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Abstract: Using the quasi-optical approach, we investigate wave propagation along the periodically
corrugated surfaces and their interaction with rectilinear relativistic electron beams (REBs). At the
periodical structure, the field can be expanded into a series of spatial harmonics, which, in the case
of shallow corrugations, represent paraxial wavebeams with mutual coupling described within the
method of effective surface magnetic currents. We present the dispersion equation for the normal
waves. Two limit cases can be recognized: in the first one, the frequency is far from the Bragg
resonance and the wave propagation can be described within the impedance approximation with the
field presented as a sum of the fundamental slow wave and its spatial harmonics. In the interaction
with a rectilinear REB, this corresponds to the convective instability of particles’ synchronism with
the fundamental (0th) or higher spatial harmonics (TWT regime), or the absolute instability in the
case of synchronism with the −1st harmonic of the backward wave (BWO regime). In the latter
case, at the frequencies close to the Bragg resonance, the field is presented as two antiparallel quasi-
optical wavebeams, leading to the absolute instability used in the surface-wave oscillators operating
in the π-mode regime. Based on the developed theory, we determine the main characteristics
of relativistic Cherenkov amplifiers and oscillators with oversized electrodynamical systems. We
demonstrate the prospects for the practical implementation of relativistic surface-wave devices in
submillimeter wavebands.

Keywords: surface wave; sub-THz radiation sources; quasi-optical theory; 3D simulations

1. Introduction

Cherenkov-stimulated emissions from rectilinear relativistic electron beams (REBs) in
periodically corrugated waveguides have been widely used in radiation sources providing
GW power output in centimeter wavebands and up to MW in the sub-millimeter wave-
length range [1–25]. The radiated electromagnetic fields propagating in a periodic structure,
according to the Floquet theorem, can be expanded into a series of harmonics, one of which
interacts with an electron beam under the Cherenkov-type synchronism conditions:

ω− hν|| = shν||, (1)

where ν|| is the particle translational velocity, ω is the radiation frequency, h is the longitu-
dinal wavenumber of the fundamental harmonic, h = 2π/d, d is the structure’s period, and
s is the number of synchronous spatial harmonics. The main types of interaction regimes in
Cherenkov oscillators and amplifiers are illustrated by the dispersion diagrams presented
in Figure 1. For the realization of traveling wave tube (TWT) amplifiers [6,7], one can use
either the interaction with the 1st (s = 1, point D1) or with the fundamental (s = 0, point
A) [3,16,17] decelerated harmonic of the wave co-moving (hν|| > 0) with the beam. Among
the oscillator schemes, first of all, the backward wave oscillator (BWOs) [1,2,4–15] should be
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identified, where the electrons interact with the spatial harmonic of the wave propagating
in a backward (hν|| < 0, points C) direction. The orotron regime of interaction [5,26] should
also be mentioned, in which the radiation frequency is close to the cutoff frequency of
the operating mode ( h→ 0 , point E). Such regimes can also be referred to as operation
regimes near the low-frequency edge of the transparency band or, in terms of a phase
shift at one period of the structure, as 2π-mode excitation regimes. The alternative is to
operate in the vicinity of the high-frequency edge of the transparency band (point B) or
π-mode excitation regimes. In the latter regime, the fundamental harmonic is excited and
the formation of the surface wave takes place. Thus, such radiation sources are usually
referred to as surface-wave oscillators (SWOs) [18–25]. In the theoretical and experimental
investigations presented in [19,20], the term “multiwave Cherenkov oscillators” (MWCO)
was also used.
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at different energies are shown in green, solid red curves mark the dispersion of the synchronous 
normal waves, dashed red curves correspond to the waveguide partial modes, and dashed black 
lines are the light lines. Point A’s correspond to the TWT synchronisms with the fundametal 
harmonics, B are the π mode synchronisms, C are the BWO synchronisms, D mark the TWT 
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Figure 1. Dispersion diagrams of Cherenkov beam-wave interactions in periodically corrugated
systems: (a) corrugated metal plate; (b) planar; and (c) cylindrical waveguides. Electrom beam lines
at different energies are shown in green, solid red curves mark the dispersion of the synchronous
normal waves, dashed red curves correspond to the waveguide partial modes, and dashed black lines
are the light lines. Point A’s correspond to the TWT synchronisms with the fundametal harmonics, B
are the πmode synchronisms, C are the BWO synchronisms, D mark the TWT synchronisms with
the +1st harmonics, and E stand for the orotron regimes. Gray areas are the regions of quasi-optical
approximation validity.
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Between the distinguished regimes, there are no sharp boundaries: a variation in
the particles’ energy leads to a smooth shift of the synchronism point in the dispersion
diagram from one regime to another (see Figure 1). However, in the development of the real
experimental devices, one of the regimes is usually chosen as an operating one, whereas the
others are considered to be the sources of parasitic excitation, usually related to operation at
spurious modes with a transverse index differing from that of the chosen operation mode.

However, for the analysis presented in this paper, it is no less important that the
previous theoretical models describing the indicated regimes are fairly different. The the-
ory of such variants of relativistic devices, in which the transverse field structure can be
assumed fixed and coinciding with one of the bulk modes of the metal or dielectric [27]
waveguide, has been constructed somewhat thoroughly. This applies in the first place
to TWT amplifiers [3] operating at the spatial harmonics and to the stationary [2] and
non-stationary [28–31] theories of backward wave oscillators (BWOs), which, in addition
to the form of particle motion equations, are similar to the theories of their weakly rela-
tivistic counterparts [32,33]. The applicability condition of these theoretical models under
conditions of paraxial propagation of radiation, typical for TWT and BWO, is the limitation
on the transverse dimensions of the waveguides by one or several wavelengths. For the
significantly oversized structures, the fixed structure approximation can also be efficient
in the analysis of the orotrons [34], which involves interaction at quasi-cutoff frequencies
and the formation of the operating mode by Brillouin rays propagating in the transverse
direction with respect to the electron’s translational velocity. Similar to gyrotrons [35], se-
lective excitation of a single quasi-cutoff mode with a fixed transverse structure is possible
in orotrons. In these devices, synchronous interaction of the REB with a spatial harmonic
of the operating mode takes place.

This paper is devoted to a theoretical description of relativistic Cherenkov-type ra-
diation sources with oversized electrodynamical systems. Implementation of oversized
structures (i.e., those with transverse dimensions strongly exceeding the wavelength) is rel-
evant for relatively long-wavelength bands (X-band) for the realization of ultra-high-power
(multi-GW) pulsed radiation sources, and, even more so, for shorter-wavelength bands
(W-band or G-band), where one needs to reduce the Ohmic losses and simultaneously
provide a channel for the transportation of intense REBs.

Under such conditions, it is natural to use the quasi-optical approach for the descrip-
tion of radiation propagation [36–41]. The main simplified assumption, proposed in [36]
and further developed in [37] and used in the presented analysis, is the approximation
of relatively shallow corrugation depth in the scale of its period and wavelength. This
assumption is justified by the experimental situation in the case of relativistic electron
beam radiation when the Cherenkov-type synchronous interaction requires the wave to
be decelerated only slightly. At the same time, the smallness of the corrugation allows
the method of equivalent surface magnetic currents to be used, developed in [42]. At the
corrugated structure, the field is expanded in a series of spatial harmonics; each one of
them is represented by a paraxial wavebeam described, within the quasi-optical approach,
by parabolic-type equations.

Thus, this review contains the main concepts of the theory of Cherenkov-type oscil-
lators and amplifiers with oversized electrodynamical systems, most of which involve
the slowing-down of the fundamental spatial harmonics, which makes the conventional
representation of the mode field as the bulk waveguide mode incorrect. First, TWT at the
fundamental slowed-down harmonic and relativistic surface-wave oscillators (SWOs) are
discussed. Despite numerous experimental realizations of such devices [18–25], consistent
linear and non-linear theories had been lacking, despite some semi-phenomenological mod-
els describing the formation of the surface wave by the parabolic equations constructed
based on the dispersion law [31,43]. At the same time, these regimes recently became
more relevant for experiments [21–25] due to the advancement of the Cherenkov-type
sources into the shorter-wavelength bands, as these regimes are characterized by the fairly
high coupling of the electrons with the wave. Besides, the formation of the surface wave
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ensures the regularity of the radiation pattern along the normal (with respect to the surface)
coordinate, thus allowing the oversized waveguides to be used. In short-wavelength bands,
the description of conventional regimes of interaction at the spatial harmonics has some
specific features. At large oversize factors, slowing down of the fundamental harmonic can
become significant. As a result, a surface wave is formed possessing the spatial harmonics
that can be involved in synchronous interactions with the REB both in TWT (+1st harmonic)
and BWO (−1st harmonic) regimes.

Throughout the paper, we consider two main geometries of Cherenkov radiation
sources, the planar geometry and the cylindrical one. Planar geometry [43–47], albeit
somewhat exotic for experimental realization, is much simpler for theoretical consideration
and is used as the basic one. The more conventional cylindrical systems in the case of a fairly
large oversize can be described in the quasi-planar approximation. The differences between
planar and cylindrical models are specifically emphasized. It should be noted that most of
the theoretical results presented here were verified by direct 3D PIC simulations [36–41],
although we opt to leave the comparisons out of the current presentation.

Accordingly, the paper is organized as follows. Section 2 is dedicated to the electro-
dynamical features of the corrugated structures in the absence of the electron beam. A
dispersion equation was obtained for the normal surface waves. Specific features of surface
wave formation in planar and cylindrical waveguides are presented; in the latter case, a
criterion of surface-wave existence is obtained. The case of near-cutoff modes is considered
separately. An analytical description of the formation of high-quality longitudinal modes
in finite-length corrugated structures is given. In Section 3, the self-consistent system of
equations of electron-wave synchronous interaction with the field of one of the harmonics
is obtained in the most general form for the planar geometry. We show that these equations
describe TWT, BWO, π-mode, and orotron operation regimes and in some cases can be
reduced to conventional fixed-structure equations. Lateral mode selection is considered
using a 3D model. We also discuss the excitation of the surface wave by extended electron
bunches in super-radiant regimes. In Section 4, the above concepts are applied to cylindrical
structures. In the conclusion, a brief overview of the novel theoretical and experimental
concepts of surface-wave devices utilizing complex gratings proposed on the basis of the
quasi-optical theory is given.

2. Electrodynamics of Weakly Corrugated Planar and Cylindrical Waveguides
2.1. Dispersion Characteristics of Normal Waves near a Single Periodically Corrugated Plate

We start with the analysis of the dispersion characteristics of the normal waves propa-
gating along the corrugated metal plate (Figure 2) characterized by displacement,

b(z) = b∼ cos(hz). (2)
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We assume that the corrugation is shallow both in the scale of its period b∼ << d
and the radiation wavelength b∼ << λ. Consider the TM polarized field with the
following components

Hx = Re
(

Hω
x eiωt

)
, Ey = Re

(
Eω

y eiωt
)

, Ez = Re
(

Eω
z eiωt

)
. (3)

As shown in [36–42], such a corrugated plate can be substituted by a regular surface
y = 0 with an effective surface magnetic current

jm
x =

c
4π

(
∂

∂z

(
b(z)Eω

y

)
− i

ω

c
b(z)Hω

x

)
. (4)

In the planar geometry under consideration, the Maxwell equation for monochromatic
fields with the inclusion of a magnetic current (4) can be reduced to a single equation for
Hx component,

∆Hω
x +

ω2

c2 Hω
x = iω

4π

c2 jm
x δ(y), (5)

where δ(y) is the delta function. Due to the periodicity of the coefficients, the paraxial eigen-
waves of Equation (5) are presented as a composition of spatial harmonics (Floquet expansion)

Hω
x =

+∞

∑
s=−∞

Hs(z, y)e−i(k+sh)z, (6)

where k = ω/c and Hs(z, y) are slowly varying in the scale of the period. Correspondingly,
the components of the electric field Eω

y = − i
k

∂Hω
x

∂z and Eω
z = i

k
∂Hω

x
∂y can be written down as:

Eω
y = −

+∞

∑
s=−∞

k + sh
k

Hse−i(k+sh)z, Eω
z =

i
k

+∞

∑
s=−∞

∂Hs

∂y
e−i(k+sh)z. (7)

Note here that from a Floquet theorem’s point of view, the numeration of harmonics
in (6–7) is somewhat arbitrary and can be shifted by any integer S using the substitution
Hs′ = Hs′ eiShz; by default, we assume the fundamental harmonic H0 to be slow in the scale
of the Bragg wavenumber, |∂H0/∂z| <<

