Latency-Optimized Design of Data Bus Inversion
Abstract
:1. Introduction
2. Majority Voter
3. Proposed Designs
3.1. Basic Idea
3.2. Proposed Encoders
4. Comparisons between Majority Voter and Approximate Voters
5. Functional Correctness of the Proposed Encoders
6. Results
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Borkar, S.; Chien, A.A. The future of microprocessors. Commun. ACM 2011, 54, 67–77. [Google Scholar] [CrossRef]
- Borkar, S. Role of interconnects in the future of computing. J. Lightwave Technol. 2013, 31, 3927–3933. [Google Scholar] [CrossRef]
- Dally, B. Power, programmability, and granularity: The challenges of exascale computing. In Proceedings of the 2011 IEEE International Test Conference, Anchorage, AK, USA, 16–20 May 2011; p. 12. [Google Scholar] [CrossRef]
- Keckler, S.W.; Dally, W.J.; Khailany, B.; Garland, M.; Glasco, D. GPUs and the future of parallel computing. IEEE Micro 2011, 31, 7–17. [Google Scholar] [CrossRef]
- Kestor, G.; Gioiosa, R.; Kerbyson, D.J.; Hoisie, A. Quantifying the energy cost of data movement in scientific applications. In Proceedings of the IEEE international symposium on workload characterization (IISWC), Portland, OR, USA, 22–24 September 2013; pp. 56–65. [Google Scholar] [CrossRef]
- Lucas, R.; Ang, J.; Bergman, K.; Borkar, S.; Carlson, W.; Carrington, L.; Chiu, G.; Colwell, R.; Dally, W.; Dongarra, J.; et al. Top Ten Exascale Research Challenges. In DOE Advanced Scientific Computing Advisory Subcommittee Report; Office of Science, U.S. Department of Energy: Washington, DC, USA, 2014. [Google Scholar]
- Esmaeilzadeh, H.; Blem, E.; Amant, R.S.; Sankaralingam, K.; Burger, D. Dark silicon and the end of multicore scaling. IEEE Micro 2012, 32, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Ho, R.; Mai, K.W.; Horowitz, M.A. The future of wires. Proc. IEEE 2001, 89, 490–504. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Cao, Y. Predictive technology model for nano-CMOS design exploration. ACM J. Emerg. Technol. Comput. Syst. (JETC) 2007, 3, 1-es. [Google Scholar] [CrossRef]
- Pandiyan, D.; Wu, C.J. Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms. In Proceedings of the IEEE International Symposium on Workload Characterization (IISWC), Raleigh, NC, USA, 26–28 October 2014; pp. 171–180. [Google Scholar] [CrossRef]
- Wang, S.; Ipek, E. Reducing data movement energy via online data clustering and encoding. In Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, 15–19 October 2016; pp. 1–13. [Google Scholar] [CrossRef]
- Stan, M.R.; Burleson, W.P. Bus-invert coding for low-power I/O. In IEEE Transactions on very Large Scale Integration (VLSI) Systems; IEEE: Piscataway, NJ, USA, 1995; Volume 3, pp. 49–58. [Google Scholar] [CrossRef] [Green Version]
- Stan, M.R.; Burleson, W.P. Low-power encodings for global communication in CMOS VLSI. In IEEE Transactions on very Large Scale Integration (VLSI) Systems; IEEE: Piscataway, NJ, USA, 1997; Volume 5, pp. 444–455. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; O’Connor, M.; Chatterjee, N. Reducing data transfer energy by exploiting similarity within a data transaction. In Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), Vienna, Austria, 24–28 February 2018; pp. 40–51. [Google Scholar] [CrossRef]
- Song, Y.; Ipek, E. More is less: Improving the energy efficiency of data movement via opportunistic use of sparse codes. In Proceedings of the 48th International Symposium on Microarchitecture (MICRO), Waikiki, Hawaii, USA, 5–9 December 2015; pp. 242–254. [Google Scholar] [CrossRef]
- Ghosh, S.; Ghosal, P.; Das, N.; Mohanty, S.P.; Okobiah, O. Data correlation aware serial encoding for low switching power on-chip communication. In Proceedings of the IEEE Computer Society Annual Symposium on VLSI, Tampa, FL, USA, 9–11 July 2014; pp. 124–129. [Google Scholar] [CrossRef]
- Kwon, K.W. Optimal bus coding for OR-chained buses. IEICE Electron. Express 2021, 18, 1–4. [Google Scholar] [CrossRef]
