrapolation result f̂ follows that argmin‖ g−UB f̂ ‖2
[32]. As described in Table 1, the

extrapolated result is 1 f actually for the first sub-process starting from UT{ f } to UT+∆T{ f }.
The minimum energy least squares error extrapolation is considered as

argmin‖ g−UB
[

1 f
]
‖

2
(14)

Since the discrete bandlimited signal f and the known part g can be expanded with
discrete prolate spheroidal basis as [16], the result of (14) is expected to be 1 f̂ = BUHB−1

N g,

where BN is a (2N1 + 1)× (2N1 + 1) matrix with the (v, u) element BN(v, u) = sin Ω(v−u)
π(v−u) .

However, the matrix BN will become ill conditioned and hard to compute the inverse
matrix when N increases [31]. The iterative process shown in Table 1 cannot directly obtain
the minimum energy least square error extrapolation result, but its error of each piece tends
to zero when iterations tend to infinity.

3.3. Stopping Criterion and Complexity

The stopping criterion of an iterative extrapolation can be set according to the max-
imum iterations or MSE threshold, and can be modified with system requirements. It
is noted that the accuracy of the former piece greatly affects the latter piece. Consid-
ering frequency shift will influence the bandwidth σ of original signal f (t), the band-
width of extrapolation filter is always set as Ω ≥ σ. As a result, f (t) = BΩ{ f (t)} thus
g(t) = UT{ f (t)} = UT{BΩ{ f (t)}}.

Besides, the complexity of the extrapolation is restrained within a certain value in
practice.

Suppose each piece iterates for ITE times, the complexity from complex multiplication

computation is with the order O
(

2·ITE·
M
∑

m=1
(2Nm + 1) log(2Nm + 1)

)
. Thus, the multiple

of the computational complexity when the number of pieces increases to M from 1 can be
expressed as

O
(

2·ITE·
M
∑

m=1
(2Nm + 1) log(2Nm + 1)

)
O(2·ITE·(2N + 1) log(2N + 1))

=

M
∑

m=1
(2Nm + 1) log(2Nm + 1)

(2N + 1) log(2N + 1)
(15)

When the extrapolation samples are divided into M pieces uniformly, Nm increases
uniformly from N0 to N at the interval of ∆N = N−N0

M , hence obtaining Nm = N0 + m∆N.
More intuitively, the multiple of computation with different truncated rates α and pieces M
according to (15) are listed in Table 2, respectively.
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Table 2. Multiple of computation for M-piecewise extrapolation.

Values M = 2 M = 3 M = 4 M = 5 M = 6

α = 0.25 1.59 2.18 2.77 3.36 3.95
α = 0.50 1.72 2.45 3.17 3.89 4.61
α = 0.75 1.86 2.72 3.58 4.44 5.30

The multiple in Table 2 is the ratio between the computation of M-piecewise extrapola-
tion and 1-piecewise extrapolation (GP algorithm) with the same maximum iterations for
each piece. It can be seen that the multiple value is lower than the number of pieces M. The
smaller truncated rates α is, the lower the multiple value is.

In addition to the stopping criterion of maximum iterations, MSE threshold can be
also considered. The error of each piece will tend to zero when iterations tend to infinity
whereas the infinite extrapolation cannot be implemented actually, which leads residual
error for each piece. It should be admitted that dividing the extrapolated location into
pieces will accumulate residual errors when the pieces ahead are not extrapolated to some
accuracy. However, the error could be corrected when reaching some MSE threshold, which
is attributed to the residual error is correlated to the known part g [13].

3.4. Bandwidth of Iteration Filter

It is noted that the length of the signal and the lowpass filter should be calculated for
different pieces.

To extrapolate the mth piece, the initial signal has (2Nm−1 + 1) points and the result
has (2Nm + 1) points where Nm−1 = N + (m− 1)∆N and Nm = N + m∆N. Hence the
initial signal is firstly zero-tapped to Nm points at both sides, which is equivalent to Nmts,
and the frequency space between two points in the frequency domain should be 1/(Nmts).
The length of the extrapolation filter with the bandwidth Ω should be corresponding to
NΩ = dΩNmtse where d′e is a ceil operator.