∣∣∣hH0

∣∣∣; moreover, the sign of s can also be changed

by changing the sign of h. For shallow corrugations, the series (6–7) can be limited by the
three lowest harmonics (0th, −1st, and 1st); substitution in (5), after neglecting the rapidly
varying terms, yields

∂H0

∂z
+

i
2k

∂2H0

∂y2 = −iαδ(y)(H1 − H−1), (8)

∂H1

∂z
+

i
2(h + k)

∂2H1

∂y2 − i
h

2
+ 2kh

2(h + k)
H1 = −iα

k
h + k

δ(y)H0, (9)

− ∂H−1

∂z
+

i
2(h− k)

∂2H−1

∂y2 − i
h

2 − 2kh
2(h− k)

H−1 = iα
k

h− k
δ(y)H0, (10)

where α = b∼h/4 is the coupling coefficient. Presenting the solutions of the linear sys-
tem (8–10) as H0,±1 ∼ exp(iΓz − g0,±1y), we find the transverse decrements g0,±1 and
corresponding wavenumbers κ0,±1 = ig0,±1 of the harmonics:

κ0 = ig0 = i
√

2kΓ, κ±1 = ig±1 = i

√(
k± h

)2
− k2 + 2

(
k± h

)
Γ. (11)
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These decrements are bound by the dispersion relation

g0 = 4k2α2
(

1
g1

+
1

g−1

)
, (12)

which can be treated as an equation allowing to find the Γ(k) dependence. The total longitudinal
wavenumber of the fundamental harmonic, according to Equations (6) and (11), is

h(k) = k + Γ(k) = k +
g2

0
2k

. (13)

Figure 3 shows the dispersion characteristics h(k) of the normal waves at various
values of the coupling coefficient. Obviously, these curves lie beneath the light lines (shown
in dash-dot), so the corresponding waves are slow; the transverse decrement is purely real
so these solutions correspond to evanescent (surface) waves. The amendment Γ of the
wavenumber characterizes the deceleration of the surface wave:

vph/c = k/h ≈ 1− Γ/k. (14)
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curve 2 at α = 0.2. Dashed line near curve 1 corresponds to the impedance approximation
Equations (17) and (18), dashed line near curve 2 corresponds to the approximation of counter-
propagating wavebeams (26) (Equation (22)). Similarly to Figure 1 caption, point A corresponds to
the TWT synchronism with the fundametal harmonics, B denotes the πmode synchronism, C is the
BWO synchronism.

Further, it is important to distinguish the two limit cases:
(A) In the first case, the wave frequency is far from the Bragg resonance frequency

ω0 = ch/2; here 2
(

k± h
)

Γ <<
(

k± h
)2
− k2, and (9) yields g±1 ≈

√(
k± h

)2
− k2. Un-

der such conditions the derivatives with respect to z can be neglected in Equations (8) and (9)
which then are integrated as

H±1 = ±2α
k

g±1
H0e−g±1y, (15)

so Equation (10) is reduced to a single equation

∂H0

∂z
+

i
2k

∂2H0

∂y2 + iχδ(y)H0 = 0. (16)
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Here, we introduce the surface impedance

χ = 2α2

 k√
(k + h)

2 − k2
+

k√
(k− h)

2 − k2

. (17)

Further, we refer to this approximation as an impedance approximation [41], as
Equation (16) yields an impedance-type relation between the electric and magnetic field
amplitudes on the surface:

i
2k

∂H0

∂y

∣∣∣∣
y=0

= −iχ H0|y=0, or Eω
z = −2iχHω

x .

In the impedance approximation, the dispersion Equation (12) is simplified to the form

Γ = 2kχ2. (18)

The transverse decrement of the 0th harmonic is proportional to the impedance,
g0 = 2kχ. In Figure 3, at α = 0.4, a solid curve shows the dispersion of the normal
surface wave determined by Equation (14) while the dashed line is the one obtained using
Equation (20); far from the Bragg resonance the curves are very close, whereas at k ≈ h/2,
they diverge as χ(k)→ ∞ .

(B) In the second limit case, near the intersection of the partial-wave curves of the 0th
and −1st spatial harmonics, the wave frequency is close to the Bragg frequency,∣∣∣h− 2k

∣∣∣ << h. (19)

Here g−1 << g1, and the dispersion Equation (10) transforms to

Γ = 8k3α4 1
g2
−1

, (20)

which is equivalent to dropping Equation (9) for the +1st harmonic from (8–10). Introducing
the shifts from the Bragg frequency and wavenumber,

Ω
c
=

h
2
− k, Γ̃ = Γ− Ω

c
, (21)

we put the dispersion Equation (20) to its equivalent symmetric form (wave over Γ is
further omitted) (

Ω
c

)2
− Γ̃2 = h

2
α4. (22)

The solution of Equation (22) is also shown in Figure 3 as a dashed curve. Accordingly,
using (21) and neglecting the +1st harmonic, one might introduce the symmetric notations
for the fields of coupled harmonics

C+ = H0e−i Ω
c z, C− = H−1e−i Ω

c z (23)

and put the Equations (8)–(10) to the form:

± ∂C±
∂z

+ i
Ω
c

C± +
i
h

∂2C±
∂y2 = iαδ(y)C∓. (24)

The system (24) can be readily generalized on non-stationary processes by replacing
Ω→ −i∂/∂t ; transformations (21) and (23) then mean that the carrier frequency in (3) is
chosen to be equal to the Bragg frequency ω = ω0 = hc/2 while the field amplitudes are
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considered to be slowly varying in time. Another obvious generalization can be undertaken
by the inclusion of the second transverse coordinate (x) in consideration. According to
the initial Helmholtz Equation (5), the second derivative with respect to x would appear
with the same sign and the same coefficient as ∂2/∂y2. One more generalization is the
inclusion of the Ohmic losses according to the Leontovich boundary condition [48]. Thus,
the more general equations describing the spatio-temporal dynamics of the field under the
conditions (19) of the Bragg resonance would be as follows:

± ∂C±
∂z

+
1
c

∂C±
∂t

C± +
i
h

∂2C±
∂y2 +

i
h

∂2C±
∂x2 + iσC±δ(y) = iαδ(y)C∓. (25)

Here σ =
√

i/2kdskin, dskin is the skin depth; parabolic-type operators on the left-
hand side of Equation (25) describe the diffraction of the wavebeams with respect to
the transverse coordinates. It is important that under conditions (19), the symmetric
Equation (25) describe the mutual scattering of the 0th and the −1st harmonics represented
as two counter-propagating quasi-optical wavebeams (compare to Equation (6)):

Hx = Re
(

C+(x, y, z, t)e−i h
2 z + C−(x, y, z, t)ei h

2 z
)

ei hc
2 t (26)

2.2. Dispersion Characteristics of Normal Waves in a Planar Corrugated Waveguide

In a planar waveguide with a width of b (Figure 1b), with a corrugation (2) on one
of the walls, and the second in the perfect metal described by the boundary condition
Eω

z = i
k

∂Hω
x

∂y = 0, Equations (8)–(10) would still be valid. According to the boundary
conditions, their solution should be presented as

H0,±1 = H̃0,±1ch[g0,±1(y− b)]e−iΓz. (27)

Similarly to Equations (11)–(13), we obtain the dispersion equation for the normal waves:

Γtanh2
√

2Γkb = 8k3α4
(

1
g1tanhg1b

+
1

g−1tanhg−1b

)2
. (28)

At α = 0, (28) and (13) yield a dispersion relation for the waves in a planar corrugated
waveguide, hn(k) = k + 1

2k
( nπ

b
)2, where n is an integer (Figure 1b). This dispersion

corresponds to a set of regular waveguide modes with cutoff frequencies of nπc
b , which

we usually refer to as partial modes. Note, however, that the real dispersion law in the

waveguide is hyperbolic, hn(k) =
√

h2 +
( nπ

b
)2. According to the theory constructed

above, Equation (28) and the dispersion laws that follow from it are valid in quasi-optical
approximation, at nπ

b << h, i.e., at the frequencies far from the cutoff.
It is also important to note that in the planar geometry, the lowest TEM mode (n = 0) has

zero cutoff and the vacuum dispersion law, hn=0(k) = k. Thus, at α 6= 0, this mode corresponds
to the surface wave in a semi-infinite system described above. Under the conditions (17) of the
Bragg resonance, using the transformations (21) and (23), Equation (28) can be formulated in

terms of transverse decrements g+ = g0 =
√
−h(Ω/c + Γ), g− = g−1 =

√
−h(Ω/c− Γ) as

g+g− tanh(g+b)tanh(g−b) = −h
2
α2 (29)

In the wide waveguide, e|g±b0| >> 1 (Figure 4a near Γ = 0), one can put tanh(g±b) ≈ 1
and neglect the second wall, thus transforming the dispersion Equation (29) into (22). The
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opposite limit is a waveguide narrow in the scale of field decrement, |g±b|<< 1 , (Figure 4b
near Γ = 0), when tanh(g±b) ≈ g±b, and Equation (28) yields

Ω2

c2 − Γ2 =
α2

4b2 .
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This is a well-known equation describing the coupling of two counter-propagating TEM
modes with fixed transverse field structures in a planar waveguide under conditions (19).

Another important limit of Equation (28) is the case of non-resonant wave coupling
realized at large |Γb|. Here, one of the transverse decrements tends to zero (Figure 4b at
|Γb| >> 1). Let us put for definiteness |g+b|>> 1, but |g−b|<< 1 , which is true at Γ > 0,
and transform Equation (29) to

√
(−Ω + Γ)(−Ω− Γ) =

√
hα2

b
.

Substituting expressions (27) into Equations (8)–(10), one can put down the field of
the normal wave as a combination of the TEM mode and its evanescent spatial harmonics
propagating in the backward direction:

Hx = ReC+

[
ei((hc/2+Ω)t+(h/2+Γ)z) +

2αh cosh(g+y)
g+sinh(g+b)

ei((hc/2+Ω)t−(h/2−Γ)z)

]
.

Dispersion Equation (29) describes not only the dispersion of the lowest surface mode,
which exists in the system at a large gap b, but also several of the next transverse modes
propagating in a finite-gap waveguide, far from their cutoff frequencies. Corresponding
characteristics are presented in Figure 5.

Note that for the solution located beneath the light lines, the transverse wavenumbers
κ± = ig± are purely imaginary so this solution corresponds to the evanescent mode. For
solutions above the light lines, according to (29) the transverse wavenumber is purely real
so these solutions correspond to the bulk modes of the planar waveguide with different
transverse indexes. If the second wall is removed, b→ ∞ , these solutions transform to
continuous-spectrum solutions.

Far from Bragg resonances, the nth solution of Equation (29) corresponds to a combi-
nation of the nth mode of the planar waveguide (n variations over y) for the component C+

and a fast-decreasing spatial harmonic for the component C− (to the left of the resonances).
To the right, C+ and C− are swapped. Dispersion characteristics are split in the Bragg
resonance areas due to the interaction of partial waves with various transverse indexes.
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Figure 5. Dispersion diagram describing wave propagation in a planar waveguide with a single
corrugated wall with a period of d = 0.5 mm and an amplitude of 0.025 mm. The gap between planes
b = 1.25 mm. Dashed curves were obtained from Equation (29) and solid curves were obtained by
means of numerical simulation with the use of CST Microwave Studio.

For comparison, solid curves in Figure 5 show the dispersion characteristics obtained
in direct simulations using CST MICROWAVE STUDIO software; near the Bragg reso-
nance of the zeroth modes, i.e., at Ω/ω ≤ 0.1, Γ/k ≤ 0.1, qualitative and quantitative
correspondence is fine.