- Shin, Y.; Chae, S.I.; Choi, K. Partial bus-invert coding for power optimization of application-specific systems. In IEEE Transactions on Very Large Scale Integration (VLSI) Systems; IEEE: Piscataway, NJ, USA, 2001; Volume 9, pp. 377–383. [Google Scholar] [CrossRef]
- Hollis, T.M. Data bus inversion in high-speed memory applications. IEEE Trans. Circuits Syst. Express Briefs 2009, 56, 300–304. [Google Scholar] [CrossRef]
- Bae, S.J.; Park, K.I.; Ihm, J.D.; Song, H.Y.; Lee, W.J.; Kim, H.J.; Kim, K.H.; Park, Y.S.; Park, M.S.; Lee, H.K.; et al. An 80 nm 4 Gb/s/pin 32 bit 512 Mb GDDR4 graphics DRAM with low power and low noise data bus inversion. IEEE J. Solid-State Circuits 2008, 43, 121–131. [Google Scholar] [CrossRef]
- Sohn, K.; Na, T.; Song, I.; Shim, Y.; Bae, W.; Kang, S.; Lee, D.; Jung, H.; Hyun, S.; Jeoung, H.; et al. A 1.2 V 30 nm 3.2 Gb/s/pin 4 Gb DDR4 SDRAM with dual-error detection and PVT-tolerant data-fetch scheme. IEEE J. Solid-State Circuits 2012, 48, 168–177. [Google Scholar] [CrossRef]
- Micron. SDRAM, 4Gb: ×4, ×8, ×16 DDR4 SDRAM features. In White Paper by Micron Technology; Micron: Boise, ID, USA, 2014. [Google Scholar]
- Lucas, J.; Lal, S.; Juurlink, B. Optimal DC/AC data bus inversion coding. In Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 1063–1068. [Google Scholar] [CrossRef] [Green Version]
- Dally, W.J.; Towles, B.P. Principles and Practices of Interconnection Networks; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Pasricha, S.; Dutt, N. On-Chip Communication Architectures: System on Chip Interconnect; Morgan Kaufmann: Burlington, Massachusetts, 2010. [Google Scholar]
- Jiang, N.; Becker, D.U.; Michelogiannakis, G.; Balfour, J.; Towles, B.; Shaw, D.E.; Kim, J.; Dally, W.J. A detailed and flexible cycle-accurate network-on-chip simulator. In Proceedings of the IEEE international symposium on performance analysis of systems and software (ISPASS), Austin, TX, USA, 21–23 April 2013; pp. 86–96. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Michelogiannakis, G.; Becker, D.; Towles, B.; Dally, W.J. Booksim 2.0 User’s Guide; Stanford University: Stanford, CA, USA, 2010. [Google Scholar]
- Banerjee, N.; Vellanki, P.; Chatha, K.S. A power and performance model for network-on-chip architectures. In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, Paris, France, 16–20 February 2004; pp. 1250–1255. [Google Scholar] [CrossRef]
- Palnitkar, S. Verilog HDL: A Guide to Digital Design and Synthesis; Prentice Hall Professional: Hoboken, NJ, USA, 2003. [Google Scholar]
- Parhami, B. Voting Networks. IEEE Trans. Reliab. 1991, 40, 380–394. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Maskell, D.L. A distributed minority and majority voting based redundancy scheme. Microelectron. Reliab. 2015, 55, 1373–1378. [Google Scholar] [CrossRef]
- Choudhary, J.; Balasubramanian, P.; Varghese, D.M.; Singh, D.P.; Maskell, D. Generalized majority voter design method for N-modular redundant systems used in mission-and safety-critical applications. Computers 2019, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Nagendra, C.; Owens, R.M.; Irwin, M.J. Power-delay characteristics of CMOS adders. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 1994, 2, 377–381. [Google Scholar] [CrossRef]
- Laros III, J.H.; Pedretti, K.; Kelly, S.M.; Shu, W.; Ferreira, K.; Vandyke, J.; Vaughan, C. Energy delay product. In Energy-Efficient High Performance Computing; Springer: Berlin/Heidelberg, Germany, 2013; pp. 51–55. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pae, S.-i.; Kwon, K.-W. Latency-Optimized Design of Data Bus Inversion. Electronics 2022, 11, 1205. https://doi.org/10.3390/electronics11081205
Pae S-i, Kwon K-W. Latency-Optimized Design of Data Bus Inversion. Electronics. 2022; 11(8):1205. https://doi.org/10.3390/electronics11081205
Chicago/Turabian StylePae, Sung-il, and Kon-Woo Kwon. 2022. "Latency-Optimized Design of Data Bus Inversion" Electronics 11, no. 8: 1205. https://doi.org/10.3390/electronics11081205
APA StylePae, S. -i., & Kwon, K. -W. (2022). Latency-Optimized Design of Data Bus Inversion. Electronics, 11(8), 1205. https://doi.org/10.3390/electronics11081205