Therefore, in the ith iteration of mth piece as shown in Table 1, the step 2 can also be
expressed as

gi = F−1HNΩ F fi−1 (16)

where the fi−1 is a vector of (2Nm + 1) × 1; the lowpass matrix B in (13) is equivalent
to F−1HNΩ F; F and F−1 are DFT matrix of (2Nm + 1)× (2Nm + 1) and its inverse matrix
(IDFT matrix), respectively; and HNΩ denotes a lowpass filter matrix for spectral sample as

HNΩ =

 INΩ+1 · · · 0
... 0

...
0 · · · INΩ


(2Nm+1)×(2Nm+1)

(17)

Since the known part can be considered as g = U f , equivalent to a convolution in
the frequency domain. The spectral leakage caused by convolution with discrete sinc
signal will lead that the discrete bandwidth of original signal is longer than Nσ = dσNmtse.
Moreover, the iteration filter bandwidth should consider the periodicity of the known part
and the original signal.

4. Results and Discussion

Numerical examples are used to illustrate the performance of piecewise extrapolation
method when the bandwidth of iteration filter is larger than σ and the truncated rate α is
small. The original signals are selected from typical signal forms in communication field.
Table 3 lists the explanation and the value of variables regarding GP algorithm or proposed
method in the simulation.
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Table 3. Variables Explanation.

Variable Explanation Value

α Truncated rate. 0.25, 0.50
N The number of sampled points of original signal. 1024
N0 The number of points of truncated signal from original signal. N0

Nm The number of points of the aim signal in mth piece extrapolation. Nm

M The number of pieces for piecewise extrapolation method. 1~6
r f /s The ratio between the bandwidth of iteration filter and original signal 1.0~1.5
ITE The maximum iterations of each piece for piecewise extrapolation method. 0~4000

Noted that the comparison of performance should be conducted under the same
computational complexity for fairness. The relationship of the traditional GP algorithm and
M-piecewise extrapolation method can be found in Table 2. For instance, the MSE value of
GP at ITE = 1000 when α = 0.25 should be compared to that of 2-piecewise extrapolation
method at ITE = 1000/1.59, 3-piecewise extrapolation method at ITE = 1000/2.18, and the
rest can be carried out in the same manner.

A typical frequency bandlimited signal f (t) = sin c(t), |t| ≤ 4 is sampled for
N = 1024 points. Figure 3 compares MSEs of different r f /s = 1 and different M at truncated
rate α = 0.25, calculated by (6). The decreasing MSE with gradually slowing rate reflects the
convergence of the extrapolation method in Figure 4.

Figure 4. MSE of M-piecewise extrapolation for the signal f = sin c(t), (−4 < t < 4) at α = 0.25.

At M = 1 and ITE = 1000, the MSE reaches 0.19 at r f /s = 1, 0.71 at r f /s = 1.3 and
0.83 at r f /s = 1.5, and then the variation of MSE becomes mild. For a fair comparison,
the MSE should be discussed under the same level of computation. Combined with the
multiple values in Table 2, the computation increases to 2–4 times when M increases from
2 to 6 with α = 0.25. When the computation is fixed at ITE = 1000 (M = 1), the computation
is close to those of ITE = 600 at M = 2, ITE = 500 at M = 3, ITE = 400 at M = 4 and
ITE = 250 at M = 6. As for Figure 4a, the descending order of MSEs for different M is
(M = 1) ≈ (M = 2)> (M = 3) > (M = 4)≈ (M = 6). When ITE increases to 4000, MSEs
of different M-piece extrapolation varies relatively mildly, but in different levels. Compared
to M = 1, the MSE at M = 2, 3, 4, 6 decreases by 19.7%, 18.4%, 24.2%, and 25.8%, respectively.
It reflects that piecewise extrapolation can improve the extrapolation accuracy of original
GP algorithm at the same computation but that too many pieces may not lead further
performance improvements.

In the cases of larger bandwidth of iteration filter as shown in Figure 4b,c, the accuracy
of extrapolation turns worse but the improvements from M-piecewise method differ more
apparently. Suppose the maximum frequency shift is 50%, it is reasonable to set the
bandwidth of the iteration filter to 1.5 times. At r f /s = 1.5, the MSE at M = 2, 3, 4, 6
decreases by 5.3%, 11.1%, 17.8%, and 20.6%, respectively, compared to M = 1. Besides, the
mild variation exists at different ITEs which are 2000 for r f /s = 1, 3000 for r f /s = 1.3 and
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more than 4000 for r f /s = 1.5. It illustrates that the M-piece extrapolation enables the MSE
to descend longer and improve the accuracy of original GP algorithm.