Near-cutoff modes in corrugated waveguides. As noted above, the consideration based
on presenting the field harmonics as quasi-optical wavebeams propagating along the
corrugated surface is inapplicable near the cutoff frequencies (point E in Figure 1b) of
higher (n > 1) waveguide modes. Nevertheless, the above formalism can be modified in
order to include the near-cutoff waves. Indeed, consider the case when the 0th harmonic in
the Floquet expansion has h = 0, and write, correspondingly (compare to Equation (6)),

Hω
x = H0(z, y, t) + H1(y, z, t)e−ihz + H−1(y, z, t)eihz (30)

Accordingly, taking into account (4), (7), and (30), the surface magnetic current can be
put down as (all the fields in the right-hand part are taken at y = 0)

jmx = −i
cb∼
8π

(
eihzhH0 + e−ihzhH0 + h(H1 + H−1)

)
Substituting this expression into (5) and equating the coefficients with the correspond-

ing exponents, we come up with a system of coupled-mode equations (compare to (8); note
that here we cannot neglect the second derivative of H0):

h
2
H0 − 2ih 1

c
∂H0
∂t + ∂2 H0

∂z2 + ∂2 H0
∂y2 = h

2
b∼
2 δ(y)(H1 + H−1)

∂H1
∂z + 1

c
∂H1
∂t + i

2h
∂2 H1
∂y2 = −i hb∼

4 H0δ(y)

− ∂H−1
∂z + 1

c
∂H−1

∂t + i
2h

∂2 H−1
∂y2 = −i hb∼

4 δ(y)H0

(31)
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Note that the spectrum of the quasi-cutoff modes is significantly rarefied compared to
the propagating waves; we can assume that only one quasi-cutoff mode H0 = Fn(z) cos nπy

b
is excited, and reduce Equation (31) to the form:

1
c

∂
∂t Fn − i

2h
∂2Fn
∂z2 + i

2h

(
h

2 −
( nπ

b
)2
)

Fn = −i hb∼
b (H1(0, z) + H−1(0, z)),

∂H1(y,z)
∂z + 1

c
∂H1(y,z)

∂t + i
2h

∂2 H1(y,z)
∂y2 = −i hb∼

4 δ(y)Fn,

− ∂H−1(y,z)
∂z + 1

c
∂H−1(y,z)

∂t + i
2h

∂2 H−1(y,z)
∂y2 = −i hb∼

4 δ(y)Fn,

(32)

Although the cutoff mode has infinite phase velocity, its harmonics are sublimi-
nal and can be synchronous to electron beams. This synchronism is being utilized in
orotrons [5,26,34,43]. Equation (32) is governed by geometrical detuning

δg =
h

2 −
( nπ

b
)2

2h
=

π
(
4b2 − n2d2)

2db2 (33)

When
∣∣δg
∣∣ << h, Equation (32) describes the mutual coupling of quasi-cutoff and

propagating waves used in a so-called advanced Bragg resonator for the provision of
transverse mode selection in free electron masers [49]. At

∣∣δg
∣∣ ∼ h, as shown below in

Section 3.6, Equation (32) can be reduced to those describing the wave propagation in the
orotron [34].

2.3. Dispersion Characteristics of Normal Waves in Oversized Cylindrical Waveguides with
Azimuthally Symmetric Corrugation

For high-current REBs, the tubular geometry of the electrodynamic systems is prefer-
able compared to the planar systems considered above, as it allows for the formation
of the beams with a more uniform distribution of density with respect to the transverse
(azimuthal) coordinate. Accordingly, most of the experimental realizations of SWOs that
had cylindrical symmetry were energized by tubular REBs. In particular, this applies
to multiwave Cherenkov oscillators (MWCO), which provided the record output pulsed
power values in the centimeter waveband [19,20].

Dispersion characteristics of the symmetric modes at moderate oversize. The criterion of the
surface-wave formation.

At moderate oversize (diameter-to-wavelength ratio) factors, the azimuthally sym-
metric surface wave was excited in these oscillators exploiting the shallow azimuthally
symmetric corrugation on the inner surface of a cylindrical waveguide,

r(z) = R + r∼ cos
(

hz
)

, (34)

where r∼ is its amplitude. In this Section, we investigate wave propagation in such systems,
with axially symmetric TM-polarized waves having the following field components (cf.
Equation (3)):

Hϕ = Re
(

Hωϕ eiω0t
)

, Ez = Re
(

Eωz eiω0t
)

, Er = Re
(

Eωr eiω0t
)

. (35)

These fields can be expanded in a series of radial TM0n modes of a regular cylindrical
waveguide with a radius of R, which we refer to as partial modes, with a dispersion

determined by ω0n(h) = c
√

h2 + ν2
0n/R2 depicted in Figure 1c (ν0n are the roots of the

zeroth order Bessel function J0(ν0n) = 0).
The corrugation provides coupling and mutual scattering of waves with wavenumbers

h+ and h− satisfying the Bragg condition h+ − h− = h; thus, a set of Bragg resonances
emerges where the dispersion curves split (Figure 1c). At the lowest Bragg resonance, such
splitting can lead to deceleration of the phase velocity and the formation of the evanescent
wave, which can be excited by the electron beam.
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This corrugation can also be substituted by the virtual surface magnetic current iµω0
ϕ

defined at the surface of a regular waveguide. In order to describe the excitation of the
waves (33) by the effective surface magnetic current, the Maxwell equations can be reduced
to a single equation for the magnetic field component Hωϕ

∂

∂r

(
1
r

∂(rHωϕ )

∂r

)
+

∂2Hωϕ
∂z2 − 2ik0

∂Hωϕ
c∂t

+ k2
0Hωϕ = −i

4πk0

c
iµωϕ δ(r− R), (36)

and the relations binding the amplitudes of the electric and magnetic fields:

Eωz = − i
k0

1
r

∂(rHωϕ )

∂r
, Eωr =

i
k0

∂Hωϕ
∂z

.

Similarly to Equation (5), the solution of Equation (36) at the frequencies close to the
Bragg resonance (see Figure 6a) can be presented as two counter-propagating TM-polarized
quasi-optical wavebeams (26),

Hωϕ = C+(z, r, t)e−ihz/2 + C−(z, r, t)eihz/2, (37)

where C+ and C− are the slow varying in space and time wave amplitudes. Further, we
choose the carrier frequency equal to the frequency of the lowest partial TM01 mode cor-

responding to the Bragg wavenumberω0 = ω01(h/2) = c
√

h
2
/4 + ν2

01/R2. Substituting
(37) into (36) we obtain, after averaging, the coupled-wave equations describing the field
propagation at frequencies close to the Bragg resonance (red dashed contour in Figure 6a):

∂C+

∂z
+

2k0

h
∂C+

c∂t
+

i
h

∂

∂r

(
1
r

∂(rC+)

∂r

)
+ i

ν2
01

hR2
C+ = iαδ(r− R)C− (38)

− ∂C−
∂z

+
2k0

h
∂C−
c∂t

+
i
h

∂

∂r

(
1
r

∂(rC−)
∂r

)
+ i

ν2
01

hR2
C− = iαδ(r− R)C+, (39)

where

α =
r1

2

(
h
2
+
ν2

01

hR2

)
(40)

is the coupling coefficient. Equations (38) and (39) have the solution C± ∼ J1(κ±r)eiΩt−iΓz,
|Ω|<< ω , |Γ|<< h are amendments to the carrier frequency and axial wavenumber,

κ2
± = −g2

± =
ν2

01
R2 ∓ hΓ +

2ω0Ω
c2 (41)

are the complex transverse wavenumbers (note that κ± = ig± as defined previously) of
the forward and the backward wavebeams bound by the dispersion equation describing
the propagation of symmetric TM-polarized waves in a shallow corrugated cylindrical
waveguide in the vicinity of the Bragg frequency:

κ+κ− = h
2
α2 J1(κ−r0)J1(κ+r0)

J0(κ−r0)J0(κ+r0)
. (42)
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Figure 6. (a) Dispersion diagram f =ω(h)/(2π) of the azimuthally symmetric TM partial modes in a
corrugated waveguide (blue curves), black dashed lines denote the light lines f = hc/(2π); area of
validity of the quasi-optical approximation is marked by a red dashed contour. (b–d) Dispersion
curves of normal waves (red) split near the Bragg resonance at different corrugation amplitudes.
Electron beam lines for different energies are shown in green; r0 = 1.5 mm, d = 0.5 mm.

Solving (41) and (42), one finds a countable set of dispersion branches
fn = (ω0 + Ωn(h/2 + Γ))/2π depicted in Figure 6 for different values of the coupling
coefficient α. Each solution corresponds to the nth axially symmetric mode TM0n of the cor-
rugated waveguide, which we refer to as normal waves. Most of these solutions correspond
to fast waves with dispersion curves lying above the light cone, i.e., with phase velocities
greater than the speed of light (see Figure 6b). However, at some parameters, the lowest
normal TM01 wave might go below the light line, when both transverse wavenumbers κ+
and κ− become imaginary and the wave is evanescent. Thus, Equations (41) and (42) yield
a criterion on the geometry of the system allowing for the existence of the slow evanescent
wave. At some value α = α∗, the topmost point of the dispersion curve of the lowest TM01
normal wave intersects with the light line at Γ = 0 (see Figure 6c) and the phase velocity at
this point is equal to the speed of light. Based on this, we derive the following criterion of
the existence of the evanescent wave [40]:

r1 ≥
2d2

π2R
. (43)
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According to this relation, the larger the waveguide radius r0 is, the smaller the
corrugation that is required for the formation of the evanescent wave. Note that in the
planar waveguides considered previously in Section 2.2, there is no criterion similar to (43)
and the slow wave emerges at an indefinitely small corrugation amplitude. Thus at α > α∗
(Figure 6d), the TM01 normal wave becomes slow and can be excited in a Cherenkov-type
interaction by a rectilinear electron beam.

It should be noted that in oversized waveguides, k0R >> 1, ν
2
01

R2 terms can be ne-
glected in (36–39), and using the Bessel function asymptotic [50] at a large argument,

Jm(ξ) ≈
√

2
πξ cos(ξ− 2m+1

4 π), Equation (42) yields

κ+κ− = h
2
α2 tan(κ−R + π/4) tan(κ+R + π/4).

For evanescent waves (Reκ± 6= 0), the tangents in the right-hand part tend to unite at
large values, so the dispersion is reduced to Equation (22) with a wave coupling coefficient
of α = hr∼/4.

Dispersion characteristics of normal waves in oversized waveguides with small curvature.
Quasi-planar model.

In the small-curvature oversized waveguides, when the mean waveguide radius
R much exceeds the wavelength λ, beside the azimuthally symmetric modes, the non-
symmetric modes would be excited by the electron beam. These can be described within
the quasi-planar approximation by introducing the coordinate x = Rφ along the waveg-
uide azimuth. In such an approximation, under conditions (19), the field at the corrugated
surface can be presented as a sum of two TM-polarized wavebeams (26) with slow am-
plitudes C±(x,y,z,t), where the y-coordinate is reckoned in the normal direction from the
corrugated metal surface. In the initial physical variables, Hx corresponds to the azimuthal
component of the magnetic field while Ey and Ez determine the radial and axial electric
field components, correspondingly.

The coupling of counter-propagating wavebeams (26) is described by the system
of parabolic Equations (25) with the reference frequency chosen equal to the Bragg one,
ω0 = hc/2. Taking the cylindrical geometry into account, one should assume that the
fields decay at y→ ∞ . Besides, the cyclicity condition of solutions for Equations (25) with
respect to the azimuthal coordinate is also required,

C±(x + lx, z, y, t) = C±(x, z, y, t), (44)

where lx = 2πR is the system’s perimeter. This allows the fields to be expanded in the
Fourier series,

C±(x, z, y, t) =
∞

∑
m=−∞

Cm
±(z, y, t)e2πimx/lx , (45)

where each harmonic can be treated as a mode with an azimuthal index of m, p = 2π/lx.
Equation (25) yields the system binding for the amplitudes of these modes:

∂C+
m

∂z + ∂C+
m

c∂t + i ∂2C+
m

h∂y2 −
ip2m2

h
C+

m = iαC−mδ(y),

− ∂C−m

∂z + ∂C−m

c∂t + i ∂2C−m

h∂y2 −
ip2m2

h
C−m = iαC+

mδ(y),
(46)

For each azimuthal index m, these equations correspond to Equation (25) with a
reference frequency shifted by p2m2 and ∂/∂x = 0.

Assuming that the waveguide radius is large in the scale of the decrement of the surface
wave, we present the solutions of (46) at y > 0 as Cm

± ∼ exp(iΩt− iΓz− gm
±y), where

gm
± =

√
−h
(

Ω
c
∓ Γ

)
+ p2m2
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are the transverse decrements. Using the boundary conditions
(

∂Cm
±

∂y − αhCm
∓

)∣∣∣
y=0

= 0

following from (46), we obtain the dispersion equation for the normal waves

gm
+gm
− = h

2
α2 or

(
Ω− p2m2c/h

)2

c2 − Γ2 = h
2
α4. (47)

For the azimuthally symmetric normal wave m = 0, Equation (47) coincides with
Equation (22). As shown in Figure 7, the dispersion curves of the normal wave of the
modes with various azimuthal indexes are similar to each other and lie beneath the light
lines (Ω < 0, |Ω| < |Γ|), i.e., these waves are slow. Correspondingly, the transverse
wavenumbers κm

± = igm± are purely imaginary, i.e., the fields are confined at the periodic
structure with amplitudes decaying exponentially. At Γ = p2m2/h all of the transverse

decrements are equal to g±m = h
2
r∼/4.
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oversized waveguides; the beam line is also shown.

2.4. Evanescent Eigenmodes in Finite-Length Periodic Structures

Planar structures. A section of a corrugated structure forms an open resonator with a
length of lz (Figure 2), which has a spectrum of modes with different longitudinal indexes.
In order to find these modes, we supply Equations (25) with boundary conditions at
the edges of the structure corresponding to the absence of external energy fluxes and of
reflections for partial waves from the ends of the corrugation as well:

C+(z = 0) = 0; C−(z = lz) = 0 (48)

At ∂/∂x = 0, solutions of Equations (25) and (48) depend only on two combinations
of parameters, namely, on the normalized length L = α2hlz and the normalized losses
σ/α. Assuming that the fields tend to zero at Y → ∞, we seek the eigenmodes of (25) at a
complex eigenfrequency of Ω (which is a mismatch of the oscillation frequency from the
Bragg frequency), C± = Ĉ±eiΩt.

In planar geometry, one can find the field structures and eigenfrequencies analyt-
ically. A Fourier transform of the fields over the Y-coordinate and the symmetry (or
anti-symmetry) of solutions of Equations (25) and (48), Ĉ+(y, z) = ±Ĉ−(y, lz − z), allows
us to obtain a single integral equation [51] determining the eigenmodes:

Ĉ+(0, Z) =

√
h

πi

z∫
0

±αĈ+(y = 0, lz − z′) + iσĈ+(y = 0, z′)√
z− z′

ei Ω(z′−z)
c dz′. (49)

This equation possesses an infinite discrete eigenmode spectrum, i.e., a set of complex
values of Ω. The frequencies and spatial profiles of eigenmodes were found numerically
(Figure 8). The mode frequencies are located below the light line, so the real parts of the
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mode eigenfrequencies are negative. They are marked with dots close to the dispersion
curve in the lower part of Figure 8a for α2hlz = 8.8, whereas the imaginary parts of these
eigenfrequencies are shown as vertical lines in the upper part of the same figure. The
quality factor Q = ω0(2ImΩ)−1 of the fundamental mode is about 3 times higher than that
of the second mode.
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Figure 8. (a) Surface wave dispersion curve (solid line) with dots corresponding to mode eigenfre-
quencies at α2hlz = 8.8 in the lower part of the diagram; mode losses are marked by vertical lines in
the upper part of the diagram, (b) Spatial profiles of the first two modes of surface-wave resonator.

The mode decrements decrease and Q factors increase with L = α2hlz while the
influence of Ohmic losses becomes more significant. We have derived [51], the asymptotic
formulas for frequency shifts, Q factors, and mode structures, valid in the case of large
length L >> π and small Ohmic losses σ/α ∼ dskin/b∼ << 1. The longitudinal structures
of high-Q modes resemble those of the closed resonator,

C(s)
± (z, y) ∼ sin

sπz
lz

e−αhy (50)

with corresponding frequency shifts (see Figure 8)

ReΩs ≈ −c
√

h
2
α4 + Γ2

s = −c

√
h

2
α4 +

(
sπ

lz

)2
.

The quality factor of the fundamental (s = 1) mode can be put down as

Q =
1

Q−1
di f f + Q−1

Ohm

, (51)

where

Qdi f f =
L3

5π2α2 =
α4h

3
l3
z

5π2 ; QOhm =
1

2αhdskin
(52)

are the diffraction Q and the Ohmic Q, correspondingly. The two terms in (52) demonstrate
different behavior at the varying parameter α: while the diffraction term rises as Qdi f f ∼ α4,

the Ohmic Q decreases as QOhm ∼ α−1. This can be explained in a simple way: although
the wavebeam coupling rises, the modes become more confined at the corrugation, thus
reducing the diffraction losses; at the same time, the less effective the ‘volume’ of the mode,
the higher the influence of the Ohmic losses. Thus, there is a distinct maximum in the Q
dependence (Figure 9); formulas for the maximum Q and optimum corrugation depth can
be found in [51].
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mation of the fundamental mode with the highest Q-factor. At this stage (in Figure 10a, 
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the partial wave amplitude at the final stage depicted in Figure 10c have a single variation 
of the field along the z coordinate and decay exponentially along y (cf. Equation (50)). All 

Figure 9. Quality factor (51–52) of the fundamental mode of the surface-wave resonator made of
copper vs. corrugation depth parameter α at different values of the system length.

There is an alternative way to find the characteristics of the fundamental mode by
simulating the decay process based on time-domain Equations (25) with boundary condi-
tions (48) and initial field distribution C±|t=0 = C0

±(y, z). (Figure 10). Obviously, at the
initial stage of the simulation, several axial modes are excited. However, after some time,
diffraction of the field from the open-edge boundaries leads to the settling of the field distri-
bution which is independent of the initial conditions and corresponds to the formation of
the fundamental mode with the highest Q-factor. At this stage (in Figure 10a, ωt > 5000) the
wave amplitude decays exponentially in time. The spatial distributions of the partial wave
amplitude at the final stage depicted in Figure 10c have a single variation of the field along
the z coordinate and decay exponentially along y (cf. Equation (50)). All characteristics are
in good agreement with those found based on the solution of integral Equation (49). Ac-
cording to the spectrum of the residual radiation at the final stage of simulation presented
in Figure 10b, the highest-Q mode has an eigenfrequency of Ω ∼ −0.03hc.
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Figure 10. Results of simulation of excitation of the highest-Q mode of the surface-wave resonator by
initial field distribution at α = 1: (a) time dependence of the wave amplitudes at the open edge in
dB; (b) radiation spectrum at the initial stage of simulation (blue dashed curve) and at the final stage
(solid red line); (c) spatial distribution of the forward wave amplitude.

Cylindrical structures. The properties of evanescent eigenmodes of corrugated sections
of the cylindrical waveguides are similar to those described above. Their discrete mode
eigenspectra are characterized beside the two transverse (azimuthal m and radial n) indices
and by the third (axial) mode index s = 1, 2, 3 . . . , which denotes the number of mode
field variations along the z axis. When the criterion (43) is satisfied, high-Q azimuthally
symmetric (m = 0) evanescent (n = 1) eigenmodes are formed in the vicinity of the Bragg
frequency (Figure 6).

Similar to the planar case above, using the time-domain Equation (36) we simulate
the formation of the fundamental evanescent mode in a section of a cylindrical corrugated
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waveguide with a length of lz = 1.75 cm, mean radius of r0 = 1.5 mm, corrugation period
of d = 0.5 mm, and the amplitude of r1 = 0.075 mm. Such a system is to be considered
further as a slow wave structure for a millimeter-band SWO. In Figure 11b, the oscillation
frequency, defined as f = (2π)−1d(argC+)/dt, is shown settling on the fundamental
eigenmode (Figure 11a) resembles the one given by Equation (50): it has one variation
along the z axis and decays exponentially in a radial direction.

Electronics 2022, 11, x FOR PEER REVIEW 19 of 42 
 

 

 
Figure 11. Results of simulation of excitation of the corrugated section of the cylindrical waveguide 
by initial field distribution: (a) spatial distribution of the forward-wave amplitude in the highest-Q 
mode; (b) instantaneous radiation frequency; (c) Frequency dependence of reflection of incident 
TM01 mode from corrugated structure: the minima of reflectivity correspond to positions of modes 
with different axial index s. Parameters of the periodic structure: lz = 35d, d = 0.5 mm, r0 = 1.5 mm, r1 
= 0.075 mm. 

3. Quasi-Optical Models of Planar Cherenkov-Type Devices 
3.1. General Self-Consistent Equations of Electron-Wave Interaction 

For a description of radiation sources operation, the wave propagation Equations (8)–
(10) (or (33) in case of near-cutoff operation) should include the electron beam current, 
which is to be found from motion equations for electrons in the field of the corresponding 
synchronous wave. Consider a relativistic beam (Figure 12) traveling along the corrugated 
surface, or in the planar waveguide, parallel to the guiding magnetic field with an initial 
velocity of || 0сν β= . According to Figure 1, this beam can interact with any of the spatial 
harmonics s in the expansion (6) under the Cherenkov synchronism condition (1). For par-
axial waves in oversized waveguides, where /h k cω≈ = , Equation (1) yields 

( ) ||k sh vω ≈ + . (53)

 
Figure 12. Schemes of various Cherenkov-type radiation sources: (a) surface-wave oscillator; (b) 
backward-wave oscillator; (c) TWT amplifier; (d) super-radiant short-pulse generator. 

Similar to Section 2, we limit ourselves to shallow corrugations and cases s = 0, 1± . 
Under condition (53), the particles are bunched under the action of the electric field com-
ponent of the corresponding spatial harmonic 

0 4 8 12

200

300

400

250 260 270 280
0

0.2

0.4

0.6

0.8

1

f, 
G

H
z

, a.u.С+

( )a ( )b ( )c

t, ns

Re
fle

ct
io

n 
co

ef
f.

f, GHz

s=1

s=4
3

2

0

0.5

1

Figure 11. Results of simulation of excitation of the corrugated section of the cylindrical waveguide
by initial field distribution: (a) spatial distribution of the forward-wave amplitude in the highest-Q
mode; (b) instantaneous radiation frequency; (c) Frequency dependence of reflection of incident
TM01 mode from corrugated structure: the minima of reflectivity correspond to positions of modes
with different axial index s. Parameters of the periodic structure: lz = 35d, d = 0.5 mm, r0 = 1.5 mm,
r1 = 0.075 mm.

Note that, similar to planar geometry, high-Q modes with larger axial indices s > 1 exist
in the system with eigenfrequencies which lie below the fundamental mode eigenfrequency.
These modes are also excited at the initial stage of simulation; however, their Q-factors are
lower than those of the fundamental mode, so at the final stage only the fundamental mode
remains. Nevertheless, one can recognize the positions of these modes by simulating the
reflections of the external TM01 mode of a regular waveguide from the corrugated section.
Minima on the frequency dependence of the reflection coefficient can be seen in Figure 11c
close to the mode positions, whereas the widths of the dips are reversely proportional to
their Q-factors. As shown below in Section 4, higher-index modes can also be excited in the
course of beam-wave interaction under Cherenkov synchronism conditions.

3. Quasi-Optical Models of Planar Cherenkov-Type Devices
3.1. General Self-Consistent Equations of Electron-Wave Interaction

For a description of radiation sources operation, the wave propagation Equations (8)–(10)
(or (33) in case of near-cutoff operation) should include the electron beam current, which is to
be found from motion equations for electrons in the field of the corresponding synchronous
wave. Consider a relativistic beam (Figure 12) traveling along the corrugated surface, or
in the planar waveguide, parallel to the guiding magnetic field with an initial velocity of
ν|| = β0c. According to Figure 1, this beam can interact with any of the spatial harmonics s
in the expansion (6) under the Cherenkov synchronism condition (1). For paraxial waves in
oversized waveguides, where h ≈ k = ω/c, Equation (1) yields

ω ≈
(

k + sh
)

v||. (53)
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Figure 12. Schemes of various Cherenkov-type radiation sources: (a) surface-wave oscillator;
(b) backward-wave oscillator; (c) TWT amplifier; (d) super-radiant short-pulse generator.