Cosine signals, sine signals and their sum are common signal forms in wireless com-
munication field. They are all periodic, which is different from the sinc signals above. In
the compressive OFDM transmission system, the original OFDM signal can be truncated
up to 0.5 to ignore the influence of self-interference on BER [15]. Therefore, the truncated
rate α of those signals are chosen as 0.5 to simulate the MSE performance of piecewise
extrapolation for compressed OFDM signals in Figure 5.

Figure 5. MSE of piecewise extrapolation for cosine and sine signals at α = 0.5.

The sum of cosine signals and cosine/sine signals belong to one-way mapping com-
pressed OFDM signals and two-way mapping compressed OFDM signals [8], respectively,
in Figure 5a,b. The original signal f is sampled for N = 1024 points. Note that the r f /s 1.1
and 1.3 represents that the maximum carrier frequency offset is 0.1 and 0.3 respectively,
which is a little different from the explanation in Table 3.

The improvements of piecewise extrapolation for compressed OFDM signal on MSE is
can be found in Figure 5, especially when the bandwidth of iteration filter is larger than the
original bandwidth. For piecewise extrapolation with larger M, the mild-variation area of
MSE appears later with lower MSE at the same r f /s and computational complexity. From
Figure 5a,b, more complex mapping form leads higher MSE but not double at the same r f /s
and M. Similarly, in Figure 4b, the MSE at ‘ratio = 1.1, M = 4’ is lower than that at ‘r f /s = 1,
M = 1’, and so it is at ‘ratio = 1.3, M = 4’. It can be seen that the truncation error caused by
large iteration filter bandwidth can be suppressed by piecewise method.

To verify the feasibility of the proposed method for FrFT bandlimited signal, an LFM
signal f = exp

(
j2πω0t + jπkt2) is selected since energy concentration characteristics of its

FrFT spectrum at the fraction angle ϕ = −arccotk. The original signal is with ω0 = 8, k = 1,
|t| < 4 and is sampled for N = 1024 points. Considering that the discrete FrFT spectrum of
LFM signal is enveloped in sinc shape, the original signal bandwidth is selected as its first
zero-crossing point which is a little larger than the computational result from ϕ. Combined
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with the preliminary of FrFT and the piecewise extrapolation method, the MSEs at different
r f /s and M’s are illustrated in Figure 6.

Figure 6. MSE of piecewise extrapolation for OCDM signal.

As shown in Figure 6, the piecewise extrapolation method enables to improve the
accuracy of GP based extrapolation method (M = 1) for the OCDM signal, and the improve-
ment is more obvious with larger r f /s. When comparing the MSE at the same r f /s but
different M, the mild-variation area at different M appears at similar ITE but with different
computational complexity and MSE values. For instance, the mild-variation area of MSE
appears at ITE = 1000 for all M’s at r f /s = 1.1, but the total iterations are different. Referred
to Table 2, the total computation of M = 2 and M = 4 are 1.72 times and 3.17 times than that
of M = 1, respectively. With a fixed computational complexity of ITE = 4000 and M = 1.0,
the MSEs of 2-piece extrapolation and 4-piece extrapolation decrease by 60% and another
95% at r f /s = 1, 60% and another 88% at r f /s = 1.1, and 52% and another 46% at r f /s = 1.3.
From the perspective of improvement degree, the proposed method behaves better at the
r f /s closer to 1.

5. Conclusions

In this correspondence, an M-piecewise extrapolation method is proposed to improve
the accuracy of a GP algorithm at the same computational complexity. The proposed
method involves the extrapolation for Fourier domain and fractional Fourier domain ban-
dlimited signals, of which the classical GP algorithm is a special case. Simulation results
show the MSE superiority of the proposed method compared with GP algorithm or GP-
based extrapolation algorithm for frequency bandlimited signals and FrFT bandlimited
signals, respectively. The improvement from proposed method with 2~4 pieces is obvious
in general with different bandwidth of iteration filter and truncated rates. When the GP
algorithm reaches the MSE bottleneck, the MSE of proposed method is basically more than
5% lower than GP and can be improved further. When the proposed method reaches the
MSE bottleneck, the MSE is more than 20% lower than GP at the same computational com-
plexity. Moreover, the influence of the factors including number of pieces, the bandwidth
of iteration filter and truncated rate on MSE and computational complexity is analyzed
and quantified. When the iteration filter bandwidth is larger or the truncated rate is rel-
atively small, the extrapolation accuracy can be lifted through increasing M under the
same computational complexity (but too many pieces may not lead further performance
improvement).
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