Similar to Section 2, we limit ourselves to shallow corrugations and cases s = 0, ±1. Un-
der condition (53), the particles are bunched under the action of the electric field component
of the corresponding spatial harmonic

Ez = −Re
i
k

[(
∂Hs

∂y
+

4π

c
jz

)
ei(ωt−(k+sh)z)

]
(54)

(the second term, in fact, includes the spatial charge field) and is described by equations

dε

dz
= −eEz;

dθ

dz
= ω

(
1

ν(ε)
− k + sh

ω

)
, (55)

where ε and ν(ε) = c
√

1− (ε/mc2)−2 are the electron’s energy and velocity, and

θ = ωt−
(

k + sh
)

z is its phase with respect to the synchronous harmonic. The stationary
non-modulated electron beam is described by the boundary conditions set at the entrance
of the interaction space

εz=0= ε0, θ|z=0 = θ0 ∈ [0, 2π) (56)

where ε0 = mc2γ0 and θ0 are the initial values of the electron’s energy and phase.
Based on Equations (54) and (55), the non-stationary system of equations describing

the interaction between the beam and the s-th harmonic of the field (6) in the most general
form can be formulated as

− (h− k)
k

∂H−1

∂z
+

1
c

∂H−1

∂t
+

i
2k

∂2H−1

∂y2 − i
h

2 − 2kh
2k

H−1 = iαδ(y)H0 + i
∂Iω

∂y
δ−1,s (57)

∂H0

∂z
+

1
c

∂H0

∂t
+

i
2k

∂2H0

∂y2 = −iαδ(y)[H1 − H−1] + i
∂Iω

∂y
δ0s (58)

k + h
k

∂H1

∂z
+

1
c

∂H1

∂t
+

i
2k

∂2H1

∂y2 − i
h

2
+ 2kh
2k

H1 = −iαδ(y)H0 + i
∂Iω

∂y
δ1,s (59)

dθ

dz
= ω

(
1

ν(ε)
− ω

k + sh

)
,

∂ε

∂z
=

e
k

Re
(

i
(

∂Hs

∂y
− 2kIω

)
eiθ
)

. (60)
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Here δi,j is the Kronecker delta denoting that the beam interacts only with one of the
harmonics with index s (s = 0, ±1). The excitation factor is Iω = 2π I0

kc
1
be

ψ(y)J, where ψ(y)
represents the transverse distribution of electron density, and I0 is the total beam current,

J =
1
π

2π∫
0

e−iθdθ0. (61)

Equations (57)–(60) constitute a self-consistent system accounting for the non-fixed
structure of the field along both the transverse and longitudinal coordinates, unlike the
previous models [1–3] describing the electron-wave interaction in Cherenkov O-type de-
vices based on extracting a single waveguide mode with a fixed transverse structure. In
this system, the spatial charge forces are taken into account—the corresponding term is in
the right-hand part of the motion Equation (60).

Under the assumption of a relatively small (ε− ε0)/ε0 << 1 variation of the particles’
energy, motion equations (56d) can be simplified to the form(

∂

∂z
+

1
v0

∂

∂t

)2
θ =

eµ

mc2γ0
Re
(

i
(

∂Hs

∂y
− 2kIω

)
eiθ
)

(62)

where µ = γ−2
0 β−3

0 is the bunching parameter; the boundary conditions (55) yield

θ|z=0 = θ0 ∈ [0, 2π),
(

∂

∂z
+ v−1
||

∂

∂t

)∣∣∣∣
z=0

= ∆, (63)

where

∆ = k
(

1
β0
− k

k + sh

)
(64)

is the detuning of the electron’s synchronism with the corresponding spatial harmonic at
the carrier frequency (for 0th harmonic, ∆ = kβ−1

0 (1− β0), characterizing the difference
between the electron velocity and the speed of light and is always positive).

It is expedient to introduce the amplification parameter

G =

(
2
√

2
eI0

mc3
µ

γ0
λ

) 2
3
, (65)

which is similar to the Pierce parameter [32,33], and normalize the rest of the variables:

Z = Gkz, Y =
√

2Gky, τ = Gω0t, α̂ =

√
2
G

α, ∆̂ =
∆

kG
(66)

Ĥ±1,0 =

√
2eµ

mc2γ0kG3/2 H±1,0, Ψ(Y) = ψ(y), Be =
∫ ∞

0
Ψ(Y)dY. (67)

Electron efficiency (relative part of kinetic power in the beam to be converted into
radiation) in the stationary oscillation’s regime is given by

η =
Gη̂

µ(1− γ0−1)
, η̂ =

1
2πBe

B∫
0

2π∫
0

(
∂θ

∂Z
− ∆̂

)∣∣∣∣
Z=L

Ψ(Y)dθ0dY, (68)

where L = Gklz is the normalized length.

3.2. Surface-Wave Oscillator in π-Mode Operation Regime

At the operation point B in Figure 1 where the radiation frequency is close to the Bragg
resonance (17), strong reflections of the forward and backward wavebeams take place at
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the corrugated structure described by Equations (57)–(60) for s = 0, normalized according
to (66–67). In this case, it is convenient to choose the Bragg frequency as the carrier one,

ω = hc/2, k = h/2; thus, the h
2 − 2kh term in Equations (57)–(60) turns to zero. At the

same time, as explained in Section 2.1, the equation for the first harmonic can be dropped.
After introducing the symmetric notations Ĉ+ = Ĥ0, Ĉ− = Ĥ−1 we arrive at equations
describing the interaction of two coupled quasi-optical wavebeams (26) with a relativistic
electron beam:

∂Ĉ+
∂Z + ∂Ĉ+

∂τ + i ∂2Ĉ+

∂Y2 − iα̂Ĉ−δ(Y) + (1 + i)σ̂Ĉ+δ(Y) = − i
Be

∂
∂Y (JΨ(Y)),

− ∂Ĉ−
∂Z + ∂Ĉ−

∂τ + i ∂2Ĉ−
∂Y2 − iα̂Ĉ+δ(Y) + (1 + i)σ̂Ĉ−δ(Y) = 0,(

∂
∂Z + β−1

0
∂

∂τ

)2
θ = Re

((
∂Ĉ+
∂Y + JΨ(Y)

Be

)
eiθ
)

.

(69)

where σ̂ = kdskin/G is the normalized Ohmic losses factor (see (25)). In the absence of
external energy flows (problem of oscillator self-excitation), Equations (69) should be
supplemented by boundary conditions (48) for the waves and (63) for the electron phase
with ∆ = kβ−1

0 (1− β0). Equation (61) yields the energy conservation law, which in the
stationary oscillation’s regime can be written as

P̂+(Z) + P̂−(0) + P̂Ohm = 4η̂, (70)

where P̂± =
∞∫
0

∣∣Ĉ±∣∣2dY are the normalized power flow densities in±z directions. Note that

here power flows in two antiparallel directions are present, which is related to the absolute
instability developing in the system. As shown in Section 2.4, the periodical structure in this
parameter area acts simultaneously as a slow-wave system and a high-Q Bragg resonator.

Based on Equation (61), we simulated an SWO operating in the sub-mm range
(λ ≈ 0.9 mm) with the electrons’ energy of ~1 MeV and a beam current density of 500 A/cm,
a distance between the corrugation and the beam of b0 = 0.15 mm, and a beam width of
be = 0.3 mm. We chose the following parameters of the slow-wave structure: a period of
d = 0.5 mm, a corrugation depth of 2b~ = 0.12 mm, and a system length of lz = 17.5 mm.
The profiles of the excited waves are similar to those obtained in linear electrodynamical
simulations (Figure 10). In Figure 13, typical dependencies of electron efficiency (68) in the
process of stationary regime onset are shown in the π-mode excitation regime (γ0 = 3.2,
point B in Figure 1) and at lower energies (γ0 = 2.6, point C1 in Figure 1 corresponding
to BWO regime). The simulations were conducted at two values of the Ohmic losses
parameter σ̂. Note that Ohmic losses have almost no influence on the low-energy BWO
operation. An increase in the electrons’ energy (and transition to TWT regimes, point A in
Figure 1), leads to a dramatic increase in the Ohmic losses effects.
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Further, we investigate the dependence of oscillation regimes on the operation point
(intersections of the beam line and the dispersion characteristics of the surface wave in
Figure 1). Small variations in the initial electrons’ energy leads to the displacement of this
point from the B position corresponding to a π-mode excitation regime, to the point A area
corresponding to a TWT regime (see Section 3.5 below), or C1 corresponding to a BWO
regime. For simplicity, we consider zero the Ohmic losses in the optimal regimes close to
the BWO area, as their influence is negligibly small. In Figure 14, the dependences of the
time increment σt and the mismatch of the oscillation frequency from the Bragg resonance
Ω = (ω−ω0)/ω0 on the initial electron energy are shown. The red line shows the same
mismatch determined by the intersection of the dispersion lines in Figure 1. In Figure 14b,
the dependencies of electron efficiency (68) and power densities radiated in ±z directions
on the beam energy are shown. Oscillations in these dependencies are associated with the
excitation of various longitudinal modes found in Section 2.4. This is illustrated by the
spatial profiles of the field amplitudes in the stationary oscillation regimes in Figure 14c–h.
Note that at decreasing beam energies, the mode structure tends to be BWO-like with the
maximum on the cathode side of the interaction space [2].
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synchronism point is shifted to BWO operation (C1 point in Figure 1); however, efficiency 
drops down (Figure 14b). On the contrary, the efficiency rises in the π-mode and TWT 

Figure 14. Simulations of sub-mm band planar SWO: (a) oscillation frequency (blue), Cherenkov
synchronism frequency defined as a frequency of intersection of the beam line and the normal wave
characteristic (red); temporal increment (green); (b) electron efficiency (green) and radiation power
on the collector (red) and cathode (blue) sides; spatial distributions of partial wavebeam amplitudes:
(c,d) bell-shaped structure excited at γ0 = 3.2; (e,f) distribution with two variations at γ0 = 2.7;
(g,h) with three variations at γ0 = 2.3.

Note that the time increments increase and the starting currents decrease when the
synchronism point is shifted to BWO operation (C1 point in Figure 1); however, efficiency
drops down (Figure 14b). On the contrary, the efficiency rises in the π-mode and TWT areas
(points B and A). The results of the SWO simulations presented in Figure 13a correspond to
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point B with a total efficiency of ~10%. The power flow (70) associated with forward wave
Ĉ+ is about 10 MW/cm, while the one associated with Ĉ− is about 45 MW/cm. We should
note that in the π-mode regime, the Ohmic losses reduce the radiation power by 1.5–2 times.
The area of the extremum of the dispersion curve (point B) corresponds to the follow-
ing relation between the system parameters and the energy of ultra-relativistic particles:
γ∗ ' (2α)−1 = d/πl0. Further from the exact Bragg resonance (points A and C1), the TWT
and BWO regimes are realized, as considered in detail in Sections 3.4 and 3.5, respectively.

3.3. Diffraction Mode Selection in the Planar Surface-Wave Oscillator

In Section 3.2, we considered the 2D model of SWO. This model can be general-
ized to describe the 3D model assuming that the sheet electron beam has a finite width
le
x over the x axis (Figure 1a, insert). The fields here can be presented as (26) and the

equations describing the surface-wave excitation are similar to (25) with the equation of
electron motion taken into account (transverse coordinate is normalized similar to (66–67),
X =

√
2Gkx, Le

x =
√

2Gkle
x:

∂Ĉ+

∂Z
+

∂Ĉ+

∂τ
+ i

∂2Ĉ+

∂Y2 + i
∂2Ĉ+

∂X2 + (1 + i)σĈ+δ(Y) = iα̂Ĉ−δ(Y)− i
Be

∂

∂Y
(Ψ(X, Y)J), (71)

− ∂Ĉ−
∂Z

+
∂Ĉ−
∂τ

+ i
∂2Ĉ−
∂Y2 + i

∂2Ĉ−
∂X2 + (1 + i)σĈ−z δ(Y) = iα̂Ĉ+δ(Y), (72)(

∂

∂Z
+ β−1

0
∂

∂τ

)2
θ = Re

[(
∂Ĉ+

∂Y
+

JΨ(X, Y)
Be

)
eiθ

]
, (73)

Boundary conditions for Equations (71)–(73) over the longitudinal coordinate z are
given by Equations (48) and (63). In the simulations, we used artificial cyclic conditions
(44) over the X-coordinate which were set at a distance significantly larger than the width
of the beam, Lx >> Le

x. Due to the introduction of artificial additional Ohmic losses σadd
outside of the beam at X > Le

x/2 so that σaddLx >> 1, the simulation results do not depend
on the value of Lx. We assumed that the beam density is uniform over the transverse
cross-section of the beam, i.e., F(X, Y) = 1 at X ∈ [−Le

x/2, Le
x/2] and Y ∈ [B0, B0 + Be],

where B0 =
√

2Gkb0 is a clearance between the beam and the corrugation surface. The
results of the simulations are depicted in Figure 15 for the same corrugation and electron
beam parameters as in Section 3.2 for the 2D model.

At a relatively small width of the beam restricted by Fresnel condition NF = le2
x /4lzλ ≤ 1,

diffraction of radiation in the x-direction is sufficient for the formation of a regular field
structure over this coordinate. In Figure 15b for le

x = 5 cm the transverse (over x) field
structure possesses a regular symmetric distribution (an exponential decay in the y-direction
perpendicularly to the corrugated structure takes place in all variants). For a relatively high
electron efficiency of about 10%, the total output power amounts to about 40 MW. For wider
beams with le

x = 10 cm, multistability regimes take place. For different initial conditions, we
observed the excitation of both symmetrical and anti-symmetrical modes. Under the above
conditions, a regular symmetric distribution settled in the steady-state regime. With increasing
beam width, gains of the first symmetrical and first anti-symmetrical modes (and of all other
modes) become very close to each other, thus leading to multistability [39].

Thus, diffraction of radiation in the x-direction is sufficient for the formation of a regu-
lar field. For a wide sheet beam with a large Fresnel parameter Nf >> 1, 2D slow-wave struc-
tures should be used to provide radiation coherence over transverse coordinates [52,53].
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Figure 15. Onset of stationary oscillations regime at moderate oversize factor within the 3D model of
SWO (le

x = 5 cm, γ0 = 3.2, other parameters are similar to those used in Section 3.2): (a) normalized
efficiency (red) and instantaneous frequency (blue) vs. time; (b) spatial structures of the excited field
of the forward wave in cross-sections X-Z and Y-Z.

3.4. Surface-Wave BWO Operation Regimes

According to Figure 14a, shifting the resonance point in the BWO region with reduced
particle energy leads to a decrease in time increments. In this area, the predominant part
of the radiation is output from the interaction space with the backward wave Ĉ−. Note
the differences in the distribution of the partial wave fields Ĉ± in the operation points
B and C1 (see Figure 1). At point B, these distributions are close to the structure of the
π-type eigenmode formed at the finite-length surface in the absence of the electron beam
(Figure 14c,d). In BWO oscillation regimes (C1 point), the partial wave structures are
different (Figure 14g,h). The co-propagating partial wave Ĉ+ (0th harmonic in terms of
Equations (57)–(60)) transforms into a spatial harmonic with an amplitude rapidly decaying
along the y-coordinate and proportional to Ĉ− (−1st harmonic), which carries the main
energy flow. Further from the Bragg resonance towards point C2 in Figure 1, the two-wave
approximation (26) is no longer valid and the amplitude of the −2nd harmonic becomes
comparable with that of the 0th harmonic. Thus, at this point it is reasonable to use the
three-harmonic Equations (57)–(60) changing the designations of the harmonics (−1st to
0th, 0th to −1st, −2nd to 1st) and the direction of the beam propagation ( v|| → −v|| ). This
change means that we choose the operation point C3 instead of C2 in Figure 1; obviously,
these points are physically equivalent and differ only in the choice of the direction of the
electron’s movement.

At point C3, we use the Equations (57)–(60) with s = −1 describing the beam syn-
chronism with the −1st harmonic corresponding to the Cherenkov BWO operation under
condition ω ≈ (k− h)v|| with k < h, v|| < 0. These equations can be simplified in the case
when point C3 is far from the Bragg resonance. As shown in Section 2.1, here we can use
the impedance approximation and neglect the derivatives with respect to the time and

longitudinal coordinate. Using the normalizations (66–67), and introducing ĝ2
±1 = h

2±2kh
Gk2

we put the system (57–60) to the form

∂Ĥ0

∂Z
+

∂Ĥ0

∂τ
+ i

∂2Ĥ0

∂Y2 = −iα̂δ(Y)
[
Ĥ1 − Ĥ−1

]
, (74)
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∂2Ĥ1

∂Y2 − ĝ2
1 Ĥ1 = −α̂δ(Y)Ĥ0, (75)

∂2Ĥ−1

∂Y2 − ĝ2
−1Ĥ−1 = α̂δ(Y)Ĥ − 1

Be

∂(Ψ(Y)J)
∂Y

, (76)(
∂

∂Z
− 1
|β0|

∂

∂τ

)2
θ = Re

(
i
(

∂Ĥ−1

∂Y
+

Ψ(Y)J
Be

)
eiθ̂
)

. (77)

The electrons are bunched under the action of the longitudinal component of the electric
field of the “−1st” synchronous harmonic. The synchronism detuning (64) in the boundary
conditions (63) for the electrons’ motion equations in BWO without a loss of generality can be
put to zero. Similarly to Equation (15), we integrate Equation (64) at Y > 0:

Ĥ1 =
α̂Ĥ0(Y = 0)

ĝ1
e−ĝ1Y, (78)

Ĥ−1 = − α̂Ĥ0(0)
ĝ−1

e−ĝ−1Y +
1

2ĝ−1Be

∞∫
0

∂

∂Y′
(
Ψ(Y′)J

)(
e−ĝ−1|Y−Y′ | + e−ĝ−1(Y+Y′)

)
dY′ (79)

Thus, the field of the −1st synchronous spatial harmonic comprises two terms, one of
which is induced by the 0th spatial harmonic and is similar to the one (Equation (15)) found
in the “cold” problem, whereas the other is associated with the electric current synchronous
to the harmonic and its reflection in the perfect conductor. Substituting (78–79) into (74–77),
we obtain the equations describing the dynamics of an oversized Cherenkov BWO operating
in an SWO regime with a beam synchronous to the −1st harmonic:

∂Ĥ0

∂Z
+

∂Ĥ0

∂τ
+ i

∂2Ĥ0

∂Y2 + iχ̂δ(Y)Ĥ0 = iα̂δ(Y)
1
Be

∞∫
0

Ψ(Y′)Je−ĝ−1Y′dY′ (80)

(
∂

∂Z
− 1
|β0|

∂

∂τ

)2
θ = −α̂Re

(
iĤ0(Y = 0)eiθ̂−ĝ−1Y

)
+ Fq. (81)

where Fq = ĝ−1
2Be

Im

{
eiθ

∞∫
0

Ψ(Y′)J
(
−e−ĝ−1|Y−Y′ | + e−ĝ−1(Y+Y′)

)
dY′
}

is the respective har-

monic of the space-charge force taking into account the reflection from the metal [33], and
χ̂ = χ

√
2/G is the normalized surface impedance (17) of the corrugated structure.

In the planar waveguide with a second smooth metal wall (Figure 1b),
Equations (80) and (81) can be further simplified by the assumption that an electron
beam excites a single mode with a fixed transverse structure Ĥ0(Y, Z) = A(Z) cos(nπY/B)
of the fundamental spatial harmonic at the operation point C4 in Figure 1. Under these
assumptions, Equations (80) and (81) transform to the form canonical for backward wave
oscillators [2]:

∂
^
A

∂
^
Z

+
∂
^
A

∂
^
τ
+ i

^
χ
^
A = − 1

^
B e

B̂∫
0

Ψ(Y)Je−g1YdY, (82)

(
∂

∂
^
Z
− 1
|β0|

∂

∂
^
τ

)2

θ = −Re
(
^
Aeiθ−ĝ1Ŷ

)
+

^
F

q
. (83)

Here, the standard normalizations [32] were used instead of (66–67),

^
Z =

(
2α̂2

(1+δ0,n)B

)1/3
Z = Ckz,

^
A = i

(
(1+δ0,n)

2B2

4α̂

)1/3
Â = iα µ

γ0
1

C2
eA

mc2k ,

^
χ =

(
χ̂− 2n2π2

(1+δ0,n)B

)(
(1+δ0,n)B

2α̂2

)1/3
,
^
F

q
= Fq

(
2α̂2

(1+δ0,n)B

)2/3
,
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where the Pierce parameter C is expressed, using (65), as

C =

√
G
2

(
α2

N

)1/3

=

(
4πeI0

mc3k
µ

γ

α2

N

)1/3

, C =

√
G
2

(
4α2

N

)1/3

=

(
4πeI0

mc3k
µ

γ

α2

N

)1/3

,

N = kb(1 + δ0,n)/2 is the norm of the excited mode, and δ0,n is the Kronecker delta.
Thus, we demonstrated that the backward partial wave Ĉ− decays relatively slowly

along the y axis according to the deceleration of the fundamental harmonic determined by
the impedance function χ(k) (see Equation (17)). Oversized planar BWOs were analyzed
using Equations (80) and (81) in [47] in application to the experiment currently underway
at IAP RAS.

3.5. TWT Operation Regimes

TWT at the fundamental-harmonic (s = 0). Following on from Figure 14, at fairly high
electron energies (operation point A in Figure 1) the temporal increment turns to zero. At
this point, the absolute instability vanishes; however, the convective instability still takes
place. This means that TWT amplifier regimes can be realized. According to Section 2.1,
under such conditions the impedance approximation is valid. Neglecting the Ohmic losses
for simplicity, assuming that all the processes are monochromatic at the same carrier
frequencyω, and using Equations (16) and (63), we describe the wave amplification in the
fundamental-harmonic TWT by equations [38,41]

∂Ĥ0

∂Z
+ i

∂2Ĥ0

∂Y2 + iχ̂δ(Y)Ĥ0 = i
1
Be

∂

∂Y
(Ψ(Y)J), (84)

∂2θ

∂Z2 = Re
(

i
∂Ĥ0

∂Y
eiθ − i

1
Be

(Ψ(Y)J)eiθ
)

, (85)

θ| Z=0 = θ0 ∈ [0, 2π),
∂θ

∂Z

∣∣∣∣
Z=0

= ∆̂. (86)

Equations (84) and (85) should be supplemented by the condition for the incident field
typical for an amplifier

Ĥ0(Y, Z = 0) = F0(Y). (87)

The instability increments can be found in the small-signal regime, when perturbations
in the electron phase are small, θ = θ0 + ϑ, |ϑ| << 1, so we can linearize Equation (85),

approximate the electron RF current (61) as J = − i
π

2π∫
0

ϑe−iθ0 dθ0, and obtain a dispersion

equation by presenting the solutions of the linear system ~eiΓ̂Z−ĝY. In the partial but
important case of a thin electron beam Ψ(Y) = δ(Y − B0) moving above the corrugated
surface, this equation can be written in the form [38](

∆̂− ĝ2
)2

(ĝ− χ̂) = − ĝ
2

e−ĝB0
(
(ĝ + χ̂)e−ĝB0 − (ĝ− χ̂)eĝB0

)
. (88)

where ĝ =
√

Γ̂ is the transverse decrement and Γ̂ is the normalized amendment to the
longitudinal wavenumber k (cf. Equation (12)). According to coordinate normalizations
(66–67), the real longitudinal wavenumber is expressed as

h = k
(
1 + GΓ̂

)
= k

(
1 + Gĝ2

)
. (89)

Equations (88) and (89) can be treated as dispersion relations for the interaction of
the surface modes, with the electron beam binding the operating frequency ω = kc and
longitudinal wavenumber h of the normal waves existing in the system.
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Note that due to the interaction with an electron beam, the solutions of
Equations (88) and (89) are, generally speaking, complex. The solution corresponding
to an amplified evanescent mode has its amplitude Ĥ0(Y) decaying with distance from the
beam and its transverse energy flow directed from the beam:

Reĝ > 0 and Imĝ > 0. (90)

This mode possesses a positive longitudinal increment ImΓ̂ = 2ImĝReĝ > 0.
In the dispersion relation (88), beam-wave coupling is governed by B0 characterizing

the distance between the beam and the corrugated surface. At B0 → ∞ , (88) transforms to
a factorized fifth-order equation((

∆̂− ĝ2
)2
− ĝ

2

)
(ĝ− χ̂) = 0. (91)

Since χ is purely real, Equation (91) has three solutions with Reg > 0 and Img = 0
corresponding to uncoupled partial waves, namely, a fast and a slow space-charge wave of
the modulated electron beam in free space (first factor) and an evanescent wave propagating
at the impedance surface (second factor) with a dispersion characteristic g(h, k) = χ(k) [38].
The solutions of Equation (91) are depicted in Figure 16 as dashed gray (space-charge
waves) and red (evanescent wave) curves. The resonance points of intersection between
the space-charge lines and the evanescent wave curve are located in the vicinity of the exact
synchronism determined by the relation ∆(k) = χ2(k).
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optimum length of the amplifier, etc. Based on the simulations of the nonlinear regime, 
we demonstrated the possibility of the realization of a relativistic surface wave amplifier 
of a submillimeter band with a linear density of incident signal of 50 kW/cm (the master 
source can be a gyrotron [54]). The blue curve in Figure 17a shows the output power den-
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Figure 16. Dispersion curves (solid blue lines): frequency vs. longitudinal wavenumber shift.
Solid gray and red asymptotes correspond to the partial waves: two space-charge waves and an
unperturbed surface wave; dashed gray line is electron’s characteristic k = β0h. Green lines denote
the frequency dependence of the increment Imh (solid line) and wavenumber shift Reh− k in the
amplification band (shaded area). Dotted line denotes the frequency 310 GHz corresponding to the
maximum increment; I0 = 1.2 kA/cm, γ = 3 MV, d = 0.25 mm, b∼ = 0.064 mm, and b0 = 0.5 mm.

At the finite beam-surface gap B0, dispersion curves of the normal waves based on the
solutions of Equation (91) are plotted in Figure 16 in blue. Far from the resonance points,
they tend to partial wave curves as the coupling decreases. Linear wave interaction mostly
takes place in the vicinity of the resonance points as demonstrated by the deflection of
normal wave curves from the corresponding asymptotes. A frequency band arises in which
two of the roots of Equation (91) become complex and criteria (90) are satisfied for one of
them (namely, the one corresponding to the slow space-charge wave). The amplification
band (green area in Figure 16) can be a fairly wide-reaching 30% at the parameters specified
in the figure caption. The physical reason for such a wide band is the fact that the electrons’
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velocity is close to both the phase and group velocities of the surface wave (inclinations of
the partial waves’ dispersion lines are close to each other at the intersection points).

Full Equations (84)–(87) allow for the description of both the linear and nonlinear
stages of interaction and are therefore able to estimate the total electron efficiency, the
optimum length of the amplifier, etc. Based on the simulations of the nonlinear regime, we
demonstrated the possibility of the realization of a relativistic surface wave amplifier of a
submillimeter band with a linear density of incident signal of 50 kW/cm (the master source
can be a gyrotron [54]). The blue curve in Figure 17a shows the output power density vs
the longitudinal coordinate z in the maximum increment regime reached at 310 GHz by
the parameters given in the Figure 16 caption. Saturation of amplification is reached at a
length of about 10 cm with a maximum efficiency of 13.5% and an output power of about
160 MW/cm.
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Figure 17. Nonlinear stage of beam-wave interaction for physical parameters given in Figure 16
caption. (a) Normalized power of an amplified wave vs. longitudinal coordinate in the optimum-
increment regime at 310 GHz (blue curve) and in the maximum-efficiency regime at 330 GHz (red
curve). (b) Spatial distribution of the amplified wave amplitude in the latter case.

However, the regime of amplification with a maximum increment turns out not to be
optimal in terms of efficiency and output power. Typically for Cherenkov-type microwave
amplifiers [32,33], the beam-wave synchronism is sustained longer (thus, the efficiency is
larger) in the case of electrons moving slightly faster than the decelerated wave, i.e., at the
values of detuning ∆ smaller than its optimal value determined based on linear theory,
∆ < χ2. In our example, maximum efficiency conditions are satisfied at the frequency
of 330 GHz. The red curve in Figure 17a displays the radiated power density vs. z in
the optimal efficiency regime. The optimal interaction length is 13.2 cm, the maximum
power density of the amplified signal amounts to 240 MW/cm (total efficiency of 20%),
and the gain reaches K = 37 dB. The spatial distribution of the amplified wave is shown in
Figure 17b demonstrating that the wave remains confined at the slow-wave system surface.

Presently, relativistic TWTs based on the amplification of surface modes operate in
centimeter wavelength bands [17]. According to our analysis [41], at shorter wavelengths
such TWTs also appear viable due to the fact that the excitation of evanescent waves
provides a regular field pattern over the coordinate normal to the surface, and this solves
the transverse mode selection problem inevitable in oversized systems.

TWT operation at the first spatial harmonic. For lower beam energies, the beam cannot be
synchronous to the fundamental harmonic. However, synchronism is still possible with
higher spatial harmonics (operation point D1 in Figure 1). At the 1st harmonic (s = 1), when
the synchronism condition ω ≈ (k + h)v|| is satisfied and the operation point is far from
the Bragg resonance, the amplification of the monochromatic signal can be described by
Equations (57)–(60) at s = 1 with normalizations (66–67):

∂Ĥ0

∂Z
+ i

∂2Ĥ0

∂Y2 = −iα̂δ(Y)
[
Ĥ1 − Ĥ−1

]
(92)
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∂2Ĥ1

∂Y2 − ĝ2
1 Ĥ1 = −α̂δ(Y)Ĥ0 +

1
Be

∂

∂Y
(Ψ(Y)J) (93)

∂2Ĥ−1

∂Y2 − ĝ2
−1Ĥ−1 = α̂δ(Y)Ĥ0 (94)

∂2θ

∂Z2 = Re
(

i
(

∂Ĥ1

∂Y
− Ψ(Y)J

Be

)
eiθ̂
)

(95)

After the transformations similar to those presented above (Equations (74)–(77) and
further), one can reduce Equations (92)–(95) to the form

∂Ĥ0

∂Z
+ i

∂2Ĥ0

∂Y2 + iχ̂δ(Y)Ĥ0 = iδ(Y)
α̂

Be

∞∫
0

Ψ(Y′)Je−ĝ1Y′dY′. (96)

∂2θ

∂Z2 = α̂Re
[
iĤ0(0)eiθ−ĝ1Y

]
+ Fq (97)

where Fq = ĝ1
2Be

Im

{
eiθ

∞∫
0

Ψ(Y′)J
(
−e−ĝ1|Y−Y′ | + e−ĝ1(Y+Y′)

)
dY′
}

is the space-charge term.

This system should be supplemented with the boundary conditions (86) and (87). Again, in
the single-mode planar waveguide, similar to the BWO (Equations (82) and (83)), one can
further reduce Equation (76) to a conventional form of TWT equations

∂
^
A

∂
^
Z

+ i
^
χ
^
A =

1
B̂e

B̂∫
0

Ψ(Ŷ)Je−ĝ1ŶdŶ, (98)

∂2θ

∂
^
Z

2 = Re
(
^
Aeiθ−ĝ1Ŷ

)
+

^
F

q
. (99)

In such approximations, relativistic TWT have been studied in detail in [1].

3.6. Orotron Operation Regimes

If the operating point is close to the cutoff frequency of one of the higher modes of
the planar waveguide, the orotron [5,26,34,43] regime of interaction is realized. It should
be emphasized that the orotron regimes of the Cherenkov interaction exist only in the
waveguides; in the case of radiation of an electron beam moving near the corrugated plane
into the free space, such a synchronism would correspond to the Smith-Purcell radiation of a
pre-bunched beam in the normal direction. For the orotron interaction under a synchronism
condition (1) at h = 0, s = 1, i.e., at ω = hν|| (point D1 in Figure 1), Equation (32) may be
rewritten with the inclusion of the electric current similar to (56); after normalizations
(66–67), the self-consistent system of orotron equations takes the form:

∂
∂τ F̂n +

iG
2

∂2 F̂n
∂Z2 = −iα̂

(
Ĥ1(0, Z) + Ĥ−1(0, Z)

)
∂Ĥ1(y,z)

∂Z + ∂Ĥ1(y,z)
∂τ + i ∂2 Ĥ1(y,z)

∂Y2 − iδ̂gĤ1 = −iα̂δ(y)F̂n +
i

Be
∂

∂Y (Ψ(Y)J)

− ∂Ĥ−1(y,z)
∂Z + ∂Ĥ−1(y,z)

∂τ + i ∂2 Ĥ−1(y,z)
∂Y2 − iδ̂gĤ−1 = −iα̂δ(y)F̂n

∂2θ

∂Z2 = Re
(

i
(

∂Ĥ1

∂Y
− Ψ(Y)J

Be

)
eiθ̂
)

Here, F̂n =
√

2eµ

mc2γ0kG3/2 Fn, δ̂g = δg/kG is the normalized geometric mismatch (33) between

the Bragg frequency of the propagating partial waves Ĥ±1 and the cutoff frequency of quasi-
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critical mode Fn. If it is sufficiently large, which is usually the case in orotrons, the time and
longitudinal coordinate derivatives can be neglected, similar to Equations (74)–(77):

∂
∂τ F̂n +

iG
2

∂2 F̂n
∂Z2 = −iα̂

(
Ĥ1(0, z) + Ĥ−1(0, z)

)
∂2 Ĥ1(y,z)

∂Y2 − δ̂gĤ1 = −α̂δ(y)F̂n − 1
Be

∂
∂Y (Ψ(Y)J)

∂2 Ĥ−1(y,z)
∂Y2 − δ̂g Ĥ−1 = −α̂δ(y)F̂n

(100)

Integrating the last two equations as in Equation (65), we find

Ĥ−1 = − α̂F̂n√
δ̂g

e−
√

δ̂gY,

Ĥ1 = − α̂F̂n√
δ̂g

e−
√

δ̂gY − 1

2
√

δ̂gBe

∞∫
0

∂

∂Y′
(
Ψ(Y′)J

)(
e−
√

δ̂g |Y−Y′ |
+ e−

√
δ̂g(Y+Y′)

)
dY′

and substitute these expressions into (100) to obtain the time-domain equations of the orotron:

∂

∂τ
F̂n +

2iα̂2 F̂n√
δ̂g

+
iG
2

∂2 F̂n

∂Z2 = iα
1
Be

∞∫
0

Ψ(Y′)Je−
√
δ̂gY′dY′ (101)

∂2θ
∂Z2 = −α̂Re

[
iF̂neiθ−

√
∆Y
]
+

√
δ̂g

2Be
Im

{
∞∫
0

Ψ(Y′)J
(
−e−

√
δ̂g |Y−Y′ |

+ e−
√

δ̂g(Y+Y′)
)

dY′
}

eiθ (102)

A simplified (with no spatial charge taken into account) version of Equations (101) and (102)
was used in [33] for the investigation of the dynamic regimes of orotron operation.

3.7. Super-Radiant Regimes of Surface-Wave Excitation by Extended Electron Bunches

In recent years, significant progress was made in the generation of short electromag-
netic pulses in the centimeter and millimeter wavelength ranges based on the Cherenkov
super-radiance (SR) of high-current subnanosecond electron bunches with particle energies
of 300–400 keV [55–58] moving in periodically corrugated single-mode waveguides. In
these frequency ranges SR pulses of subnanosecond duration with record-breaking gigawatt
peak power were obtained by means of “RADAN’ and “SINUS 6” compact high-current
accelerators [59,60]. The typical duration of bunches employed in these experiments was,
on the one hand, large compared to the wavelength and, on the other hand, limited by the
so-called coherence length within which the coherent emission of a single electromagnetic
pulse from the entire bunch volume is possible due to the slippage of radiation relative to
the particles.

A natural continuation of this research is the development of Cherenkov SR sources
operating at shorter wavelength values, including the terahertz frequency range [61,62].
In these wavebands, the conditions of ensuring the electron beam transport and reducing
Ohmic losses imply the use of oversized (or open) slow-wave systems with surface wave
excitation. We describe here the SR regime of surface-wave excitation in the frame of a 3D
planar model when an electron bunch with length le

z and width le
x moves over a corrugated

surface (Figure 12d)). The excitation factor in the right-hand part of Equation (53) can be
presented in the form:

jωz =
qν0

V
ψ
(

z− ν||t, x, y
)

J,

where q is the bunch total charge, V= le
zle

xbe is its volume, and ψ defines the unperturbed
bunch profile. Thus, to describe super-radiant processes, one should use in the right-hand
part of Equation (73) the function Ψ(Z− β0τ, X, Y) = ψ

(
z− ν||t, x, y

)
.
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In [61], simulations were performed in the terahertz range for an electron bunch with
a length of le

z = 1.2 cm, transverse dimensions of le
x = 0.45 mm and be = 0.3 mm, particle

energies of 1.5 MeV, and a total bunch charge of 2.2 nC. These parameters can be obtained
for the electron bunches generated by photoinjectors [63,64]. The bunch propagated over a
plane with a corrugated region of a length of 10 cm, a corrugation period of 0.15 mm, and
a corrugation amplitude of 25 µm. We used the initial small electron density fluctuations
governed by a small parameter as the initial conditions.

The simulations showed that the main fraction of the radiation is emitted in the
form of a short SR pulse in the positive direction of the axis z, i.e., in the direction of
propagation of the electron bunch. The temporal dependence of the total radiation power

P+ =
∞∫
0

∞∫
0

∣∣Ĉ+(Z = L)
∣∣2dXdY is plotted in Figure 18a. The process of pulse formation is

illustrated in Figure 18b–d, where spatial structures of the partial waves are presented. One
can see that the amplitudes of both partial waves exponentially decay in the direction of
the y axis with distance from the corrugated surface. In Figure 18, the spatial profiles of the
electric field on the cross-section Y = 0.6 are shown in consecutive moments of time (cf.
Equation (50)). As seen in the dispersion diagrams, the electron velocity in the resonance
point exceeds the group velocity of the surface wave. It leads to the formation of wakefields
behind the electron bunch as seen in Figure 18. The peak power of the SR pulse amounted
to 3.5 MW at a pulse duration of ~100 ps.
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Figure 18. (a) SR pulse temporal profile; (b) spatial structures of the partial waves in the cross-section
X = 0; (c) formation of wake wave after electron bunch: transverse (X,Z) profiles of electric field on
the surface Y = 0.6 are shown at consecutive points in time.

Note that the excitation of surface waves in the SR regime has been observed exper-
imentally in an oversized cylindrical waveguide where 150 ps SR pulses with a central
frequency of 140 THz and a record peak power of 50–70 MW were generated [62].

4. Quasi-Optical Theory of Cylindrical Surface-Wave Oscillators
4.1. Symmetric Mode Excitation

As mentioned in Section 2.3, most of the experimental realizations of Cherenkov
oscillators and amplifiers to date use tubular beams propagating in the cylindrical-geometry
interaction spaces. In many of the experiments [18–25], excitation of surface waves was
observed. In this section, we analyze the excitation of azimuthally symmetric modes taking
into account the non-zero curvature of the waveguide walls, and demonstrate, using the
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results of [19] as an example of the simulated values of the starting currents, that output
radiation power (etc.) are close to those obtained in the experiment. At the same time, the
crucial issue for this class of radiation sources is the problem of limiting oversize factors
allowing for the retention of stable oscillations at symmetric modes. We investigate this
problem within the quasi-planar model (46).

In SWO with a cylindrical waveguide corrugated according to (34), the excitation of
the azimuthally symmetric surface wave by a rectilinear REB are described by time-domain
equations derived by including the electric current in Equation (43) [40]:
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The boundary conditions are similar to Equations (48) and (63). Note that the motion
Equation (105) is written here in an ultra-relativistic approximation instead of an approx-
imation (62), which allows for describing the regime of significant variation of particle
energy and high electron efficiency (compare to Equation (68))
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The following normalizations were used in (80)
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In Equations (103)–(105), Ohmic losses are included with a surface impedance
σ = γ0k0dsk(1 + i)/2. Equations (103)–(105) describe the nonlinear dynamics of the
axially-symmetric model of an SWO under the approximation of non-fixed axial and
radial structures of the RF field. The constructed model was verified by simulating the
MWCO operation at the parameter values close to those used in the experiment [19] in
a 3 cm wavelength band with the parameters presented in Table 1. In the simulations,
oscillations settled with an electron efficiency of 24% and an output power of P = 0.8 GW,
which is close to the experimental values; field profiles are shown in Figure 19.

Table 1. Parameters of 10 GHz band MWCO.

Slow-Wave System Parameters Electron Beam Parameters

Length of corrugated section lz = 14 cm Total current I0 = 5.8 кA

Corrugation period d = 1.4 cm Accelerating voltage U = 570 kV (γ0 ≈ 2.1 )

Mean radius R = 4.55 cm (R/λ ≈ 1.5 ) Mean beam radius re = 3.7 cm
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Table 1. Cont.

Slow-Wave System Parameters Electron Beam Parameters

Corrugation amplitude r∼ = 2.93 mm Beam thickness be = 3 mm

Output Parameters

Efficiency η = 24%

Integral radiated power P = 0.8 GW

Operating frequency f = 8.37 GHz
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Figure 19. Simulations of 10 GHz MWCO: partial wavebeam amplitudes in stationary
oscillation regimes.

Simulation of 300 GHz-band SWOs. Based on Equations (103-105), we also simulated
a millimeter band SWO with the parameters listed in Table 2. Such an SWS satisfies the
criterion (43); thus, the slow evanescent wave is present. The synchronism point B in
Figure 1c at the top of the evanescent wave curve at 274 GHz corresponds to the voltage of
U0 ∼ 750 kV.

Table 2. Parameters of 300 GHz band SWO.

Slow-Wave System Parameters Electron Beam Parameters

Length of corrugated section lz = 1.75 cm Total current I0 = 380 A

Corrugation period d = 0.5 mm Accelerating voltage U = 0.3–1.3 kV

Mean radius R = 1.5 mm (R/λ ≈ 1.5 ) Mean beam radius re = 1.2 mm

Corrugation amplitude r∼ = 0.075 mm Beam thickness be = 0.3 mm

Output Parameters

Efficiency η = 5–30%

Integral radiated power P = 10–140 MW

Operating frequency f = 264–273 GHz

The beam–wave interaction regime in such a system is governed by the accelerating
voltage. Single-frequency oscillations were obtained for the range 250–1250 kV as shown in
Figure 20. At voltages higher than 1250 kV, the temporal increment (depicted in Figure 20a
in green) turns to zero and the oscillations break down. At the voltages 800–1250 kV, a
mode close to π-mode with a 272 GHz eigenfrequency (found in Section 2.4) with a single
longitudinal variation is generated (Figure 20c). Forward and backward power flows are
close in this regime; the electron efficiency is maximized near the oscillation’s breakdown
at a voltage of 1250 kV. At lower voltages, the share of power radiated to the collector side
decreases and most parts of the radiation are emitted to the cathode side. Local maxima of
the efficiency and power in Figure 20b are related to the excitation of higher-order axial
modes. Their frequencies are close to the eigenfrequencies of the axial modes depicted in
Figure 11e. Accordingly, the established field has two longitudinal variations at 550 kV,
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three at 400 kV, four at 300 kV, etc. Similar to the planar case considered in Section 3.2, the
field structures presented in Figure 20c–e show that at lower voltages, the field profiles tend
to a BWO-like structure with an amplitude maximum shifted to the cathode side [2]. The
oscillation frequency (blue line) tends to the frequency of the exact Cherenkov synchronism
with the evanescent mode, shown as a red curve. The maximum of the temporal increment
corresponding to the minimum starting current is shifted to the BWO side from the top of
the normal wave dispersion curve.
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Figure 20. Simulations of mm band SWO with various acceleration voltages: (a) oscillation frequency
(blue), Cherenkov synchronism frequency defined as a frequency of intersection of the beam line and
the normal wave characteristic (red), eigenfrequency of the highest-Q mode is marked by a black
dashed line; temporal increment (green); (b) electron efficiency (green) and radiation power on the
collector (red) and cathode (blue) sides; spatial distributions of the forward wavebeam amplitude:
bell-shaped structure with a single axial variation (c) excited at the accelerating voltage of 1200 kV;
distribution with two variations (d) at 550 kV; with three variations (e) at 400 kV.

4.2. Non-Symmetric Mode Excitation

Here, we study the problem of increasing the oversize while retaining stable op-
eration at the symmetric modes. As shown in Section 2.3, at the waveguide radiuses
are much larger than the wavelength R >> λ, a local system of coordinates can be intro-
duced at the waveguide surface, z = z, y = (R− r) so the surface can be considered
quasi-planar. The formation of the azimuthal structure of the field is then described by
Equations (71)–(73) with the transverse (azimuthal) coordinate X = −

√
2GRϕ. For the

tubular electron beam Ψ(X) = const, and the cylindrical geometry is taken into account
by the cyclicity condition (44), which allows for the expansion of the solutions into the
Fourier series (45). With the inclusion of an HF electric current, the equations for competing
azimuthal modes in normalizations (66–67), take the form [39]:
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where Jm = 2
πLx Be

Lx∫
0

2π∫
0

Ψ(Y)e−imPXe−iθdXdθ0 is the electron current, P = 2π/Lx, and

Lx = 2πGkR is the normalized perimeter of the waveguide. It should be noted that in (107),
initially non-interacting azimuthal modes (45) are involved in the non-linear competition
process due to interaction with the electron beam.

Figure 21 shows the results of the simulation of azimuthal mode competition in the
10 GHz MWCO [19] at the waveguide radius used in the experiment, R = 4.55 cm. The
initial conditions were set as small “seed” values, equal for every mode. For azimuthally-
nonsymmetric modes, the increment for a given oversize factor is much less than that of
the symmetric mode. As a result, these modes are suppressed at the non-linear competition
stage, and the stationary oscillation regime takes place with the excitation of the symmetric
mode. At an enlarged system radius, although the current density is retained, increments
of different azimuthal modes become closer. Nevertheless, azimuthally symmetric mode
still wins in the case of equal initial conditions for every mode. However, if we set the
non-zero initial condition only for the mode with m = 1, the stationary regime at this mode
would be settled, thus demonstrating the multistability of MWCO operation. A further
increase in the oversize factor leads to oscillations at non-symmetric modes even with equal
initial conditions, as shown in Figure 21b at R = 22.5 cm. The stability of the single-mode
operation regime can be ensured by using the 2D periodical structures [52–54].
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Figure 21. Simulation of the nonlinear multimode dynamics of 10 GHz MWCO: mode amplitudes
with different azimuthal indexes (red: m = 0, blue: m = 1, green: m = 2) at (a) Lx = 16; (b) Lx = 80.
Initial conditions for all modes are identical.

5. Conclusions—Novel Schemes of Relativistic Surface-Wave Devices Utilizing
Complex Gratings

Thus, the quasi-optical theory of relativistic Cherenkov devices proved to be a valuable
and reliable instrument for the analysis and optimization of most of the generators and
amplifier schemes based on synchronous interaction of rectilinear electron beams with
waves propagating near shallowly corrugated metal plates. Not only does it provide
a means for simulation of oversized systems using reasonable computer resources (as
an alternative to direct PIC solvers involving full non-averaged Maxwell equations and
simulation of numerous particles’ motion), but it gives a researcher a deep and thorough
understanding of the mechanisms of electron-wave interaction in these devices.

Even more importantly, both from practical and fundamental points of view, quasi-
optical theory as presented above can easily be modified to propose novel variants of
devices, thus solving many of the inherent problems of traditional Cherenkov-type sources.
Primarily, this applies to exploiting complex (compared to conventional single-periodic
corrugations) gratings involving coupling with additional wavebeams.
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First of all, we should mention that SWOs with 2D corrugated structures (Figure 22a,b)
provide coupling of the four wavebeams (cf. Equation (26)). Two of them, similar to 1D
systems, propagate parallel to the REB, whereas the other two are directed in a transverse
direction with respect to the electrons’ velocity. These additional wavebeams synchronize
the radiation of wide sheet or tubular electron beams allowing for an increase of the REB
transverse size along the transverse (x) coordinate. Thus, it is possible to increase the
total radiated power while maintaining the spatial coherence of radiation. Earlier, such an
approach was implemented in free electron masers with 2D distributed feedback [65,66].
In fact, in [53] we have shown that it can be applied to Cherenkov-type devices when the
2D periodic structure is simultaneously a slow-wave system and a 2D Bragg resonator.
The operability and efficiency of Cherenkov oscillators with 2D structures were demon-
strated experimentally in the Ka-band with MW radiation output power [67]. Even more
impressive are the experiments with Cherenkov super-radiant emissions in 2D corrugated
structures [68], in which subnanosecond 90 GHz SR pulses with a record-level peak power
of up to 150 MW and an axially symmetric directional pattern were generated.
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Figure 22. Novel schemes of relativistic surface-wave oscillators with complex slow-wave struc-
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odic gratings. Additional transverse (lateral) propagating wavebeams synchronize the emission 
from the wide sheet or annular rectilinear electron beam. (c) Surface-wave oscillator with transverse 

Figure 22. Novel schemes of relativistic surface-wave oscillators with complex slow-wave structures.
(a) Planar and (b) cylindrical relativistic surface-wave oscillators with two-dimensional periodic grat-
ings. Additional transverse (lateral) propagating wavebeams synchronize the emission from the wide
sheet or annular rectilinear electron beam. (c) Surface-wave oscillator with transverse energy output
1: slow-wave structure with additional subharmonics, providing coupling of paraxial wavebeams A+

and A− with transverse wavebeam B; 2: rectilinear relativistic electron beam; 3: solenoid; 4: auxiliary
Helmholtz coils; 5: output window. (d) Surface-wave EIK-amplifier with transverse energy input
and output. 3: Diaphragms separating the drift region, 4: absorber.

Another illustration of the efficacy of the quasi-optical approach is the proposal for the
organization of the transverse (in this case, in the normal direction to the corrugated surface)
radiation output of th7e relativistic SWOs [69]. This can be achieved by implementing the
additional subharmonic (with a period twice the size of the period of the lattice forming
the surface wave) corrugation (Figure 22c). In this case, the output radiation pattern
would be Gaussian-like. On the one hand, this leads to the problem of converting the
surface wave into the bulk mode of the output waveguide. On the other hand, the Ohmic
losses and the losses associated with the propagation of radiation into the cathode side



Electronics 2022, 11, 1197 37 of 39

are dramatically decreased in such a scheme. It should also be noted that such complex
lattices can also be used for the input of radiation into the system and the excitation of the
surface wave. Spatially divided lattices of the input and output sections can be used for the
implementation of amplification devices (Figure 22d), which can be considered to be the
variants of the extended interaction klystrons [70].
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